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Co-pyrolysis of dimethoxymethylsilylbis(trimethylsilyl)amine (I) with hexamethyl- 
cyclotrisiloxane (D3) at low pressure has been carried out. 1,2-Elimination of 
trimethylmethoxysilane from I gives N-trimethylsilylmethylmethoxysilaimine (II), 
which reacts with D3 to give 6-methoxy-2,2,4,4,6,8,8-heptamethyl-7-trimethylsilyl- 
1,3,5-trioxa-7-aza-2,4,6,8_tetrasilacyclooctane (40.5%) (III). 1,3Sigmatropic re- 
arrangement of a methyl group from one silyl center to the other converts II into 
N-methoxydimethylsilyldimethylsilaimine, which reacts with D, to yield 2,2,4,4,6,6, 
8,8-octamethyl-7-methoxydimethylsilyl-l,3,5-trioxa-4-7-aza-2,4,6,8-tetrasilacyclooc- 
tane (19.5%) (IV). Co-pyrolysis of III and D, gives l-aza-2,2,4,4,6,6,8,10,10,12,12, 
14,14-tridecamethyl-3,5,7,9,11,13-hexaoxa-2,4,6,8,10,12,14-heptasilabicycl~6.6.0]tet- 
radecane (65%) (VII). These results are discussed. 

There has been considerable interest in the generation and chemical reactivity of 
silicon doubly bonded intermediates [1,2]. We undertook a study of the flash 
vacuum pyrolysis of dimethoxymethylsilylbis(trimethylsilyl)amine (I) in the hope 
that it would undergo 1,2-elimination of a molecule of trimethylmethoxysilane to 
yield N-trimethylsilylmethylmethoxysilaimine (II). 
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This approach has been successfully used to generate a number of silicon-carbon 
doubly bonded intermediates [3-51. 

A 
b (CH,),SiOCH, 

Silaimines have previously been generated by photolysis or pyrolysis of silyl 
azides. This involves loss of nitrogen and rearrangement of a group from silicon to 
nitrogen to yield a reactive silaimine [6-91. Silicon-nitrogen doubly bonded inter- 
mediates have also been suggested to result from [2 + 21 cycloaddition reactions of 
silenes with imines to yield unstable N-silaazetidines, which decompose to yield an 
alkene and a silaimine [lo]. 
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Silaimine intermediates are formed by loss of lithium fluoride from N-lithioamino- 
fluorosilane [ll-131. 
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Finally, thermal decomposition of 3,5,5-tris(trimethylsilyl)-4,4-dimethyl-4-sila-l,2,3- 
triazoline yields a reactive silaimine [14]. 

In fact, flash vacuum pyrolysis of I in the presence of hexamethylcyclotrisiloxane 
(D3) led to 6-methoxy-2,2,4,4,6,8,8-heptamethyl-7-trimethylsilyl-l,3,5-t~oxa-7-aza- 

2,4,6,8-tetrasilacyclooctane (III), the expected product of reaction of D, with II 
(40.5% yield) and trimethylmethoxysilane. Hexamethylcyclotrisiloxane has previ- 
ously been shown to trap efficiently silicon-carbon [15,16], silicon-oxygen [16,17], 
silicon-sulfur [18.19], and even silicon-nitrogen [20] doubly bonded intermediates. 
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Perhaps of greater significance, in addition to the expected product 111. 

2,2,4,4,6,6,8,8-octamethyl-7-methoxydimethylsilyl-l,3,5-trioxa-7-aza-2,4,6,8-tetrasila- 
cyclooctane (IV) (19% yield), 2,2,4,4,6,6,8,8-octamethyl-7-trimethylsilyl-1,3,5-trioxa- 
7-aza-2,4,6,8-tetrasilacyclooctane (V) (3.3% yield) and dimethyldimethoxysilane were 
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also isolated. Product IV may result from the reaction of N-methoxydimethylsi- 
lyldimethylsilaimine with D3, while V may arise by reaction of N-trimethylsilyldi- 
methylsilaimine with D,. 
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N-Methoxydimethylsilyldimethylsilaimine may result from a 1,3-sigmatropic re- 
arrangement of a methyl group from one silicon to another of the initially formed 

N-trimethylsilylmethylmethoxysilaimine intermediate (II). 

