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Summary 

The reactions of NEta [ Irq(CO)I ,Br] (I) with mono- and di-olefins in the pre- 
sence of AgBF4 gave high yields (>90%) of Ir4( CO), 1 (olefin) (II) and 
Ir4(CO)1,,(n4-diolefin) (III). Oxidation of Ir4(CO)11L (L = PPh3, AsPh,) in the 
presence of an excess of diolefin by 1 eq. 0N(CHJ)3 gave the clusters 
Ir4(CO)sL(n4-diolefin) (IV) and Ir4(C0)7L(n4-diolefin)2 (V). Sulphur dioxide 
quantitatively displaces the monoolefin ligand from II to give 
Ir4(CO)9(~z-CO)2(~cI-S02), which is the first example of a tetrairidium-SO2 
cluster. 

The development of the chemistry of Ir4(C0)12 is hampered by its near in- 
solubility in all solvents, and CO substitution reactions are restricted to good 
donor ligands such as phosphines, arsines and isonitriles [ 11. Thermal CO sub- 
stitutions by olefins and polyolefins are complicated by dehydrogenation of the 
ligands and changes in nuclearity of the clusters. Well characterized tetrairidium 
clusters with diolefins are Ir4( CO),,_,, (1,5-COD), (COD = cyclooctadiene; x = 
1,2,3) [ 21. In view of their potential as catalysts, for which adjacent metal 
centers offer the possibility of cooperative reactivity, we started a systematic 
study of tetrairidium carbonyl clusters containing C=C bonds. The soluble an- 
ionic cluster [ Ir,( CO), 1Br]- [ 31 is ideally suited as a starting material for selec- 
tive monosubstitution reactions, and many cluster compounds have recently 
been isolated from the reaction of NEt4 [ Ir4(CO)1 lBr] with mono- and bi- 
dentate phosphines and arsines ] 41. We have found that similar replacements of 
the bromide ligand by olefins proceed readily in the presence of AgBF4. 

High yields (>90%) of yellow clusters of type II (Scheme 1) were obtained 
by route i, but the less stable ethylene cluster IIa tends to decompose in solu- 
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SCHEME 1. -X-= /J-CO; L = PPh, ; a = ethylene: b = norbomene; c = 5,6-dimethylidene-‘7-oxabicyclo- 
12.2.llhept-2-ene: d = 1,bnorbomadiene; e = 1,bcyclooctadiene: 

(0 + olefin in CH,CI, at -3OOC; + AgBF, (1:l) (AgBr filtered) 
(ii) + diolefin in CH,Cl, at -1O’C: + AgBF, (1:l) (AgBr filtered) 
(iii) + ~XCI?SS diolefin; + ON(CH,), in THF at mom temperature; TLC. 

tion above -30°C in the absence of free ethylene. The higher stability of the 
clusters with strained olefins is in keeping with what is generally observed for 
complexes of nickel( 0) [ 51, palladium( 0) and platinum( 0) [ 61. 

Reaction ii with diolefins gave a yellow solution, presumably containing the 
bridged clusters [ Ir4( CO) 1 1 (n2-diolefin)] 2 which cleanly disproportionate into 
Ir,(C0)12 (recycled) and Ir,(CO)lo(n4-diolefin) (IIId, IIIe). Oxidation (route iii) 
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of Ir4( CO), 1L ( L = PPhJ, AsPh, ) in the presence of an excess of diolefin by 
1 eq. ON(CHJ), gave a mixture of two clusters, IV and V, which were separated 
by preparative TLC. 

The structures of I-V follow from their IR, ‘H, 13C and 31P NMR characterist- 
ics and from comparison with the corresponding Ir4(CO)11L [7], Irq(CO)lOLz 
(Lz = diarsine [ 81; L = PPh&H3 [ 91) and Irq(CO)9L3 [lo]. 

