Journal of Organometallic Chemistry, 247 (1983) C1-C4 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

OXIDATION VON DICHLORMETHAN ZU EINEM CARBONAT-LIGANDEN

O.J. SCHERER*, H. JUNGMANN und K. HUSSONG

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-6750 Kaiserslautern (B.R.D.)

(Eingegangen den 17. Februar 1983)

Summary

The reaction of CH_2Cl_2 with $(Ph_3P)_2PtO_2$ affords cis- $(Ph_3P)_2PtCl_2$, $(Ph_3P)_2Pt(CO_3)$, Ph_3PO and H_2O . $^{31}P\{^1H\}$ NMR studies of this oxidation of CH_2Cl_2 to a carbonato ligand give evidence for the intermediates $(Ph_3P)_2Pt(OOCH_2Cl)Cl$ and $(Ph_3P)_2PtOOCH_2OO$. With formic acid $(Ph_3P)_2PtO_2$ yields the formate complex cis- $[(Ph_3P)_2Pt(OOCH)_2]$.

Kürzlich konnten wir zeigen, dass die lichtinduzierte oxidative Addition von Dichlormethan an $(Ph_3P)_2Pt(C_2H_4)$ die Chlormethyl-Komplexe cis/trans- $(Ph_3P)_2Pt(CH_2Cl)Cl$ ergibt [1], die ihrerseits zu vielseitigen Reaktionen [2,3] herangezogen werden können. Lässt man $(Ph_3P)_2PtO_2$ (I) und Dichlormethan verschlossen mehrere Tage bei Raumtemperatur am Tageslicht oder im Dunkeln stehen, dann kann man $^{31}P\{^1H\}$ -NMR-spektroskopisch (Tab.1) in Abhängigkeit von der Zeit folgendes beobachten: Nach einigen Tagen treten neben dem Signal des Ausgangsmaterials $(Ph_3P)_2PtO_2$ (I) noch die Signale der Zwischenstufen II und III sowie die von cis- $(Ph_3P)_2PtCl_2$ (IV), $(Ph_3P)_2Pt(CO_3)$ (V) und Ph_3PO auf (prozentualer Anteil in Abhängigkeit von der Zeit: siehe Tab. 1). Als Reaktionsendprodukte erhält man ca. 20% IV, 40% V und 40% Ph_3PO .

Diskussion der Ergebnisse

Komplexe mit O_2 -Liganden beanspruchen sowohl in präparativer als auch theoretischer Hinsicht fortwährendes Interesse [4]. Die Stereochemie und der Reaktionsmechanismus der Umsetzung von L_2PtO_2 ($L=z.B.\ Ph_3P$) mit Triphenylmethylbromid oder Benzoylbromid wurde soeben eingehend von Tatsuno und Otsuka untersucht [5]. Dabei konnten die Peroxo-Verbindungen $L_2Pt(OOR)Br$ ($R=CPh_3$, COPh) isoliert werden. Kochi et al. [6] charakterisierten das aus ($Ph_3P)_2PtO_2$ und Benzoylchlorid bei $-78^{\circ}C$ dargestellte

TABELLE 1

 $^{31}P\left\{^{1}H\right\}$ -nmr-spektroskopische daten der reaktion von L_{2} Pio $_{2}$ (I) mit ch $_{2}$ Ci $_{3}$ bei raumtempe-RATUR (L = Ph₃P; 8 in ppm, J in Hz, s = Singulett, d = Dublett. CD₂Cl₂ als Lösungsmittel, 85-proz. H₃PO, ext.).

Reaktionszeit	Reaktionszeit L ₂ PtO ₂ (I) II	II	III	cis-L ₂ PtCl ₂ (IV)	cis-L ₂ PtCl ₂ (IV) L ₂ Pt(CO ₃) (V) ^d Ph ₃ PO	Ph,PO
ca, 3 d im Dunkeln	15.5(s) 'J(PtP) 4084 ca. 26% b	6.3(d), ¹ J(PtP) 4493 13.0(s) 9.5(d), ¹ J(PtP) 3017 ¹ J(PtP) 3450 ² J(PP) 20 ca. 11% ca. 46%	13.0(s) 'J(PtP) 3450 ca. 11%	14.3(s) 'J(PtP) 3677 ca. 5%	7.1(s) 'J(RtP) 3697 ca. 4% 195pt {H} Z 21.409342 Hz 437 (t) 'J(PtP) 3699	28 0(s)
ca. 7 d	860	ca. 50%	ca. 15%	ca. 15%	ca. 5%	ca. 15%
um Dunkeln						
ca. 7 d	%0	ca. 24%	ca. 9%	ca. 21%	ca. 23%	ca. 23%
am Tageslicht ^C						1

¹J(PtP) 3289; 10.6(d), ¹J(PtP 3847; ²J(PP) 24.5 Hz. ^b Die Produktverteilung von I--V ist mar eine grob qualitative Angabe; detaillierte Studien über Konzentrations- und Temperaturabhängigkeit sind im Gange. ^C Der Zusatz von Durochinon übt keinen entscheidenden Einfluss auf die Produktverteilung aus.