No previous example of isomerizations of one silicon-nitrogen doubly bonded 
intermediate into another has been reported, but interconversions of silicon-carbon 
doubly bonded intermediates via 1,3-sigmatropic rearrangements have been ob- 
served [21]: 

N-Trimethylsilyldimethylsilaimine may arise by the following reaction sequence. 
Reaction of trimethylmethoxysilane with the rearranged silaimine intermediate, 
N-methoxydimethylsilyldimethylsilaimine yields trimethylsilylbis(dimethylmetho- 
xysilyl)amine (VI). 1,ZElimination of a dimethylmethoxysilyl group and a methoxy 
group as dimethyldimethoxysilane from VI would result in generation of N-trimeth- 
ylsilyldimethylsilaimine as a reactive intermediate [3-51. In support of this proposal 
small amounts (1%) of VI have in fact been isolated in addition to unreacted starting 

material I. 
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In addition small amounts of 1-aza-2,2,4,4,6,6,8,10,10,12,12,14,14-tridecamethy1- 
3,5,7,9,11,13-hexaoxa-2,4,6,8,lO,l2,14-hept~ilabicycl~6.6.O]tetrad~ane (VII) were 
found (6%). This product might result from loss of two molecules of trimethyl- 
methoxysilane from I to form silaacetonitrile an intermediate which possesses a 
reactive silicon-nitrogen triply bond. Sequential reaction of this species with two 
molecules of D3 may yield VII. 
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However. an alternative mechanism for the formation of VII exists, specifically, 
of trimethylmethoxysilane from III to form l-aza- initial 1,2-elimination 
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2,4,4,6,6,8,8-heptamethyl-3,5,7-trioxa-2,4,6,8-tetrasilacycloocta-l-ene, a reactive 
silaimine, which then reacts with a silicon-oxygen single bond of D3 to yield VII. 
Consistent with this latter possibility we have found that co-pyrolysis of III and D, 
at higher temperature results in formation of VII (65%) and trimethylmethoxysilane. 
On the other hand, co-pyrolysis of either IV or V and D3 results only in recovered 
starting materials IV or V. This result is expected since neither IV nor V can lose 
trimethylmethoxysilane in a 1,2-sense. 

Experimental 

lH NMR spectra were obtained on a Varian XL-100, IBM-Bruker WP-270-SY, or 
Bruker WM-500 spectrometer operating in a FT mode using 5% solution at 
deuteriochloroform. Chloroform was utilized as the internal standard. The integra- 
tion of the NMR spectra sometimes gave too small intensities for the Si-CH, signals 
because of saturation problems. However, in all cases the integration was within 10% 
of the calculated value. 13C NMR spectra were obtained on an IBM-Bruker 
WP-270~SY using lo-15% solution in deuteriochloroform. Chloroform was utilized 
as an internal standard. 13C spectra were ru n with broad band proton decoupling. 
29Si spectra were run on a Bruker WM-500 using lo-15% solution in deuterio- 
chloroform. Tetramethylsilane was utilized as an internal standard. 29Si spectra were 
run with gated decoupling. 

