#### ÜBERGANGSMETALLKOMPLEXE MIT SCHWEFELLIGANDEN

VIII \*. CHROM(0)- UND WOLFRAM(0)-CARBONYLKOMPLEXE MIT 1,2-BENZOLDITHIOLAT-, 1,2-METHYLTHIOBENZOLTHIOLAT- UND 2,3,8,9-DIBENZO-1,4,7,10-TETRATHIADECAN(-2)-LIGANDEN

DIETER SELLMANN\* und WOLFGANG LUDWIG

Institut für Anorganische Chemie der Universität Egerlandstr. 1, 8520 Erlangen (BR Deutschland) (Eingegangen den 27. Februar 1984)

#### Summary

For investigating the reactivity of sulfur-coordinated metal centers, Cr(CO)<sub>6</sub>, as well as W(CO)<sub>6</sub>, was treated with bidentate and tetradentate thiolate ligands. Reacting  $M(CO)_6$  (M = Cr, W) with  $CH_3SC_6H_4S^-$  gives the complexes  $[M(CO)_4]$ CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S]<sup>-</sup> which are isolated as NMe<sub>4</sub><sup>+</sup> salts; with S<sub>2</sub>C<sub>6</sub>H<sub>4</sub><sup>2-</sup> three CO ligands are substituted yielding NMe<sub>4</sub><sup>+</sup> salts which contain the propably binuclear, sulfurbridged anions  $[\{M(CO)_3S_2C_6H_4\}_2]^{4-}$ . The chromium as well as the tungsten complex easily adds CO forming the mononuclear  $[M(CO)_4S_7C_6H_4]^{2-}$  complexes; the fourth CO ligand in the chromium complex, however, is so labile that (NMe<sub>4</sub>)<sub>2</sub>[Cr(CO)<sub>4</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>] can be handled only under CO and can be considered a reversible CO carrier. In the presence of PMe<sub>3</sub>, [{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>]<sup>4-</sup> can be alkylated by CH<sub>3</sub>I yielding [Cr(CO)<sub>3</sub>PMe<sub>3</sub>{(CH<sub>3</sub>S)<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}]. The substitution of more than three CO ligands of M(CO)<sub>6</sub> cannot be accomplished with the sulfur ligands used here; even from the reaction of [Cr(CO)<sub>3</sub>(EtCN)<sub>3</sub>] with the potentially tetradentate dttd<sup>2-</sup> = 2,3,8,9-dibenzo-1,4,7,10-tetrathiadecane(-2) only  $(NMe_4)_2[\mu$ dttd{Cr(CO)<sub>4</sub>}<sub>2</sub>] could be isolated. All complexes were characterized by spectroscopic means as well as by elemental analysis.

### Zusammenfassung

Um die Reaktivität von schwefelkoordinierten Metallzentren zu untersuchen, wurden  $Cr(CO)_6$  und  $W(CO)_6$  mit mehrzähnigen Thiolatliganden umgesetzt. Bei der Reaktion von  $M(CO)_6$  (M = Cr, W) mit  $CH_3SC_6H_4S^-$  werden die  $[M(CO)_4-CH_3SC_6H_4S]^-$ -Komplexe erhalten und als  $NMe_4^+$ -Salze isoliert; mit  $S_2C_6H_4^{2-}$ 

<sup>\*</sup> VII. Mitteilung siehe Ref. 1a.

erfolgt die Substitution von drei CO-Liganden unter Bildung der wahrscheinlich zweikernigen, S-Brücken aufweisenden Salze  $(NMe_4)_4[\{M(CO)_3S_2C_6H_4\}_2]$ . Sowohl der Cr- wie W-Komplex addieren leicht CO unter Bildung der einkernigen  $[M(CO)_4S_2C_6H_4]^{2^-}$ -Komplexe; der vierte CO-Ligand in dem Cr-Komplex ist jedoch so labil gebunden, dass  $(NMe_4)_2[Cr(CO)_4S_2C_6H_4]$  nur unter CO gehandhabt und als reversibler CO-Träger betrachtet werden kann. In Gegenwart von PMe3 lässt sich  $[\{Cr(CO)_3S_2C_6H_4\}_2]^{4^-}$  mit  $CH_3I$  zu  $[Cr(CO)_3PMe_3\{(CH_3S)_2C_6H_4\}]$  alkylieren. Die Substitution von mehr als drei CO-Liganden in  $M(CO)_6$  lässt sich mit den hier eingesetzten Schwefelliganden nicht erzwingen; auch bei der Umsetzung von  $[Cr(CO)_3(EtCN)_3]$  mit dem potentiell vierzähnigen  $dttd^2 = 2,3,8,9$ -Dibenzo-1.4,7, 10-tetrathiadecan(-2) konnte nur  $(NMe_4)_2[\mu$ -dttd $\{Cr(CO)_4\}_2]$  isoliert werden. Alle Komplexe wurden spektroskopisch sowie elementaranalytisch charakterisiert.

### Einleitung

Im Gegensatz zu der ausführlich untersuchten Chemie von Chrom-, Molybdänund Wolfram-Phosphin-Komplexen in niedrigen Oxidationsstufen ist über entsprechende Komplexe mit isoelektronischen Thioetherliganden immer noch relativ wenig bekannt [1b]. Untersuchungen solcher Komplexe beschränken sich im wesentlichen auf die vergleichweise geringe Zahl von Thioether-Komplexen des Typs  $M(CO)_5L$ ,  $M(CO)_4L_2$  bzw.  $M(CO)_3L_3$  (M=Cr, M=Cr, M=Cr), M=Cr, M=Cr0, M=Cr1, M=Cr2, M=Cr3, M=Cr4, M=Cr5, M=Cr5, M=Cr5, M=Cr5, M=Cr6, M=Cr6, M=Cr7, M=Cr8, M=Cr8, M=Cr8, M=Cr8, M=Cr8, M=Cr8, M=Cr9, M=Cr

Cr<sup>0</sup>- und W<sup>0</sup>-Komplexe mit mehrzähnigen Thiolatbzw. Thioetherthiolat-Liganden sind unseres Wissens bislang überhaupt nicht beschrieben worden. Nachdem uns kürzlich die Synthese einer Reihe von Mo<sup>0</sup>-Carbonyl-Komplexen mit solchen Liganden gelungen ist [4], haben wir versucht, auch die entsprechenden Chrom- und Wolfram-Komplexe zu erhalten. Ziel dieser Untersuchungen ist, näheren Aufschluss über die Reaktivität schwefelkoordinierter Metallzentren zu erhalten.

