Preliminary communication

A TERMINAL METHYLENE COMPLEX OF IRIDIUM(I), Ir(=CH₂)I(CO)(PPh₃)₂, AND REARRANGEMENT TO AN ortho-METALLATED PHOSPHORUS YLIDE COMPLEX, Ir(CH₂PPh₂C₆H₄)HI(CO)(PPh₃)

G.R. CLARK, W.R. ROPER* and A.H. WRIGHT Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received June 4th, 1984)

Summary

Diazomethane addition to $IrI(CO)(PPh_3)_2$ at $-50^{\circ}C$ gives $Ir(=CH_2)I(CO)$ -(PPh₃)₂, an orange crystalline solid with m.p. 110°C. Solutions of this complex at room temperature rearrange to a phosphorus ylide complex which undergoes intramolecular hydrogen transfer to iridium (an oxidative addition), forming the *ortho*-metallated complex $Ir(CH_2PPh_2C_6H_4)HI(CO)(PPh_3)$ the structure of which is confirmed by X-ray crystal structure determination.

The recent isolation of the stable methylene complex, $Os(=CH_2)Cl(NO)$ -(PPh₃)₂ [1] from reaction of $OsCl(NO)(PPh_3)_3$ with CH_2N_2 suggests that similar complexes should exist with iridium(I), viz., $Ir(=CH_2)X(CO)(PPh_3)_2$, X = anionic ligand. However, the experiments of Mango and Dvoretzky [2] indicate that for X = Cl, and for CH_2N_2 addition to an ether suspension of the iridium(I) complex, the only isolable complex is the rearranged chloromethyl species, $Ir(CH_2Cl)(CO)(PPh_3)_2$:

Left to right the above reaction is a "migratory-insertion" and right to left an " α -elimination". The position of equilibrium between methylene and substituted methyl species should be dependent on X and in the expectation of the weaker C–I bond favouring the methylene form we have examined the reaction between IrI(CO)(PPh₃)₂ and CH₂N₂ in THF at -50°C. An orange crystalline solid, ν (CO), 1940 cm⁻¹, m.p. 110°C, which has some air-stability at room temperature, can be isolated in 93% yield by addition of hexane to the THF solution. The ¹H NMR spectrum of this compound measured at -50°C in CD₂Cl₂ reveals a triplet signal at δ 12.88 ppm (J(PH) 19 Hz), which unambiguously indicates that the structure is Ir(=CH₂)I(CO)(PPh₃)₂. Os(=CH₂)Cl(NO)(PPh₃)₂ has a similar triplet at δ 13.81 ppm [1]. No signal attributable to an iodomethyl ligand is observed.

In many respects the chemistry of $Ir(=CH_2)I(CO)(PPh_3)_2$ parallels that of $Os(=CH_2)Cl(NO)(PPh_3)_2$ [1]. With HCl, $IrCH_3CII(CO)(PPh_3)_2$ is formed and with $(Et_4N)(AuI_2)$, $Ir(CH_2AuI)I(CO)(PPh_3)_2$ results. However, whereas $Os(=CH_2)Cl(NO)(PPh_3)_2$ is stable in solution indefinitely at room temperature, the ¹H NMR spectrum of a solution of $Ir(=CH_2)I(CO)(PPh_3)_2$ at room temperature shows loss of the low-field triplet and appearance of a high-field signal, a doublet of doublets, at δ -15.39 ppm, indicating that two chemically inequivalent phosphorus atoms are coupling with a hydride ligand. A colourless crystal-line product, $\nu(CO)$, 1995; $\nu(IrH)$, 2178 cm⁻¹, can be isolated in quantitative yield. The spectroscopic data suggests that this rearranged product is an *ortho*-metallated phosphorus ylide complex and this was confirmed by X-ray crystal structure determination.

Single crystals suitable for X-ray study were grown from THF/Et₂O. Crystal data: $C_{38}H_{32}IIrOP_2$, M = 885.73, triclinic, space group P1 a 11.626(1), b 12.073(1), c 13.011(1) Å, α 97.53(1), β 93.25(1), γ 108.50(1)°, U 1707.51 Å³, Z = 2, D_c 1.722, D_o 1.72 g cm⁻³, μ (Mo- K_{α}) 47.08 cm⁻¹. The structure was solved using Patterson and electron density syntheses, and refined by full-matrix least-squares methods to R = 0.051, using 7105 observed reflections ($I > 3\sigma(I)$, θ_{max} 29°, absorption corrected) recorded on an Enraf—Nonius CAD-4 diffractometer.

The geometry of $Ir(CH_2PPh_2C_6H_4)HI(CO)(PPh_3)$ is depicted in Fig. 1. The structure is regular in all respects. The hydride ligand was not located but must occupy the position *trans* to I which is also suggested by the very high-field chemical shift found for this ligand. The probable mechanism for formation of this product would involve phosphine migration to the methylene ligand in $Ir(=CH_2)I(CO)(PPh_3)_2$ forming a four coordinate Ir(I) ylide complex which undergoes an oxidative addition reaction via *ortho*-metallation of the ligated CH_2PPh_3 .

Fig. 1. Molecular structure of $Ir(CH_2PPh_2C_6H_4)HI(CO)(PPh_3)_2$ with phenyl groups omitted for clarity. Bond lengths in Angstrom units.

We thank the N.Z. Universities Grants Committee for the award of a Postgraduate Scholarship to A.H.W.

References

- 1 A.F. Hill, W.R. Roper, J.M. Waters and A.H. Wright, J. Am. Chem. Soc., 105 (1983) 5939.
- 2 F.D. Mango and I. Dvoretzky, J. Am. Chem. Soc., 88 (1966) 1654.