IR spectra were obtained on a Perkin-Elmer 281 or Nicolet MX-1 Fourier 
Transform spectrometers. Low resolution mass spectra were obtained on a 
Hewlett-Packard 5985 GC-MS at an ionizing voltage of 70 eV. A 20 in x l/8 in 2% 
OV-10 on 100/120 mesh Chromosorb W column was used in the gas chromatograph 
inlet of the mass spectrometer. High resolution mass spectra were obtained on an 
A.E.I. MS-902 at 70 eV. Exact mass were determined by peak matching against 
peaks of known mass of perfluoro kerosene. GLPC analysis was performed on a 
Hewlett-Packard F&M 700 using either a 4 ft x l/4 in 20% SE-30 on 60-80 mesh 
Chromosorb W column (A), a 15 ft x l/4 in 20% Carbowax on 60-80 mesh 
Chromosorb W column (B), a 15 ft x l/4 in 20% /3,/.?-ODPN on 60-80 mesh 
Chromosorb W column (C), a 6 ft x l/8 in 5% OV-101 on 80-100 mesh Chromosorb 
W column (D), or an 16 ft X l/8 in 5% OV-202 on Chromosorb W SO/l00 mesh 
column (E). Product yields were calculated using mesitylene as an internal standard. 

Hexamethyldisilazane and n-butyllithium were purchased from Aldrich. Dimeth- 
ylmethoxychlorosiiane and hexamethylcyclotrisiloxane were obtained from Petrarch 
System Inc. Diethyl ether was distilled from sodium/benzophenone ketyl im- 
mediately prior to use. 

Preparatiun of dimethoxymethylsilyIbis(trimslPzylsdlyl~ine {I) [22]. In a 250 ml 
three-necked round bottom flask equipped with a pressure equalizing addition 
funnel, condenser and a rubber septum were placed (18.8 g, 0.071 mol) of 
hexamethyldisilazane and a Teflon covered magnetic stirring bar. The flask JAGIS 
flushed with purified nitrogen. n-Butyllithium (1.5 1w in hexane) (57 ml, 0.071 mol) 
was added to the flask over a period of 1 h. During addition, the reaction mixture 
was cooled in an ice-water bath, The solution was refluxed for 3 h and then was 
stirred at 20 OC overnight. The solution was then cooled to - 196 “C by liquid 
nitrogen and (10 g, 0.071 mol) of methyldirnethoxychlorosilane in 30 ml of ether was 
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added to the frozen solution. The reaction mixture was gradually warmed and then 
refluxed for 3 h. LiCl was removed by filtration. The solvents were removed by 
evaporation under reduced pressure. DimethoxymethyIsilylbis(trimethylsilyl)amine 
was distilled from the residue b-p. 44OC/l mmHg in 68% yield. It has the following 
spectral properties: ‘H: S 0.112 (s, 3H); 0.157 (s, 18H); 3.424 (s, BH). 13C NMR: 6 
2.002 (lC), 4.012 (6C); 48.801 (3C) 29Si NMR: S - 27.80 (1 Si); 2.366 (2Si). MS: m/e 
(w rel. int.) 250 (21) M” - 15: 234 (100) Mf - 31; 204 (5.7); 188 (4.8); 130 (27.3), 
116 (7.1); 100 (7.8); 73 (8.1). 

6-~ethoxy-2,2,4,4,6,8,8-heptamethyl-7-(trimethyls~lyi)-l,3,5-tr~uxa-7-aza-2,4,6,8-te- 

trasrlacyciuoctane (III). III was formed in 40.3% yield. It was purified by prepara- 
tive GLPC column B. It has the following spectral properties: *H NMR: 6 0.078 (s, 

6H); 0.095 (s, 3H); 0.133 (s, 3H); 0,152 (s, 9H); 0.165 (s, 3H); 0.177 (s, 3H); 0.219 (s, 

3H); 3.424 (s, 3H). MS: m/e (% rel. int.) 368 (100) M+ - 15; 352 (2.3) iw’ - 31; 280 
(7.4); 264 (20.3); 250 (12.0); 190 (8.3); 130 (5.5); 100 (5.5); 89 (19.6); 73 (42.5). Exact 

mass for Si,C,,HJONOd (M’ - 15) 368.1047, calcd. 368.1021. 
2,2,4,4,6,6,8,8-Ucrame~~~vl-7-(methuxydimeth~~s~~y~)-J,3,5-rri~xa-7-aza-~,4,6,8-te- 

trasikacycluuctane (I V). IV was formed in 19% yield. It was purified by preparative 
GLPC column B. It has the following spectral properties: ‘H NMR: 8 0.077 (s, 