#### Ergebnisse und Diskussion

Bei der Umsetzung des Na-Salzes des zweizähnigen Schwefelliganden o-Methylthiobenzolthiol, Na(CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S), mit Cr(CO)<sub>6</sub> in siedendem Butanol gemäss Gl. 1,

$$\operatorname{Cr(CO)_6} + \operatorname{Na(CH_3SC_6H_4S)} \xrightarrow{-120^{\circ}\text{C/3 h}} \operatorname{Na[Cr(CO)_4CH_3SC_6H_4S]} + 2\operatorname{CO}$$
 (1)

bildet sich unter CO-Entwicklung ein anionischer  $Cr(CO)_4$ -Komplex, der sich mit NMe<sub>4</sub>Cl in MeOH als  $(NMe_4)[Cr(CO)_4CH_3SC_6H_4S]$  in Form gelber Nadeln ausfällen lässt. Im IR-Spektrum des Salzes ist das typische  $\nu(CO)$ -Bandenmuster eines  $c\iota s$ -M(CO)<sub>4</sub>L<sub>2</sub>-Komplexes zu beobachten; die  $\nu(CO)$ -Banden treten z.B. in KBr bei 2000, 1870, 1855 sowie 1810 cm<sup>-1</sup> auf. Das <sup>1</sup>H-NMR-Spektrum des Salzes in CD<sub>3</sub>OD weist drei Signalgruppen auf. Für die aromatischen Protonen wird ein Multiplett bei 7.5 sowie 6.9 ppm, fur die CH<sub>3</sub>S-Protonen ein Singlett bei 2.6 ppm

sowie die NMe<sub>4</sub><sup>+</sup>-Protonen ein Singlett bei 3.2 ppm beobachtet.

(NMe<sub>4</sub>)[Cr(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] ist in kristalliner Form an Luft längere Zeit beständig; es ist löslich in DMF, DMSO, CH<sub>3</sub>CN, CH<sub>3</sub>OH und Acteon. Die Lösungen sind sehr oxidationsempfindlich, bei Luftzutritt fallen rasch CO-freie grüne Produkte aus.

Analog zu Gl. 1 lässt sich nach Gl. 2 der entsprechende Wolfram-Komplex (NMe<sub>4</sub>)[W(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] in Form gelb-brauner Nadeln erhalten.

$$W(CO)_{6} + Na(CH_{3}SC_{6}H_{4}S) \xrightarrow[\text{n-BuOH}]{120^{\circ}C/15 \text{ min}} Na[W(CO)_{4}CH_{3}SC_{6}H_{4}S] + 2CO$$

$$\xrightarrow{+NMe_{4}Cl/MeOH} (NMe_{4})[W(CO)_{4}CH_{3}SC_{6}H_{4}S] \qquad (2)$$

Die Synthese des W-Komplexes erfordert wesentlich kürzere Reaktionszeiten als die des Cr-Komplexes und erfolgt etwa ebenso rasch wie die von (NMe<sub>4</sub>)-[Mo(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] [4]. (NMe<sub>4</sub>)[W(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] weist weitgehend die gleichen spektroskopischen Eigenschaften wie (NMe<sub>4</sub>)[Cr(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] auf (vergl. Tab. 1); es ist in Lösung wesentlich weniger luftempfindlich und vollständige Zersetzung wird erst nach einigen Stunden unter Bildung farbloser carbonylfreier Produkte beobachtet.

Um zu prüfen, ob das Thiolat-S-Atom des CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S-Liganden in (NMe<sub>4</sub>)-[Cr(CO)<sub>4</sub>CH<sub>3</sub>SC<sub>6</sub>H<sub>4</sub>S] noch nukleophilen Charakter besitzt, wurde die Alkylierungsreaktion gemäss Gl. 3 versucht.

$$(NMe_{4})[Cr(CO)_{4}CH_{3}SC_{6}H_{4}S] + CH_{3}I \xrightarrow{THF}$$

$$[Cr(CO)_{4}\{(CH_{3}S)_{2}C_{6}H_{4}\}] + NMe_{4}I$$
 (3)

In glatter Reaktion bildet sich innerhalb weniger Minuten der bereits bekannte Neutralkomplex  $[Cr(CO)_4\{(CH_3S)_2C_6H_4\}]$  [5], der spektroskopisch sowie elementaranalytisch charakterisiert wurde. Er weist im Vergleich zu  $(NMe_4)$ - $[Cr(CO)_4CH_3SC_6H_4S]$   $\nu(CO)$ -Frequenzen bei etwas grösseren Wellenzahlen sowie eine geringfügig grössere chemische Verschiebung der  $CH_3S$ -Protonen im  $^1H$ -NMR-Spektrum auf (vergl. Tab. 1), woraus sich eine geringere Elektronendichte am Cr-Zentrum folgern lässt.

Da wir besonders an Metallkomplexen interessiert sind, in denen das niedrigwertige Metallzentrum von einer möglichst grossen Zahl von Schwefelatomen koordiniert ist und eine hohe Elektronendichte aufweist, haben wir auch untersucht, ob sich in  $Cr(CO)_6$  bei Einsatz eines Überschusses von  $CH_3SC_6H_4S^-$  mehr als nur zwei CO-Liganden substituieren lassen. Dies ist uns nicht gelungen; neben der Bildung grüner, CO-freier und nicht näher charakterisierter Produkte liess sich nur die Bildung von  $[Cr(CO)_4CH_3SC_6H_4S]^-$  beobachten.

Um die Elektronendichte am schwefelkoordinierten Metallzentrum weiter zu steigern, haben wir daraufhin Cr(CO)<sub>6</sub> mit dem Dinatriumsalz von o-Benzoldithiol nach Gl. 4 umgesetzt.

$$Cr(CO)_{6} + Na_{2}(S_{2}C_{6}H_{4}) \xrightarrow{120^{\circ}C/3 \text{ h} \atop \text{n-BuOH}} Na_{2}[Cr(CO)_{3}S_{2}C_{6}H_{4}] + 3 CO$$

$$\xrightarrow{+ \text{NMe}_{4}CI/\text{MeOH} \atop \text{NMe}_{4})_{2}[Cr(CO)_{3}S_{2}C_{6}H_{4}]} (4)$$

IR-spektroskopisch wird dabei nicht, auch nicht intermediär, die erwartete Bildung eines  $Cr(CO)_4$ -Komplexes sondern die eines  $Cr(CO)_3$ -Komplexes ( $\nu(CO)$  1890, 1775 und 1740 cm<sup>-1</sup>) beobachtet.

