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Summary 

A simple model of the conductive surface, which is topologically equivalent to the 
superaromatic polyhedral system, defines the class of “Wade’s” clusters obeying the 
2n + 2 rule and extends the electron counting procedure to superaromatic 
conjuncto-clusters. 

Introduction 

From the time when the 2n + 2 rule was formulated by Wade and the counting 
scheme for cluster skeletal electrons worked out [l], the limits of the rule and its 
physical implication have continued to be discussed. During the last decade the 
magic numbers of skeletal electrons in polyhedral molecules have been discussed and 
their validity substantiated within the scope of different approaches: qualitative 
molecular orbital considerations [1,2], extended Htickel MO’s [3,4], graph theory [5], 
the conductive sphere model [6] and several others. At the same time, attempts have 
been made to establish similar magic numbers for the clusters of the platinum metals 
and gold [7], which usually do not obey the 2n + 2 rule. 

In spite of a substantial number of papers, the theory of cluster bonding remains, 
however, unaccomplished and the Wade’s rule still appears to be “semiempirical”. 
The most prominent results in this field have been achieved using physical models, 
which reflect fundamental properties of the clusters [5,6]. Considering this approach 
to be very fruitful we now attempt to give a definition of a superaromatic cluster on 

the basis of a simple topological model. 

Discussion 

All cluster molecules whose structures have been studied may now be roughly 
subdivided into “Wade’s” and “non-Wade’s” systems in accordance with the 2n + 2 
rule, which in these cases is, respectively, valid or non-valid (Table 1). “Non-Wade’s” 
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TABLE 1 

TYPES OF CLUSTERS AND REPRESENTATIVE SPECIES 

I “Wade’s” clusters II “Non-Wade’s” clusters 

Boron hydrides, carboranes, metallocarboranes 1 

(B1aHt4, C,B,aH,,. CpCGBsH,,, etc.) 
Organometallic complexes with g-olefin ligands 2 
and 18s valence shell of the metal atom 3 

(CpMn(CO),, C,H,Cr(CO),, Cp,Fe, etc.) 

Octahedral carbonyl clusters of transition 4 

metals and their derivatives (Rh,(CO),,, 

Fe, C(CO),,) 5 

Capped square antiprism (Rh,,S(CO),,2 [8], 

Rh,P(CO),,‘- [9], etc.) 

Polynuclear non-transition metal cluster ions 

(SnsT13--, SnsTl _ [lo]) 

Clusters with localized bonds (tetrahedron, 

trigonal prism. cube) 

Trigonal bipyramid (CpsVsO,, etc. [ll]) 

Large metalloclusters (Rh1s(C0)25H5_,“-. 

Rh,,(CO)374 , etc. W.1) 
“Inorganic” halogenide clusters (Mo6C1s4+, 

Nb,CI,,‘+) 

Clusters of platinum and post-transition 

metals 

clusters (the second column of Table 1) include very different polyhedra wherein this 
rule is not fulfilled at all (noble metal clusters, large metalloclusters) or frequently 
violated (trigonal bipyramid, nickel clusters). Several types of such clusters may be 
described satisfactorily by alternative methods: for example, clusters of the type II.1 
are considered to have only localised two-centre two-electron bonds, so the octet rule 
and/or the effective atomicnumber rule (EAN or 18e) are satisfied for their atoms, 

depending on the types of these atoms; the large metalloclusters (11.3) are well 

described by zone theory [13], etc. On the other hand, in the relatively limited group 
of polyhedra (octahedron, capped square antiprism, icosahedron) built up of some 
particular atoms (usually boron, carbon and middle transition metals) the 2n + 2 
rule is fulfilled surprisingly well (the first column of Table 1). The question naturally 

arises - is Wade’s rule of general application and which clusters can in principle 
obey it? 

At present it is customary to regard the cluster polyhedral unit as a three-dimen- 
sional superaromatic system with a sufficient delocalisation of bonding electrons 
over the polyhedron. This point of view, although correct for a definite group of 
polynuclear complexes, seems yet to be, strictly speaking, non-valid for cluster 
compounds as a whole. For example, contemporary experimental data evidently 
leads to the conclusion that not every cluster molecule exhibits superaromaticity as 
well as only several cyclic molecules possess delocalized m-aromatic Htickel systems 
(4n + 2 m-electrons). The simple topological model of r-aromatic systems represents 
a conductive ring. Similarly, all available structural data allows us to draw the 
following conclusion: 

On& “Wade’s” clusters, obeying the 2n + 2 rule, are superaromatic systems. These 

and only these clusters are topologically equivalent to a continuous closed conductive 
surface with a small cavity inside it. 