12H); 0.171 (s, 6H); 0.205 (s, 12H); 3.378 (s, 3H). MS: m/e (% rel. int.) 368 (100) 
M+ - 15; 352 (2.3) M’ - 31; 280 (7.4); 264 (20.3); 250 (12.0); 190 (8.3); 130 (5.5); 
100 (5.5); 89 (19.6); 73 (42.5). Exact mass for Si,C,,HJONOd (Mt - 15) 368.1047, 
calcd. 368.1021. 

2,2,4,4,6,6,8,8-Oc~~m~lhyl-7-(tr~methyis~lyI)-1,3,5-turuxa-7-aza-2,4,6.8-t~trc7sila- 
cyclooctane (V) [22]. V was formed in 3.3% yield. It was purified by preparative 
GLPC column B. It has the following spectral properties: ‘H NMR: S 0.077 (s, 
12H); 0.156 (s, 9H); 0.202 (s, 12H). MS: m/e (% rel. int.) 352 (86.0) M’ - 15; 264 
(26.6); 248 (12); 190 (7.3); 73 (100). 

TrimethylsilyIBis(dimethylmethoxysiiyi)amine (VI). VI was isolated in about 1% 
yield. It was purified by preparative GLPC column D. It has the following spectral 
properties: ‘H NMR* 6 0.175 (s, 9H); 0.187 (s, 12H); 3.384 (s, 6H). MS; m/e (% rel. 

int.) 250 (lOOAl), M’ - 15; 234 (21.3) 1cf’ - 31; 220 (12.8): 174 (10.6); 130 (63.8). 

Flash vacuum pyrolysis of I 

A 5 ml round bottom flask which contained (0.5 g, 1.88 mol) of compound I and 
hexamethylcyclotrisiloxane (D3) (1.26 g, 5.66 mmol) was connected to a spiral Pyrex 
tube (200 cm x 0.7 cm> which was placed inside an oven (450-470 “C). The other 
end of the pyrolysis tube was connected to a liquid nitrogen cooled trap which in 
turn was attached to a mercury diffusion pump (10 ~ 4 mmHg). The round bottom 
flask was heated to 60 “C to distill the sample of I through the pyrolysis tube. This 
procedure took between 30-45 min. 

~-Aza-2,2,4,4,6,6,8,10,10,12,~2,14,14-tridecamethyl-3,5,7,9,II,~3-hexaoxa-2,4,6,8,- 

IQI2,14-heptasiiabicyciu[6.6.U]tetradecane (VII). A mixture of III (100 mg, 0.26 

mmol) and D3 (440 mg, 2 mmol) was placed ina 5 ml round bottom flask which was 
connected to a spiral quartz pyrolysis tube as above. The mixture was distilled 
through the pyrolysis tube under high vacuum at a temperature of 510 ‘C over 0.5 h. 
VII was found in 65% yield based on recovered starting materials. It was purified by 
preparative GLPC on column E. It has the following spectra properties: ‘H NMR: S 
0.065 (s, 6H); 0.08 (s, 6H); 0.092 (s, 6H); 0.114 (s, 6H); 0.171 (s, 6H); 0.190 (s, 6H); 
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0.204 (s, 3H). IR: 1104, 1070, 1023 cm-’ Si-0. MS: m/e (‘% rel. int.) 486 (89.2) 
M+ - 15; 398 (14.4); 147 (3.0); 73 (100). Exact mass for Si,C,,H,,NO, (M’ - 15) 
486.0932, calcd. 486.0926. 

Co-pyrolysis of either IV and D3 or V and Ds as above resulted in only recovered 
starting materials IV or V respectively. 
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