Die Bildung eines  $Cr(CO)_3$ -Komplexes war für uns überraschend, weil in dem primär zu erwartendem  $[Cr(CO)_4S_2C_6H_4]^{2-}$ -Anion die Substitution weiterer CO-Liganden eigentlich erschwert sein sollte, wie dies üblicherweise für anionische  $M(CO)_3$ -Komplexe beobachtet wird [6]. Die Bildung eines  $M(CO)_3$ -Komplexes hatten wir zwar auch schon bei der Umsetzung von  $Mo(CO)_6$  mit  $S_2C_6H_4^{2-}$  gefunden, sie dort aber im wesentlichen auf die bei vielen Reaktionen beobachtete besondere Labilität der Mo-CO-Bindungen in  $Mo(CO)_6$  bzw. seinen Substitutionsprodukten zurückgeführt [4,7]. Der nach Gl. 4 gebildete  $Cr(CO)_3$ -Komplex lässt sich mit  $NMe_4Cl$  oder  $NEt_4Cl$  als Salz der Bruttoformel  $(NMe_4)_2$ - $[Cr(CO)_3S_2C_6H_4]$  in rotvioletten Blättchen bzw.  $(NEt_4)_2[Cr(CO)_3S_2C_6H_4]$  in rotvioletten Nadeln ausfällen. Beide Salze sind in Ether und THF unlöslich, in MeOH, Acetonitril, DMSO, DMF oder  $H_2O$  hingegen gut löslich. Sie sind sowohl in kristalliner Form als auch in Lösung sehr luftempfindlich und zersetzen sich bei Luftzutritt zu grünen, CO-freien Produkten.

 $(NMe_4)_2[Cr(CO)_3S_2C_6H_4]$  weist im KBr-IR-Spektrum das typische  $\nu(CO)$ -Bandenmuster eines fac-M(CO)<sub>3</sub>-Komplexes mit  $\nu(CO)$ -Banden bei 1880s sowie 1750ss cm<sup>-1</sup> auf; in MeOH ist die niedrigere  $\nu(CO)$ -Frequenz aufgespalten, so dass insgesamt drei Banden bei 1890, 1775 sowie 1740 cm<sup>-1</sup> beobachtet werden. Im <sup>1</sup>H-NMR-Spektrum in DMF- $d_7$  werden ausschliesslich das Multiplett der aromatischen Protonen bei 7.6 bzw. 6.55 ppm sowie ein Singlett der NMe<sub>4</sub>-Protonen bei 3.3 ppm beobachtet.

In der Formel  $(NMe_4)_2[Cr(CO)_3S_2C_6H_4]$  würde das Anion ein nur fünffach koordiniertes  $Cr^0$ -Zentrum mit einer 16e-Konfiguration enthalten. Wir vermuten daher, dass das Salz eher als  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  zu formulieren ist, in dem durch Verbrückung über S-Atome gemäss Fig. 1 ein zweikerniges Anion vorliegt, so dass jedes Cr-Zentrum sechsfach koordiniert ist und Edelgaskonfiguration besitzt.

Über die Ein- bzw. Zweikernigkeit des Komplexes aufgrund von Leitfähigkeitsmessungen zu entscheiden, war bisher nicht möglich. Fehlordnungsphänomene in den Kristallen verhinderten bislang auch eine Röntgenstrukturanalyse [8].

Der Grund dafür, dass mit  $CH_3SC_6H_4S^-$  ein  $Cr(CO)_4$ -Komplex, mit  $S_2C_6H_4^{2-}$ hingegen ein  $Cr(CO)_3$ -Komplex gebildet wird, ist wahrscheinlich die grössere Nucleophilie der S-Atome in dem  $S_2C_6H_4^{2-}$ -Anion und ihre dadurch begünstigte Fähigkeit, als Brückenliganden zu wirken.

Fig. 1. Strukturvorschlag für  $[\{Cr(CO)_3S_2C_6H_4\}_2]^{4-}$ .

Die besonderen elektronischen Eigenschaften des Benzoldithiolat-Liganden als Vertreter der Dithiolen-Liganden [9] lassen sich als Grund für die Bildung der Cr(CO)3-Komplexe weitgehend ausschliessen, da auch aus 1,2-Ethandithiolat und  $Cr(CO)_6$  ein  $Cr(CO)_3$ -Komplex in Form von  $(NMe_4)_4[\{Cr(CO)_3S_2C_2H_4\}_2]$  erhalten wird. (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>2</sub>H<sub>4</sub>}<sub>2</sub>] ist allerdings relativ labil, so dass seine Synthese aus Cr(CO)<sub>6</sub> und Na<sub>2</sub>(S<sub>2</sub>C<sub>2</sub>H<sub>4</sub>) in siedendem n-Butanol wegen Zersetzungsreaktionen ungünstig ist; es lässt sich jedoch rein aus [Cr(CO)<sub>3</sub>(EtCN)<sub>3</sub>] und (NMe<sub>4</sub>)<sub>2</sub>(S<sub>2</sub>C<sub>2</sub>H<sub>4</sub>) in MeOH bei 20°C erhalten. Das KBr-IR-Spektrum des Salzes weist zwei typische v(CO)-Banden bei 1870 und 1740 cm<sup>-1</sup> auf, die in MeOH nach 1885 und 1765 cm<sup>-1</sup> verschoben sind. Zusätzlich wird in MeOH eine Schulter bei 1735 cm<sup>-1</sup> beobachtet, sowie zwei schwache  $\nu$ (CO)-Banden bei 1960 und 1790 cm<sup>-1</sup>, die auf die Bildung eines weiteren CO-Komplexes hinweisen. Auch bei dem Versuch, das Salz aus MeOH umzukristallisieren, entstehen neue CO-Komplexe, die jedoch bisher nicht näher untersucht wurden. Obwohl die oben angeführten Gründe für die zweikernige Struktur von (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] sprechen, lässt sich die einkernige Struktur natürlich nicht völlig ausschliessen. So erwies sich kürzlich [Fe(PMe<sub>3</sub>)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>], für das man aufgrund seiner Eigenschaften ebenfalls eine zweikernige Struktur annehmen konnte, röntgenstrukturanalytisch als ein fünffachkoordinierter, einkerniger Komplex [1a].

Um näheren Aufschluss nicht nur über die Struktur, sondern auch die Eigenschaften von  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  zu erhalten, haben wir deswegen noch eine Reihe von Reaktionen damit durchgeführt. Bemerkenswert ist die extrem rasche Umsetzung mit CO. Beim Einleiten von CO in eine Acetonitril-Lösung von  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  schlägt die Farbe der Reaktionslösung augenblicklich von rot nach gelb um. IR-spektroskopisch lässt sich die Bildung des  $[Cr(CO)_4S_2C_6H_4]^{2-}$ -Ions gemäss Gl. 5 anhand seiner  $\nu(CO)$ -Banden bei 1975s,

$$\left[ \left\{ Cr(CO)_{3}S_{2}C_{6}H_{4} \right\}_{2} \right]^{4-} \xrightarrow[+N_{3}/-CO]{CH_{3}CN/20 \circ C/+CO}} {CH_{3}CN/20 \circ C/+CO} 2\left[ Cr(CO)_{4}S_{2}C_{6}H_{4} \right]^{2-}$$
(5)

1855ss, 1820s sowie 1770s cm<sup>-1</sup> nachweisen (Fig. 2).