This simple topological model of the superaromatic cluster results directly from 
the paper by Ring and Rouvray [5], who have used the very important (although 
strictly unproven) postulate of the splitting of cluster MO’s into exopolyhedral, 
tangential and internal; and from the Stone’s spherical shell model [6], though, 
however, the spherical symmetry of the system seems not to be sufficient and the 
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determining characteristic is the connectivity of cluster polyhedron. The super- 
aromatic “Wade’s” clusters (Table 1) include simple deltahedra with the number of 
vertices n G 13, which may have several open faces (nido and aruchno frameworks) 
and/or an interstitial atom of a light element. The small size of the cavity must 
satisfy the condition of a mutual overlap of internal MO’s [5], while the continuity of 
the conductive surface reflects a delocalisation of tangential bonding. Appearance of 
an open face in nido and arachno polyhedra corresponds to the puncturing of the 
continuous conductive surface, which, according to Ring and Rouvray, leads to 
increasing bond localisation in the cluster. 

On the basis of the simple topological model, the selection of “Wade’s” clusters 
among the others can be substantiated. Actually, all “non-Wade’s” clusters in the 
second column of Table 1 do not correspond to the model of the closed conductive 
surface, because of bond localisation, a large number of open faces, the presence of 
metal crystal lattice fragments inside the polyhedron, and so on. The specific 
position of a trigonal bipyramid (11.2) can also be reasonably explained, since this 
conjuncto-polyhedron represents a system of two face-condensed tetrahedra (i.e. 
“localized” polyhedra, 11.1) cut through the middle by a common trigonal “delta” 
face and so topologically non-equivalent to a “delocalized” closed surface with a 
single cavity inside it. Really the relevant magic number of skeletal electrons (12) is 
very often violated in trigonal bipyramidal clusters, whereas the great majority of 
octahedral derivatives appear to be “Wade’s” clusters. Moreover, the model allows 
rationalization of the violation of the 2n + 2 rule in clusters with a large internal 
cavity (for example, in 1Cvertex tetracarbon metallocarboranes [14]). A poor overlap 
of internal MO’s requires the introduction of a bonding centre into the polyhedron, 
and in fact all recently synthesised capped square-antiprismatic rhodium clusters 
contain an interstitial P,S, or As atom inside a large polyhedral cavity [8,9]. 

By this approach it is not so easy to explain why octahedral halogenide clusters of 
the early transition metals (MO, Nb) are of the “non-Wade’s” type. One possible 
explanation was suggested by Wade, who proposed localisation of metal-metal 
bonds in these clusters [13]; an alternative point of view takes into account the 
limiting donating abilities of the halogen atoms in the dense coordination sphere 

enveloping the metal octahedron. At any rate it is interesting to note, that “Wade’s” 
clusters are usually built up of the metals which acquire the 18e configuration in 
their mononuclear derivatives. For post-transition metals, along with an increase in 
stability of 16e or 14e valence shells and a drop of the coordination ability in 
mononuclear complexes, both the EAN and 2n + 2 rules become invalid. The 
inclusion of a post-transition metal atom in the framework of a metallocarborane 

[15] or q-cyclopentadienyl complex [16] leads to the opening of the cluster poly- 
hedron, i.e. to a puncturing of the conductive deltahedral surface of the tangential 
bonding without the required addition of skeletal electrons. Thus, increase in the 
number of post-transition metal atoms in the cluster framework must lead to 
increased puncturing of the tangential bonding surface, therefore the deltahedral 

surface of “non-Wade’s” close-clusters such as [Au,(PR,),12+ [17] or 
[Cu,H,(PR,)J2+ [18] is evidently not continuously conductive. 

