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Summary

The hydrogenation of ketones with Co,(CO)¢(PR;), (PR3 = PPh, -neo-
menthyl, PPh, -6-deoxo-1,2:3,4-diisopropylidene D-galactose and PMe, -men-
thyl) as catalysts gives optically active alcohols in optical yields of 1.6 to 5%.

We previously reported that Co, (CO),(PPh, -neomenthyl), is an effective
catalyst for the asymmetric reduction of carbon—carbon double bonds in
a,B-unsaturated ketones [1]; saturated, optically active ketones were obtained
under enhanced hydrogen pressures from prochiral substrates. We have now
extended our investigation on the catalytic activity of the Co,(CO)s/chiral
phosphine system to hydrogenation of ketones to give optically active alcohols.

Examples of hydrogenation of ketones in the presence of cobalt carbonyl
complexes containing tertiary phosphine ligands are known [2], but no asym-
metric reduction has previously been reported; the severe conditions used
for the hydrogenation (200°C and 150—200 atm pH, ) prevented asymmetric
synthesis. More suitable substrates were selected through a series of exper-
iments in which various ketones were reduced with Co,(CO)¢(Pbus), as
catalyst (Table 1). Cyclic aliphatic ketones were reduced at 110°C under 30
atm of hydrogen, whereas 130°C was required to hydrogenate acetophenone
under the same conditions. Therefore, hydrogenation of 2- and 3-methyl-
cyclohexanone was first undertaken with chiral cobalt catalysts; two com-
plexes bearing different chiral phosphines were used: Co,(CO)s(PPh, -neo-
menthyl), [3] and Co,(CO)4[PPh,-6-deoxo-1,2:3,4-diisopropylidéne-D-
galactose], (»(CO): 1960, 1975 cm™ (Nujol); m.p. 108°C; [a]ses + 25°
(C¢Hg)). The results are summarized in Table 1.

It can be seen that reduction of 2-methylcyclohexanone gives both cis-
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TABLE 1

HYDROGENATION UNDER PRESSURE OF KETONES WITH Co,(CO).(PR;), SPECIES AS
CATALYSTS ¢

PR, Substrate Reaction Yield (%) Reaction RCH(OH)R'
time product 0.v.b
(h) isomer % (conf) €
PBu, 24 60 cis : 35 -
< =° trans: 65 -
NMDPP 4 (S:o 17 25 cis :40 -
— trans: 60 5 (18, 25)
GDPP ¢ 28 26 cis 127 2.6 (1S, 2R)
\‘): trans: 73 —
NMDPP GO 28 15 cis :33 —
trans: 67 —
MDMP Cerscocn, 30 30 — 1.6 (S)

@ 30 atm H,, 110°C, 50/1 substrate/catalyst. ¥ O.Y.: optical yield. € conf.: configuration of the prevail-
ing enantiomer. d NMDPP: (+)-neomenthyldiphenylphosphine [4]. € GDPP: (—) 6-Deoxo-1,2:3,4-diiso-
propylidene-D-galactosediphenylphosphine [5]. MDMP: (—)-menthyldimethylphosphine [6], 130°C.

and trans-2-methylcyclohexanol. The cis/trans ratio is slightly dependent
on the nature of the phosphine (PBu;: 40/60; NMDPP: 33/67 and GDPP:
27/78) and the thermodynamically more stable trans isomer is favoured [7].
The highest optical yield is obtained using Co,(CO)s(NMDPP), as catalyst,
but only the trans-2-methylcyclohexanol is optically active. In contrast a pos-
itive optical yield is obtained with cis-2-methylcyclohexanol when GDPP is
employed as a chiral ligand in the cobalt complex. The nature of the chiral
phosphine is obviously critical for the enantioselectivity. Reduction of
3-methylcyclohexanone also gives cis- and trans-isomers, but both alcohols
are racemic.

We have also examined the influence of the phenyl group on the enantio-
selectivity. The presence of this group does, however, affect the reactivity.
As shown in Table 1, reduction of acetophenone needs higher temperature
(130°C) and a more basic phosphine (Co,COs (MDMP),, »(CO) 1950, 1970 cm™';
m.p. 82°C; [a]sss —21° (C4Hy)). At this latter temperature considerable
decomposition of the catalyst is observed, and the optical yield is low (1.6%).

Work is in progress to elucidate the mechanism by which the phosphine
exerts its influence on the enantioselectivity of the catalyst.
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