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Summary 

A series of novel organoiron complexes has been isolated and studied by ‘H 
NMR, 13C NMR, and IR spectroscopy. Addition of LiC(CHJ)&N to (1,3-cyclo- 
hexadiene)tricarbonyliron produces an intermediate which is only stable at low 
temperature and which is assigned the homoallyl-Fe(CO)J anion structure. The 
intermediate rearranges on warming into a stable complex, for which full spectral 
data support the structure as an allyl-Fe(CO)j anionic species. Interception of 
the first formed intermediate with CO gives an acylferrate complex with an 
olefin unit still bound to iron, and methylation then occurs at oxygen to pro- 
duce an unusual internally-bound (alkene)(methoxyalkylidene)tricarbonyliron 
species. 

A series of reactive carbon nucleophiles has been reported to add to q4 -(1,3- 
diene)tricarbonyliron(O) complexes (e.g., 1) [l]. Two intermediates (2.3) are 
the likely products. Quenching of the mixture with acid produces substituted 
cyclohexenes, which could result from either 2 or 3 [ 11. Reaction in the pre- 
sence of CO appears to lead to a new intermediate, suggested to be 4 [ 21. The 
structure 4 is an analog of the well-studied acyltetracarbonylferrates [ 31; con- 
sistent with this formulation, reaction with acid produces a l-formyl-&cyclo- 
hexene derivative, while reaction with methyl iodide produces a l-acetyl-3-cyclo- 
hexene [ 21. However, reaction with methyl fluorosulfonate produces a new inter- 
mediate (now formulated as 5) which is converted to a lcarbomethoxy-&cyclo- 
hexene derivative when handled in air [ 2,4]. Under certain conditions, the first- 
formed intermediate (2) rearranges to a new species (now formulated as 3) which 
does not undergo CO insertion under moderate CO pressure [ 21. In this paper, 
we describe efforts to characterize the novel intermediates 2-5 through spectral 
data. 

0022-328X/84/$03.00 o 1984 Elsevier Sequoia S.A. 



Cl6 

Reaction of LiC(CH3)&N with 1 at -60°C in THF-& produced a mixture 
which exhibited a poorly resolved ‘H NMR spectrum. Peaks for 1 and 3 were 
clearly absent, and two well-defined signals at 6 3.20 and 3.71 are assigned to the 
olefinic protons in 2 [ 51. As the solution was allowed to warm to O”C, the pat- 
tern changed and sharpened into a spectrum attributed to 3, with excellent re- 
solution. 
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The ‘H NMR spectrum of n3-ally1 complex 3 exhibits a triplet at 6 5.12 (J 
5.6 Hz) assigned to H at C(2), and two narrow multiplets, centered at 6 3.60 and 
3.43 (approximately a doublet with J 2 6 Hz), assigned to H at C(1) and C(3) [6]. 
Irradiation at 6 3.5 caused the triplet at 6 5.12 to collapse to a sharp singlet, 
while irradiation at 6 5.12 changed the signals for H at C( 1) and C(3) into broad 
singlets, suggesting small residual coupling with H at C(4) and C(6). Irradiation in 
the region assigned to H at C(4) and C(6) (6 2.2) simplified the signals from H at 
C(1) and C(3) into sharp doublets with J 5;6 Hz. Three doublets in the 13C NMR 
spectrum at 6 68.2, 54.4, and 57.2 are assigned to C(2) and C(1) or C(3), respec- 
tively [6]. The IR spectrum shows metal-bound CO at 1926, 1843, and 1826 
cm-‘, indicating increased back-bonding relative to the starting complex [ 71. 

When addition of LiC(CH3)$N to 1 was made under 1.5 atm of CO at -60°C 
in THF, a stable compound was obtained whose structure was assigned as 4. The 
IR spectrum shows terminal Fe-CO signals at 1971 and 1875 cm-‘, while the 
acyl CO is assigned to the peak at 1591 cm-’ [ 81. The ‘H NMR spectrum in- 
cludes two doublets of narrow multiplets centered at 6 4.20 and 3.44 assigned to 
H at C(2) and C(l), respectively (olefinic H). Irradiation in the region 6 2.0-2.8 
simplifies these signals to sharp doublets with J 8.1 Hz. A triplet appears at 6 
2.42, J 4.9 Hz, assigned to H at C(3); it collapses to a doublet during irradiation 
at 6 4.20, suggesting a coupling constant of 4.9 Hz between H at C(2) and H at 
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C(3). The magnitude of this coupling constant is consistent with a dihedral angle 
of 46” between C( 2)-H and C( 3)-H [ 91. Molecular models of 4 show that this 
angle is consistent with either a cis arrangement of a pseudo-equatorial isobutyro- 
nitrile unit and the acyl group, or a truns-arrangement with the isobutyronitrile 
unit in a pseudo-axial conformation. The latter formulation (as represented by 4) 
is consistent with the trans-3,6disubstituted cyclohexenes obtained after acid 
cleavage or reaction with Me1 [ 21. The “C NMR spectrum of 4 is notable for 
two doublets, at 6 58.1 and 50.2 assigned to C(l)/C(2), and a singlet at 6 300.1 
assigned to the acyl carbon, C( 11) [lo]. The strong downfield position of the 
signal for C(11) is consistent with a major contribution from resonance structure 
4, emphasizing the alkylidene structure [ 111. 

Treatment of the solution of 4 with methyl fluorosulfonate gives a new inter- 
mediate, 5, which can be isolated as an orange oil and fully characterized. 
Significant peaks appear in the IR spectrum at 2024,1957, and 1922 cm-’ 
(terminal Fe-CO), at 1697 cm-’ due to Fe=C(OMe)R, and at 1266 cm-’ 
(C-G single bond stretch). The ‘H NMR spectrum exhibits a singlet at 6 4.08 for 
the OCH, group, and two doublets of narrow multiplets (6 4.54, 4.27) assigned 
to the olefinic C-H (H at C(l), C(2)). The olefinic signals are substantially down- 
field in this neutral complex, compared to the corresponding signals in the anion- 
ic complex 4, consistent with less backbonding from iron to the alkene ligand in 
5 [ 111. Similarly, C(1) and C(2) in 5 give rise to doublets at 6 69.5 and 65.9. 
The alkylidene carbon C( 11)) appears as a singlet at 6 341.7, comparable to data 
from other “Fischer-type” alkylidene complexes [ 121. 

We feel these data establish the structures of previously postulated inter- 
mediates; especially significant is the conclusion that the alkene unit is still 
bound to iron in 4 and 5, ruling out displacement of the alkene by CO under 
these conditions. Important questions about the mechanisms of rearrangement 
2+3 are still open. 
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