Diese rasche Reaktion lässt sich als Indiz dafür werten, dass [ $\{Cr(CO)_3-S_2C_6H_4\}_2$ ]<sup>4-</sup> in Lösung in einkernige, eventuell solvensstabilisierte Ionen dissoziert:

$$\left[ \left\{ Cr(CO)_{3}S_{2}C_{6}H_{4} \right\}_{2} \right]^{4-} \rightleftharpoons 2\left[ Cr(CO)_{3}S_{2}C_{6}H_{4} \right]^{2-}$$
(5a)

Der vierte CO-Ligand in  $[Cr(CO)_4S_2C_6H_4]^{2-}$  ist sehr labil gebunden: Einleiten von  $N_2$  in dessen Lösung führt unter CO-Abspaltung in wenigen Minuten quantitativ zu Rückbildung des  $Cr(CO)_3$ -Komplexes. Die Isolierung von  $(NMe_4)_2[Cr(CO)_4S_2C_6H_4]$  erwies sich deswegen als schwierig; es lässt sich jedoch analysenrein erhalten, wenn man es gemäss Gl. 5 in MeOH darstellt und mit Ether ausfällt.

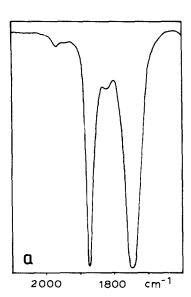
Die ausfallenden gelben Kristalle müssen anschliessend stets unter CO-Gas gehandhabt, also z.B. mit CO trockengeblasen werden. Trocknen im Vakuum führt unter sofortiger Rotfärbung der Kristalle zu CO-Abspaltung und Rückbildung von  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$ . Die CO-Anlagerung bzw. -Abspaltung ist auch im festen Zustand reversibel, allerdings geht die Anlagerung langsamer vonstatten als in Lösung; wenn man die roten Kristalle ein bis zwei Tage unter CO aufbewahrt, werden sie unter Bildung des  $[Cr(CO)_4S_2C_6H_4]^{2-}$ -Komplexes wieder gelb.

Um zu einem stabileren und besser charakterisierbaren Derivat zu gelangen,

wurde (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] gemäss Gl. 6 auch mit PMe<sub>3</sub> umgesetzt.

$$\left[ \left\{ Cr(CO)_{3}S_{2}C_{6}H_{4} \right\}_{2} \right]^{4-} + 2PMe_{3} \xrightarrow{MeOH/20\,^{\circ}C} \left[ Cr(CO)_{3}PMe_{3}(S_{2}C_{6}H_{4}) \right]^{2-}$$
 (6)

Versetzt man dazu eine MeOH-Lösung von  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  mit einem Überschuss von PMe<sub>3</sub>, schlägt die rote Farbe der Lösung praktisch momentan wie bei Gl. 5 ebenfalls nach gelb um. IR-spektroskopisch lassen sich zwei neue  $\nu(CO)$ -Banden bei 1920m und 1825s cm<sup>-1</sup> beobachten, die auf die Bildung von  $[Cr(CO)_3PMe_3(S_2C_6H_4)]^{2-}$  hinweisen. Der PMe<sub>3</sub>-Ligand ist aber offensichtlich ähnlich labil wie der vierte CO-Ligand in  $[Cr(CO)_4S_2C_6H_4]^{2-}$  gebunden und wird leicht wieder abgespalten, denn beim Aufarbeiten wird stets ausschliesslich  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  zurückerhalten.


Um die Koordination von PMe<sub>3</sub> an das Cr-Zentrum in (NMe<sub>4</sub>)<sub>4</sub>-[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] chemisch abzusichern, wurde versucht, durch Alkylierung des Benzoldithiolat-Liganden gemäss Gl. 7 einen neutralen Komplex zu erhalten.

$$(NMe_4)_4 [\{Cr(CO)_3S_2C_6H_4\}_2] + 2 PMe_3 + 4 CH_3I \xrightarrow{MeOH} \\ -25^{\circ}C$$

$$2[Cr(CO)_3PMe_3\{(CH_3S)_2C_6H_4\}] + 4 NMe_4I \qquad (7)$$

Beim Einsatz der stöchiometrischen Mengen von PMe<sub>3</sub> sowie CH<sub>3</sub>I erhält man gelbes [Cr(CO)<sub>3</sub>PMe<sub>3</sub>{(CH<sub>3</sub>S)<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}], das in Aceton, THF und Ether gut löslich ist und spektroskopisch (Tab. 1) sowie elementaranalytisch charakterisiert wurde.

Bei der Umsetzung nach Gl. 7 ist ein Überschuss von PMe<sub>3</sub> zu vermeiden, da sich in diesem Fall unter Substitution des Thioetherliganden [Cr(CO)<sub>3</sub>(PMe<sub>3</sub>)<sub>3</sub>] [10] bildet.



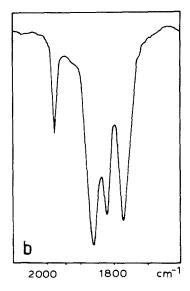



Fig. 2.  $\nu$ (CO)-Bereich von (a) (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] in CH<sub>3</sub>CN; (b) 2 min nach Einleiten von CO. Nach 5 min Spulen der Lösung (b) mit N<sub>2</sub> wird Spektrum 2(a) zuruckerhalten.

Die aufgrund der Reaktionen gemäss Gl. 5 bzw. 6 zu folgernde leichte Verfügbarkeit einer freien Koordinationsstelle in (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] und die Stabilisierung der gebildeten Produkte gemäss Gl. 7 liess uns versuchen, auch andere kleine Moleküle zu koordinieren, z.B. gemäss Gl. 8:

$$(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2] + 2N_2 + 4CH_3I \xrightarrow{\#}$$

$$2[Cr(CO)_3N_2\{(CH_3S)_2C_6H_4\}] + 4NMe_4I \qquad (8)$$

Die Versuche mit  $N_2$  wie auch  $N_2H_4$  unter verschiedenen Reaktionsbedingungen führten jedoch nur zu  $[Cr(CO)_4\{(CH_3S)_2C_6H_4\}]$  neben nicht näher identifizierten, CO-freien, grünen Produkten. Bei der Umsetzung von  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$  mit  $N_2H_4$  in MeOH ohne zusätzliches  $CH_3I$  bei 20°C oder Siedetemperatur wird keinerlei Reaktion beobachtet. Die häufig beobachteten unterschiedlichen Reaktivitäten von analogen Cr- und W-Komplexen liessen uns auch das Verhalten von  $W(CO)_6$  gegenüber o-Benzoldithiolat untersuchen. Die Substitution von CO durch  $C_6H_4S_2^{2-}$  gemäss GI. 9 erfolgt wesentlich rascher als bei  $Cr(CO)_6$ . Der