C=0, Darst.: Lit. [9], aufgeführt: 6.2(d),

 a Zum Vergleich sind noch die 3i P $^{\{1H\}}$ -NMR-Daten von $\mathrm{L_2Pt}$

 $(Ph_3P)_2Pt(OOCOPh)Cl^{31}P\{^1H\}-NMR-spektroskopisch sowie durch Folgereaktionen. In beiden Fällen sowie z.B. bei der Reaktion von <math>(Ph_3P)_2PtO_2$ mit (E)-2-Butenal [7] wird die Umsetzung in Dichlormethan durchgeführt. Wir fanden nun, dass dieses "Lösungsmittel" in Abwesenheit eines reaktiveren Reaktionspartners von $(Ph_3P)_2PtO_2$ (I) zu einem Carbonat-Liganden oxidiert wird. In teilweiser Anlehnung an die Literatur [4–6] schlagen wir Reaktionsschema 1 vor.

SCHEMA 1

(L == Ph₂P)

Unter der Annahme, dass Ph₃PO in einer Nebenreaktion entsteht, ergäbe sich für diese Redoxreaktion folgende Stöchiometrie (H₂O wurde ¹H-NMR-spektroskopisch nachgewiesen):

$$2 L_2 PtO_2 + CH_2 Cl_2 \rightarrow L_2 PtCl_2 + L_2 Pt(CO_3) + H_2 O$$

(L = Ph₃P)

Für A, das als Dioxiran mit I zu III (ein (Ph₃P)₂PtOC(OH)₂O-Isomeres halten wir für weniger wahrscheinlich) weiterreagieren könnte, muss als zweite denkbare Isomerenform die Ameisensäure (HCOOH) diskutiert werden. Setzt man in einem Kontrollexperiment I in Toluol mit Ameisensäure um, dann lässt sich in quantitativer Ausbeute der Formiatkomplex cis-[(Ph₃P)₂Pt(OOCH)₂] (VI) darstellen.

$$(Ph_3P)_2PtO_2 \xrightarrow{\begin{array}{c} 2 \text{ HCOOH} \\ -H_2O_2 \end{array}} \begin{array}{c} Ph_3P \\ Ph_3P \end{array} Pt \xrightarrow{OOCH} OOCH$$

$$(VI)$$

Wenngleich sich VI in CD_2Cl_2 -Lösung langsam (1 Woche ca. 40%) zum Carbonat-Komplex V zersetzt, halten wir diese Zwischenstufe bei der Oxidation von CH_2Cl_2 durch I für wenig wahrscheinlich, zumal hier das isolierbare VI NMR-spektroskopisch zu keiner Zeit nachgewiesen werden konnte.

Vol'pin et al. [8] synthetisierten VI aus L₄Pt|HCOOH und charakterisierten es IR-spektroskopisch und analytisch. NMR-Daten von VI: 31 P{ 1 H}(CD₂Cl₂, 85-proz. H₃PO₄ etx.): δ 6.2 ppm (s), 1 J(PtP) 3824 Hz. 1 H(CD₂Cl₂, TMS int.): δ (HCOO) 7.9 ppm (d), J(PH) 12.6, 3 J(PtH) 63 Hz. 13 C{ 1 H} (CD₂Cl₂, TMS int.): δ (HCOO) 167 ppm (s), 2 J(PtC) 23 Hz; 1 H-gekoppelt: 1 J(HC) 203 Hz.

 195 Pt 1 H 1 (CD $_{2}$ Cl $_{2}$): δ 507 ppm (t), Ξ 21.411466 MHz; 1 J(PtP) 3822 Hz. 1 H-gekoppelt: 3 J(PtH) 65 Hz. IR (KBr) ν (OCO): 1640 (Schulter), 1620 cm $^{-1}$.

Möglicherweise kann den im Reaktionsschema 1 beschriebenen Umsetzungen Modellcharakter für das Studium der Zerstörung der atmosphärischen Ozonschicht durch halogenierte Kohlenwasserstoffe zugeschrieben werden.