All the compounds show 3 IR bands characteristic of bridging CO’s. The first 
substitution takes place preferentially at an axial site, and chelation on a radial 
site of the same metal center follows. The clusters IVd, IVe and Vd are non- 
fluxional and have L on an axial site. For Ve two isomers are obtained in a 3/l 
ratio (L radial/L axial). The clusters II and III are fluxional at room temperature. 
The low-temperature ‘H and 13C NMR spectra of IIId,e indicate that the mid- 
points of the two C=C bonds reside on a mirror plane containing the apical Ir 
atom and one basal p-CO. Likewise in Vd,e, the two diolefins are related by a 
mirror place containing the apical Ir atom, L, and one basal p-CO. 

IIa: S(H) (360 MHz, 230 K, CDCl,): 3.55 ppm; coordination chemical shift 
As = 6 (ligand) - 6 (complex) = 1.88 ppm. 

IIb: 6(H) (360 MHz, 230 K, CDCl,): 4.05 br s, 2.82 br s, 1.69 m, 1.45 d, 
l.l9d, 0.92d;J,,, =J1,3 = 1.2Hz,J,yn,anti =~.~Hz,J,~,~~ =8.5Hz;A6 = 
1.95 ppm. The magnitude of J1,? indicates that the C=C! bond is coordinated 
through its exo-face [lo]. 6 (C) (90.55 MHz, 190 K, CD*&) CO: 205.1, 195.5, 
170.8, 170.1, 155.6, 155.5, 154.3 ppm, ratios 2/1/2/1/2/l/2. 

IIId: 6 (H) (360 MHz, 190 K, CD2C12): 4.49 br s (bridge heads), 4.61 br s 
(radial H-C=(Z), 3.95 br s (axial H-C=C), 1.15 dd; Jsyn,anti = 7 Hz, other J’s < 
1 Hz. 

IVd: S(H) (360 MHz, 230 K, CDCl,): 4.41, 4.18 br s (bridge heads), 4.24 t 
(H(2,3), radial), 3.74 t and 2.26 t (H(5,6), axial), 1.07 d and 0.97 d (H(7)); 
J - syn,antz = 9.3 Hz, J2,3 and J5,6 = 3.4-3.7 Hz. 6(C) (90.55 MHz, 190 K, CD,&): 
218.1 s, 207.2 s, 174.2 d (‘J(P,C) = 5.7 Hz), 170.8 s, 161.6 s, 159.0 d (3J(P,C) = 
27.8 Hz with apical CO in pseudo-truns position), 158.7 s, 154.3 s. S(P) (81 MHz, 
220 K, CD2C12): -20.23 ppm relative to H3P04 85%. 

Vd: 6 (H) (360 MHz, 230 K, CDCl,): 4.49, 4.00 br s (bridge heads), 4.32, 
4.03 dd (H(2,3), radial), 3.71, 2.36 dd (H(5,6), axial), 1.00 and 0.91 d (H(7)); 
J . syn,antz = 9.2 Hz, J2,3 and J5+ 3.3-3.7 Hz. h(P) (300 K, CDC13): -27.68 ppm. 

Carbon monoxide displaces the C=C bond of II and III to give Irq(CO)Iz and 
of IV and V giving Ir,(CO)l 1L. Sulfur dioxide quantitatively displaces the mono- 
olefin of II to give Irq(CO)9(~2-CO)z(~z-SOz) (VI), which is the first example of 
a tetrairidium-SO2 cluster. 

VI: IR (Nujol): 2118 w, 2090 vs, 2045 s, 1912 s, 1865 vs, 1264 s, 1093 vs. 
6(C) (90.55 MHz, 190 K, CD&l,): 190.6, 169.3, 165.7, 155.6, 155.3, 151.6 and 
149.3, ratios 2/1/2/1/2/2/l. 

The fluxional behaviour and the reactivity of these compounds are under 
study. 

We thank the Swiss National Science Foundation and the C.N.R. (Roma) for 
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