$$2 W(CO)_{6} + 2 Na_{2}(S_{2}C_{6}H_{4}) \xrightarrow{\text{n-BuOH/120°C}} Na_{4}[\{W(CO)_{3}S_{2}C_{6}H_{4}\}_{2}] + 6 CO$$

$$\xrightarrow{+NMe^{+}} (NMe_{4})_{4}[\{W(CO)_{3}S_{2}C_{6}H_{4}\}_{2}]$$
 (9)

gebildete W(CO)<sub>3</sub>-Komplex lässt sich durch Zugabe von NMe<sub>4</sub>Cl als (NMe<sub>4</sub>)<sub>4</sub>[{W(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] in roten Kristallen isolieren, die spektroskopisch (Tab. 1) sowie elementaranalytisch charakterisiert wurden. Aus denselben Gründen, die bereits bei der Chromverbindung diskutiert wurden, nehmen wir für das Komplexion die zweikernige Struktur an. Die Reaktivität gegenüber CO ist bei diesem Komplex wesentlich geringer als bei dem analogen Chromkomplex. Erst mehrstündiges Rühren unter CO führt gemäss Gl. 10 zur Bildung des W(CO)<sub>4</sub>-

$$\left[ \left\{ W(CO)_{3}S_{2}C_{6}H_{4} \right\}_{2} \right]^{4-} + 2CO \xrightarrow{MeOH/20^{\circ}C} 2\left[ W(CO)_{4}S_{2}C_{6}H_{4} \right]^{2-}$$
 (10)

Komplexes, der sich als  $(NMe_4)_2[W(CO)_4(S_2C_6H_4)]$  in gelb-orangen Kristallen isolieren lässt. Führt man die Reaktion nach Gl. 10 in DMF durch, wird der gelb-orange Solvatkomplex  $(NMe_4)_2[W(CO)_4S_2C_6H_4]\cdot DMF$  erhalten. Die bei der entsprechenden Cr-Verbindung labile Koordination des vierten CO-Liganden ist bei  $(NMe_4)_2[W(CO)_4S_2C_6H_4]$  nicht zu beobachten; wenn es sich einmal gebildet hat, lässt es sich nicht nur problemlos isolieren, sondern ist auch in Lösung bei Raumtemperatur über längere Zeit stabil.

Trotz der raschen und leichten Substitution von CO in W(CO)<sub>6</sub> gemäss Gl. 9 liess sich eine weitere Substitution von CO unter Bildung von W(CO)<sub>2</sub>-Komplexen oder gar ausschliesslich schwefelkoordinierten W<sup>0</sup>-Komplexen bislang ebensowenig wie bei Cr(CO)<sub>6</sub> bzw. Mo(CO)<sub>6</sub> erzielen. Versuche, mit dem vierzähnigen S-Liganden 2,3,8,9-Dibenzo-1,4,7,10-tetrathiadecan, dttd-H<sub>2</sub>, und Cr(CO)<sub>6</sub> solche M(CO)<sub>2</sub>-Komplexe, z.B. [Cr(CO)<sub>2</sub>dttd]<sup>2-</sup>, zu erhalten, führten in siedendem n-BuOH neben unumgesetztem Cr(CO)<sub>6</sub> nur zu CO-freien, grünen Produkten. Um auszuschliessen, dass sich eventuell ein intermediär gebildetes [Cr(CO)<sub>2</sub>dttd]<sup>2-</sup>-Ion bei der hohen Reaktionstemperatur sofort zersetzt hatte, wurden auch Cr(CO)<sub>4</sub>(EtCN)<sub>2</sub>, Cr(CO)<sub>3</sub>(EtCN)<sub>3</sub> sowie W(CO)<sub>3</sub>(EtCN)<sub>3</sub> als Ausgangsverbindungen eingesetzt.

TABELLE 1

1H-NMR UND p(CO)-DATEN DER Cr- UND W-SCHWEFEL-CARBONYL-KOMPLEXE

| Komplex                                                                                             | <sup>1</sup> H-NMR (ppm rel. TMS) | $\nu(CO)$ (cm <sup>-1</sup> ) |                    |
|-----------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|--------------------|
| (NMe <sub>4</sub> )[Cr(CO) <sub>4</sub> CH <sub>3</sub> SC <sub>6</sub> H <sub>4</sub> S]           | 7.5<br>6.9 (4,m) <sup>a,b</sup>   | 2000s °                       | 2005s ′            |
|                                                                                                     | 3.2 (12,s)                        | 1870ss                        | 1890ss             |
|                                                                                                     | 2.6 (3,s)                         | 1855ss                        | 1875sh             |
|                                                                                                     |                                   | 1810s                         | 1835s              |
| $(NMe_4)[W(CO)_4CH_3SC_6H_4S]$                                                                      | 7 35<br>6 65 (4.m) '              | 2000s <sup>c</sup>            | 2000s /            |
|                                                                                                     | 3.35 (12,s)                       | 1880ss                        | 1880ss             |
|                                                                                                     | 2.75 (3,s)                        | 1850ss                        | 1870sh             |
|                                                                                                     |                                   | 1805ss                        | 1830s              |
| [Cr(CO) <sub>4</sub> {(CH <sub>3</sub> S) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> }]             | 7.9<br>7.5 (4,m) <sup>c</sup>     | 2020s <sup>e</sup>            | 2020s <sup>e</sup> |
|                                                                                                     | 2.85 (6.s)                        | 1920ss                        | 1905ss             |
|                                                                                                     | <b>,</b> , , ,                    | 1895ss                        | 1870s              |
|                                                                                                     |                                   | 1875ss                        |                    |
|                                                                                                     |                                   | 1855ss                        |                    |
| $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$                                                                | 7.6<br>6.55 (8,m) <sup>d</sup>    | 1880ss <sup>e</sup>           | 1870ss h           |
|                                                                                                     | 3.3 (48s)                         | 1750ss                        | 1750ss             |
| $(NMe_4)_2[Cr(CO)_4S_2C_6H_4]$                                                                      | 7.2<br>6.25 (4,m) <sup>d</sup>    | 1975s '                       | 1975s <sup>h</sup> |
|                                                                                                     | 3.3 (24,s)                        | 1860ss                        | 1855ss             |
|                                                                                                     | (                                 | 1820ss                        | 1820ss             |
|                                                                                                     |                                   | 1760ss                        | 1770ss             |
| $[Cr(CO)_3PMe_3\{(CH_3S)_2C_6H_4\}]$                                                                | 7.9<br>7.45 (4.m) '               | 1920ss <sup>e</sup>           | 1930ss '           |
|                                                                                                     | 2.85 (6,s)                        | 1825s                         | 1835ss             |
|                                                                                                     | 1.15 (9,d)                        | 1800ss                        |                    |
| $(NMe_4)_4[\{W(CO)_3S_2C_6H_4\}_2]$                                                                 | 7.7<br>6.6 (8,m) <sup>d</sup>     | 1870ss °                      | 1870ss *           |
|                                                                                                     | 3.25 (48,s)                       | 1745ss                        | 1745ss             |
| (NMe <sub>4</sub> ) <sub>2</sub> [W(CO) <sub>4</sub> S <sub>2</sub> C <sub>6</sub> H <sub>4</sub> ] | 7.25<br>6.25 (4,m) <sup>d</sup>   | 1975s °                       | 1980s <sup>h</sup> |
|                                                                                                     | 3.3 (24,s)                        | 1840ss                        | 1845ss             |
|                                                                                                     |                                   | 1805ss                        | 1810ss             |
|                                                                                                     |                                   | 1755ss                        | 1770ss             |
| $(NMe_4)_2[\mu\text{-dttd}\{Cr(CO)_4\}_2]$                                                          | 7.35<br>6.65 (8.m) '              | 2000s °                       | 1995s /            |
|                                                                                                     | 3.4 (24.s)                        | 1880ss                        | 1885ss             |
|                                                                                                     | 3.15 (4,s)                        | 1865ss                        | 1865sh             |
|                                                                                                     | ·                                 | 1790ss                        | 1820ss             |