Experimentelles

 $(Ph_3P)_2Pt(CO_3)$ (V): 202 mg (0.269 mmol) $(Ph_3P)_2PtO_2$ (I) werden in einem Schlenk-Rohr unter Argon in ca. 2 ml CH_2Cl_2 gelöst und bei Raumtemperatur gut verschlossen stehen gelassen. Die Reaktionszeit für eine vollständige Umsetzung zu IV, V und Ph_3PO schwankt sehr stark und beträgt am Tageslicht ca. 5–10 Tage, unter Lichtausschluss ca. 15 Tage. Nach Entfernen des Lösungsmittels im Ölpumpenvakuum wird der braune Rückstand dreimal mit jeweils ca. 3 ml Benzol/Pentan (ca. 30/70) und dann zweimal mit jeweils ca. 3 ml Benzol gewaschen. Nach dem Trocknen im Vakuum erhält man 76.4 mg (36%) V, das noch mit ca. 3% IV verunreinigt ist. Umkristallisation aus $CHCl_3$ ergibt 35 mg (17%) reines V. Gef.: C, 55.80; H, 3.98. $C_{37}H_{30}O_3P_2Pt$ ber.: C, 56.99; H, 3.88%. IR (KBr): $\nu(C=O)$ 1680 cm⁻¹. Das Produkt ist in seinem Eigenschaften mit dem in Lit. [9] beschriebenen identisch (vgl. dazu auch andere Platin-Carbonat-Komplexe [10]).

cis-[(Ph₃P)₂Pt(OOCH)₂] (VI): 97.23 mg (0.13 mmol) (Ph₃P)₂PtO₂ (I), suspendiert in 2.5 ml Toluol, werden in einem Zentrifugenröhrchen unter Argon und Rühren bei Raumtemperatur mit 9.76 μ l (0.26 mmol) Ameisensäure (98 proz.) versetzt. Dabei entwickelt sich Sauerstoff (H₂O₂-Zersetzung). Man rührt 30 min weiter, zieht das Lösungsmittel im Ölpumpenvakuum ab, wäscht den Rückstand zweimal mit jeweils ca. 2 ml Pentan und trocknet im Vakuum. Ausbeute 102 mg (96%) schwach graues Pulver. Gef.: C, 55.90; H, 4.28 C₃₈H₃₂O₄P₂Pt ber.: C, 56.37, H, 3.98 %.

Dank. Dem Fonds der Chemischen Industrie danken wir für die Förderung dieser Arbeit.

Literatur

- O.J. Scherer und H. Jungmann, J. Organomet. Chem., 208 (1981) 153.
- 2 O.J. Scherer und H. Jungmann, Z. Naturforsch., B, 36 (1981) 1663.
- 3 O.J. Scherer und H. Jungmann, J. Organomet. Chem., 228 (1982) C61.
- 4 Neueste Ubersichten: H. Mimoun, Angew. Chem., 94 (1982) 750; F. Di Furia und G. Modena, Pure Appl. Chem., 54 (1982) 1853.
- 5 Y. Tatsuno und S. Otsuka, J. Am. Chem. Soc., 103 (1981) 5832.
- 6 M.J.Y. Chen und J.K. Kochi, J. Chem. Soc. Chem. Commun., (1977) 204.
- 7 M.J. Broadhurst, J.M. Brown und R.A. John, Angew. Chem., 95 (1983) 57.
- I.S. Kolomnikov, V.P. Kukolev, T.D. Chebotareva und M.E. Vol'pin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 946; vgl. dazu auch: J. Chatt und B.L. Shaw, J. Chem. Soc., (1962) 5075; S. Muto, H. Ogata und Y. Kamiya, Chem. Lett., 4 (1975) 809. Zur Problematik Formiat-Komplexe/Wassergas-Gleichgewicht siehe z.B.: D.J. Darensbourg, A. Rokicki und M.Y. Darensbourg, J. Am. Chem. Soc., 103 (1981) 3223; W.A.R. Slegeir, R.S. Sapienza, R. Rayford und L. Lam, Organometallics, 1 (1982) 1728.
- 9 C.J. Nyman, C.E. Wymore und G. Wilkinson, J. Chem. Soc. A, (1968) 561.
- 10 R.G. Goel, Inorg. Nucl. Chem. Letters, 15 (1979) 437; B. Olgemüller, L. Olgemüller und W. Beck, Chem. Ber., 114 (1981) 2971.