Apart from the selection of superaromatic “Wade’s” systems, the topological 
model enables the extension of the 2n + 2 rule to conjuncao-clusters. Two “Wade’s” 

n-vertex deltahedra may, in principle, have a common vertex, a common edge, or a 
common face (Fig. 1). In the first case, the topological model of the cluster 
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Fig. 1. Topological models of comnto-, edge-shared and face-shared bis-n-vertex polyhedra, and close-2n- 

vertex clusters. with the number of skeletal electrons therein. 

represents two closed surfaces with one common punctured point; in the second 
case, similar surfaces with a common “punctured” segment; and in the third one, 
the single enveloping closed surface with a constriction. All of these three-dimen- 
sional surfaces can be transformed one into another, as well as into any other closed 
surface with a single cavity, by continuous deformations in three-dimensional space, 
and therefore these surfaces are homeomorphous. Assuming that the polyhedral 
surface is still continuously conductive we can extend the 2n + 2 rule to condensed 
clusters with the following modification: 

The number of skeletal electrons in a conjuncto-cluster is counted by the usual 
scheme, but the vertices common to adjacent po[vhedra are excluded from the total 

number of cluster vertices. 
The suggested modification to the counting scheme resembles the generalisation 

of the Htickel’s rule for condensed aromatic rings [19] and allows true magic 
numbers to be obtained for poly-polyhedral clusters. In accordance with this 

modified scheme, the anionic [Co(C,$H,,),]- comma-metallocarborane [20] is 
equivalent to a close-22-vertex polyhedron and correspondingly has 46 skeletal 
electrons, and the ferrocene molecule (with 26 skeletal electrons) is equivalent to an 

arachno-lo-vertex polyhedron, etc. 
The electron counting procedure for comma-metallocarboranes has been used up 

to now without the topological model, although the latter provides more generality. 
Nevertheless, a search for magic numbers in recently-synthesised conjuncto-clusters 
with a common edge or a common face encountered some difficulties, whilst in our 
approach these numbers can be obtained simply and unequivocally. Thus, two 
octahedra with a common face are equivalent to a close-6-vertex deltahedron and 
two octahedra with a common edge to a close-8-vertex deltahedron. The first 
conjuncto-cluster must therefore have 14 skeletal electrons and the second one must 
have 18e, which is just the case in the structures of [Rh,(CO),,]3- [21] and 

[Ru~,,(C),(CO),]~- [22], respectively. Moreover, on the basis of the suggested 
scheme it becomes possible to rationalize the structures of the challenging conjuncto- 

platinaborane systems [23], bearing in mind a necessary correction for polyhedra 
distortion due to the presence of a Pt atom (uide supra). Within our approach the 
structures of three isomeric 19-vertex L,PtB,sH,,, derivatives may be regarded as 
equivalent to a hypho-16-vertex polyhedron (nido : arachno bisicosahedral clusters 
with one common face) and therefore must have 40 skeletal electrons, which they 
actually do; the face-condensed thermolysis product L2Pt(q4-anti-B18H1s), being 
equivalent to an arachno-16-vertex polyhedron, must have 38 skeletal electrons, 
which is the case, as it is with the diplatinum-cluster L,Pt 2( n4 : TJ~ + q2-anti-B,,H,,), 



which is equivalent to a nido-17-vertex polyhedron. So the Wade’s rule may be 
extended to sufficiently complicated conjuncto-polyhedra. 

Conclusion 

It should be stressed that the qualitative physical model, which reflects the 
topology of superaromatic cluster bonding, already allows: (1) a definition of the 
class of “superaromatic” polyhedral derivatives, where the 2n + 2 rule is valid, and 
(2) the extension of this rule to condensed “Wade’s” clusters. The Wade’s rule itself 
appears to be closely related not only to the Htickel’s rule for “classical” aromatic 

systems, as has been pointed out earlier [5], but also to the EAN rule for mono- 
nuclear metal complexes. The proper search for the magic numbers, if any, in 
post-transition metal clusters must evidently include an analysis of the electronic 
structures of their atoms, in particular the reasons for the stability of 16e and 14e 
configurations, where the valence shell of atom is not fully occupied. 
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Note added in proofi After this paper was submitted to publication, D.M.P. Mingos has proposed the 

other rules for magic numbers in any shared polyhedral clusters based on another scheme (D.M.P. 

Mingos, J. Chem. Sot., Chem. Commun., (1983) 706). For the condensed superaromatic deltahedra both 
approaches lead to the same predictions providing the further evidence for the topological model. 