<sup>&</sup>lt;sup>a</sup> Zahlen in Klammern rel. Intensität, s = Singulett, m = Multiplett, d = Dublett; <sup>b</sup> In CD<sub>3</sub>OD. <sup>c</sup> (CD<sub>3</sub>)<sub>2</sub>CO. <sup>d</sup> DMF- $d_7$ . <sup>e</sup> In KBr. <sup>f</sup> In MeOH. <sup>g</sup> In THF. <sup>h</sup> In MeCN <sup>f</sup> In Et<sub>2</sub>O. <sup>f</sup> In Aceton.

Bei der Reaktion nach Gl. 11 bildet sich der zweikernige Komplex  $(NMe_4)_2[\mu-Cr(CO)_4(EtCN)_2 + (NMe_4)_2dttd \xrightarrow{CH_3CN/20^{\circ}C} (NMe_4)_2[\mu-dttd\{Cr(CO)_4\}_2]$ + weitere Produkte (11)  $dttd\{Cr(CO)_4\}_2] \text{ in dem der Schwefelligand zwei } Cr(CO)_4\text{-Gruppen verbrückt. Die}$ 

symmetrische Verbrückung lässt sich gut im <sup>1</sup>H-NMR-Spektrum anhand eines Singuletts für die Ethylenbrücke bei 3.15 ppm erkennen.

Bei dem Versuch, diesen Komplex in siedendem MeOH in Gegenwart von  $(NMe_4)_2$ dttd zu spalten, bildeten sich nur CO-freie Produkte, die nicht näher charakterisiert wurden. Bei Umsetzungen von  $Cr(CO)_3(EtCN)_3$  bzw.  $W(CO)_3(EtCN)_3$  mit  $(NMe_4)_2$ dttd lässt sich IR-spektroskopisch die Bildung von  $M(CO)_4$ -Komplexen beobachten. Sie bilden sich wahrscheinlich aus den  $M(CO)_3$ -Komplexen durch Symproportionierung; im Falle von  $Cr(CO)_3(EtCN)_3$  konnte anschliessend das oben beschriebene  $(NMe_4)_2[\mu$ -dttd $\{Cr(CO)_4\}_2]$  isoliert werden.

### **Experimentelles**

Allgemeines

Alle Reaktionen wurden unter Stickstoff in absolutierten Lösungsmitteln durchgeführt. IR-Spektren wurden mit einem IMR 16 Spektrometer der Fa. Zeiss aufgenommen, wobei Festsubstanzen als KBr-Tabletten, Lösungen in CaF<sub>2</sub>-Küvetten unter Kompensation der Lösungsmittelabsorptionen vermessen wurden. <sup>1</sup>H-NMR-Spektren wurden mit einem INM PMX 60 Spektrometer der Fa. JEOL, Massenspektren wurden mit einem Varian MAT 215 Spektrometer aufgenommen. Die eingesetzten Schwefelliganden 2,3,8,9-Dibenzo-1,4,7,10-tetrathiadecan (dttd-H<sub>2</sub>) [11], *σ*-Methylthiobenzolthiol [12] und *σ*-Benzoldithiol [13] wurden nach der angegebenen Literatur synthetisiert.

### Synthesen

# 1. $(NMe_4)[Cr(CO)_4CH_3SC_6H_4S]$

0.23 g (10 mmol) Natrium werden in 60 ml n-Butanol gelöst, mit 1.56 g (10 mmol) o-Methylthiobenzolthiol versetzt und nach Zugabe von 2.2 g (10 mmol) Cr(CO)<sub>6</sub> in einer Öfele-Apparatur [14] zum Sieden erhitzt. Innerhalb von 2–3 h entwickeln sich ca. 500 ml (22 mmol) CO-Gas. Nach Abkühlen auf 20°C verdünnt man mit 60 ml Methanol, filtriert und gibt zum klaren, gelben Filtrat eine Lösung von 1.1 g (10 mmol) NMe<sub>4</sub>Cl in 10 ml Methanol. Bereits nach kurzer Zeit bilden sich in der Lösung gelbe Kristalle. Man kühlt zur Vervollständigung der Kristallisation auf –20°C, filtriert, wäscht mit wenig kaltem Methanol und Ether nach und trocknet die Substanz 6 h im HV.

Ausbeute: 2.7 g, 69% d. Th. bezogen auf  $Cr(CO)_6$ . Elementaranalyse: Gef.: C, 45.80; H, 4.91; N 3.52;  $C_{15}H_{19}NO_4S_2Cr$  (393.45) ber.: C, 45.79; H, 4.87; N, 3.56%.

# 2. $(NMe_4)[W(CO)_4CH_3SC_6H_4S]$

Analog zu 1. erhält man aus 0.15 g (6.5 mmol) Natrium in 60 ml n-Butanol, 1.1 g (7 mmol) o-Methylthiobenzolthiol und 2.3 g (6.5 mmol) W(CO)<sub>6</sub> nach einer Reaktionszeit von nur 10 min durch Zugabe von 0.75 g (6.8 mmol) NMe<sub>4</sub>Cl in 5 ml Methanol das Komplexsalz in Form gelb-brauner Nadeln.

Ausbeute: 2.3 g, 67% d. Th. bezogen auf  $W(CO)_6$ . Elementaranalyse: Gef.: C, 34.35; H, 3.71; N, 2.61;  $C_{15}H_{19}NO_4S_2W$  (525.30) ber.: C, 34.30; H, 3.65; N, 2.67%.

3.  $[Cr(CO)_4\{(CH_3S)_2C_6H_4\}]$  aus  $(NMe_4)[Cr(CO)_4CH_3SC_6H_4S]$  und  $CH_3I$  0.92 g (2.35 mmol)  $(NMe_4)[Cr(CO)_4CH_3SC_6H_4S]$  werden in 60 ml THF weitge-

hend gelöst und bei  $20^{\circ}$ C mit 0.15 mol (2.4 mmol) CH<sub>3</sub>I versetzt. Das sich abscheidende NMe<sub>4</sub>I wird abfiltriert und das klare gelbe Filtrat auf ca. 30 ml im Vakuum eingeengt. Nach Überschichten mit Petrolether und Kühlen auf  $-78^{\circ}$ C kristallisiert die Substanz aus.

Ausbeute: 0.55 g, 70% d. Th. bezogen auf  $(NMe_4)[Cr(CO)_4CH_3SC_6H_4S]$ . Elementaranalyse: Gef.: C, 43.43; H, 3.02;  $C_{12}H_{10}O_4S_2Cr$  (334.34) ber.: C, 43.11; H, 3.01%. Molmasse (massenspektrometrisch, EI): 334.

## 4. $(NMe_4)_4 / \{Cr(CO)_3 S_3 C_6 H_4\}_3$

0.29 g (12.6 mmol) Natrium werden in 70 ml n-Butanol gelöst, mit 0.9 g (6.3 mmol) o-Benzoldithiol versetzt und nach Zugabe von 1.4 g (6.4 mmol)  $Cr(CO)_6$  in einer Öfele-Apparatur zum Rückfluss erhitzt, wobei innerhalb von 2 h ca 300 ml CO-Gas entstehen. Nach Abkühlen auf 20°C, Verdünnen mit 50 ml Methanol und Filtrieren wird das dunkelrote Filtrat mit einer methanolischen NMe<sub>4</sub>Cl-Lösung versetzt, wobei sich meist sofort ein rotvioletter, kristalliner Niederschlag bildet. Die Kristalle werden bei -20°C abfiltriert, mit wenig kaltem Methanol und Ether gewaschen und 8 h im HV getrocknet.

Ausbeute: 2.1 g, 77% d. Th. bezogen auf  $Cr(CO)_6$ . Elementaranalyse: Gef.: C. 48.12; H, 6.73; N, 6.62;  $C_{34}H_{56}N_4O_6S_4Cr_2$  (849.10) ber.: C, 48.10; H, 6.65; N, 6.60%. Bei der Umsetzung mit NEt<sub>4</sub>Cl wird (NEt<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] erhalten. Elementaranalyse: Gef.: C, 56.10; H, 8.35; N, 5.19;  $C_{50}H_{88}N_4O_6S_4Cr_2$  (1073.54) ber.: C, 55.94; H, 8.26; N, 5.22%.

## 5. $(NMe_4)$ , $(Cr(CO)_4S_2C_6H_4)$

Eine Lösung von 0.5 g (0.6 mmol)  $(\text{NMe}_4)_4[\{\text{Cr(CO)}_3\text{S}_2\text{C}_6\text{H}_4\}_2]$  in 50 ml Methanol wird 5 min unter CO-Atmosphäre gerührt, wobei die Farbe der Lösung von rot nach gelb umschlägt. Nach Zugabe von 100 ml Ether fällt gelbes, kristallines  $(\text{NMe}_4)_2[\text{Cr(CO)}_4\text{S}_2\text{C}_6\text{H}_4]$  aus, das abgetrennt, unter CO mehrmals mit Ether gewaschen und im CO-Strom trocken geblasen wird.

Ausbeute: 0.4 g, 76% d. Th. bez. auf  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$ . Elementaranalyse: Gef.: C, 47.84; H, 6.29; N, 6.18;  $C_{18}H_{28}N_2O_4S_2Cr$  (452.56) ber.: C, 47.77; H, 6.24; N, 6.19%.

# 6. $[Cr(CO)_3PMe_3\{(CH_3S)_2C_6H_4\}]$

Eine Lösung von 0.45 g (0.58 mmol) (NMe<sub>4</sub>)<sub>4</sub>[{Cr(CO)<sub>3</sub>S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>] in 50 ml Methanol wird bei  $-25\,^{\circ}$ C mit 0.1 ml (ca. 1 mmol) PMe<sub>3</sub> und 0.2 ml (ca. 2.5 mmol) CH<sub>3</sub>I versetzt. Es wird auf 20°C erwärmt, das Lösungsmittel im Vakuum abkondensiert und der Rückstand mit 60 ml Ether extrahiert. Die etherische Lösung wird im Vakuum bis zur beginnenden Kristallisation eingeengt und auf  $-20\,^{\circ}$ C gekühlt. Die ausgefallenen Kristalle werden abfiltriert, mit wenig kaltem Methanol gewaschen und 3 h im HV getrocknet.

Ausbeute: 0.2 g, 50% d. Th. bezogen auf  $(NMe_4)_4[\{Cr(CO)_3S_2C_6H_4\}_2]$ . Elementaranalyse: Gef.: C, 44.06; H, 5.09;  $C_{14}H_{19}O_3PS_2Cr$  (382.40) ber.: C, 43.97; H, 5.01%. Molmasse (massenspektrometrisch, EI): 382.

# 7. $(NMe_4)_4[\{W(CO)_3S_2C_6H_4\}_2]$

0.35 g (15 mmol) Na werden in 50 ml n-Butanol gelöst, 1.1 g (7.7 mmol) Benzoldithiol zugesetzt und nach Zugabe von 2.7 g (7.7 mmol) W(CO)<sub>6</sub> in einer

Öfele-Apparatur zum Sieden erhitzt, wobei innerhalb einer Minute ca. 500 ml CO-Gas entstehen. Nach 5 min Sieden lässt man auf 20°C abkühlen, verdünnt die rote Reaktionslösung mit 50 ml Methanol und versetzt mit 1.7 g NMe<sub>4</sub>Cl in 10 ml MeOH. Das sich meist sofort abscheidende, rote, kristalline Produkt wird abfiltriert, mit wenig Methanol und Ether gewaschen und 5 h im HV getrocknet.

Ausbeute: 3.7 g, 86% d. Th. bezogen auf W(CO)<sub>6</sub>. Elementaranalyse: Gef.: C, 36.79; H, 5.04; N, 5.06;  $C_{34}H_{56}N_4O_6S_4W_2$  (1112.80) ber.: C, 36.70; H, 5.07; N, 5.03%.

## 8. $(NMe_4)_2[W(CO)_4S_2C_6H_4]$

Eine Lösung von 0.6 g (0.54 mmol)  $(NMe_4)_4[\{W(CO)_3S_2C_6H_4\}_2]$  in 50 ml Methanol wird mit CO-Gas behandelt, wobei sich die anfangs orange Lösung langsam nach gelb aufhellt. Durch Zugabe von 50 ml Ether unter CO-Atmosphäre und Kühlen auf -20 °C lässt sich eine gelb-orange, kristalline Verbindung ausfällen. Sie wird abfiltriert, mit wenig Ether gewaschen und kurz im Vakuum getrocknet.

Ausbeute: 0.48 g, 76% d. Th. bezogen auf  $(NMe_4)_4[\{W(CO)_3S_2C_6H_4\}_2]$ . Elementaranalyse: Gef.: C, 36.96; H, 4.86; N, 4.81;  $C_{18}H_{28}N_2O_4S_2W$  (584.41) ber.: C, 36.99; H, 4.83; N, 4.79%.

Führt man die Reaktion im DMF durch, so erhält man als Produkt den Solvatkomplex  $(NMe_4)_2[W(CO)_4S_2C_6H_4] \cdot DMF$ . Elementaranalyse: Gef.: C, 38.34; H, 5.30; N, 6.41;  $C_{21}H_{35}N_3O_5S_2W$  (657.51) ber.: C, 38.36; H, 5.37; N, 6.39%.

## 9. $(NMe_4)_2[\mu\text{-}dttd\{Cr(CO)_4\}_2]$

1.34 g (3.5 mmol) (NMe<sub>4</sub>)<sub>2</sub>dttd werden in 30 ml Methanol gelöst, mit einer Lösung von 1.95 g (7 mmol) Cr(CO)<sub>4</sub>(EtCN)<sub>2</sub> in 60 ml Acetonitril versetzt und 15 min bei 20°C gerührt. Anschliessend wird das Lösungsmittel im Vakuum abkondensiert, der Rückstand in 100 ml Aceton gelöst und filtriert. Nach Einengen des Filtrats auf ca. 60 ml lässt sich durch langsame Zugabe von 50 ml Et<sub>2</sub>O ein kristalliner, oranger Feststoff ausfällen. Er wird abfiltriert, mit Et<sub>2</sub>O gewaschen und im Vakuum getrocknet.

Ausbeute: 1.95 g, 70% d. Th. bezogen auf (NMe<sub>4</sub>)<sub>2</sub>dttd. Elementaranalyse: Gef.: C, 45.95; H, 4.88; N, 3.52;  $C_{30}H_{36}N_2O_8S_4Cr_2$  (784.88) ber.: C, 45.91; H, 4.62; N, 3.57%.

10. 
$$(NMe_4)_4[\{Cr(CO)_3S_2C_2H_4\}_2]$$

Eine Lösung von 0.67 ml (0.75 g, 8 mmol) 1,2-Ethandithiol in 20 ml MeOH wird mit 7,3 ml einer 2.2 molaren, methanolischen Lösung von NMe<sub>4</sub>OH versetzt und 5 min bei 20°C gerührt. Gibt man dazu eine äquimolare Menge (8 mmol) Cr(CO)<sub>3</sub>(EtCN)<sub>3</sub> in 50 ml EtCN langsam zu, so färbt sich die Reaktionslösung tiefrot. Man engt im Vakuum auf ca. die Hälfte ein und gibt 80 ml Et<sub>2</sub>O zu, wobei die Verbindung als dunkelrotbrauner, mikrokristalliner Niederschlag ausfällt. Er wird abfiltriert, mit Et<sub>2</sub>O gewaschen und 5 h im Hochvakuum getrocknet.

Ausbeute: 2.5 g, 83% d. Th. bezogen auf  $Cr(CO)_3(EtCN)_3$ . Elementaranalyse: Gef.: C, 41.67; H, 7.56; N, 7.46;  $C_{26}H_{56}N_4O_6S_4Cr_2$  (753.00) ber.: C, 41.47; H, 7.50; N, 7.44%.

#### Dank

Diese Untersuchungen wurden von der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie — Fonds der Chemischen Industrie — und der Dr. Otto Röhm-Gedächtnisstiftung unterstützt, wofür wir auch an dieser Stelle herzlich danken möchten.

### Literatur

- (a) D. Sellmann, U. Kleine-Kleffmann, L. Zapf, G. Huttner und L. Zsolnai, J. Organomet. Chem., 263 (1984) 321;
   (b) Vergl. dazu C.G. Kuehn und S.S. Isied, Prog. Inorg. Chem., 27 (1980) 153 und dort angegebene Literatur
- Vergl. dazu F.A. Cotton und F. Zingales, Inorg. Chem., 1 (1962) 145; H.C.E. Mannerskantz und G. Wilkinson, J. Chem. Soc., (1962) 4454; G.R. Dobson, Inorg. Chem., 8 (1969) 90; G.R. Dobson und L.W. Houk, Inorg. Chim. Acta, 1 (1967) 287; G.R. Dobson und G.C. Faber, Inorg. Chim. Acta, 4 (1970) 87; M. Cannas, G. Carta, D. de Filippo, G. Marongiu und E.F. Trogu, Inorg. Chim. Acta, 10 (1974) 145; J.A. Connor und G.A. Hudson, J. Chem. Soc., (1975) 1025
- 3 R.G.W. Gingerich und R.J. Angelici, J. Am. Chem. Soc., 101 (1979) 5604.
- 4 D. Sellmann und J. Schwarz, J. Organomet. Chem., 241 (1983) 343.
- 5 R. Ros, M. Vidali und R. Graziani, Gazz. Chim. Ital., (1970) 407.
- 6 E.W. Abel und F.G.A. Stone, Qu. Rev. Chem. Soc., 23 (1969) 325.
- 7 W. Strohmeier, J.F. Guttenberger, H. Blumenthal und G. Albert, Chem. Ber., 99 (1966) 3419.
- 8 Wir danken Herrn Prof. Dr. G Huttner, Konstanz, für die durchgeführten Röntgenuntersuchungen.
- 9 Vergl. dazu J.A McCleverty, Prog Inorg. Chem., 10 (1968) 49.
- 10 R. Mathieu, M. Lenzi und R. Poilblanc, Inorg. Chem., 9 (1970) 2030.
- 11 D. Sellmann und E. Bohlen, Z. Naturforsch. B, 37 (1982) 1026.
- 12 D. Sellmann, P. Kreutzer und E. Unger, Z. Naturforsch. B, 33 (1978) 190.
- 13 J. Degani und R. Fochi, Synthesis, 7 (1976) 471.
- 14 G. Brauer, Handbuch der prap. anorg. Chemie, 3. Band, S. 2021, Ferdinand Enke Verlag, Stuttgart 1981.