PREPARATION AND PROTONATION OF 2-PYRIMIDYL- AND 2PYRAZYLPALLADIUM(II) COMPLEXES

BRUNO CROCIANI*, FRANCESCA DIBIANCA, AMALIA GIOVENCO
Istituto di Chimica Generale, University of Palermo (Italy)
and ALBERTO SCRIVANTI
Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione, C.N.R., Padova (Italy)
(Received February 11th, 1985)

Summary

The oxidative addition of 2-chloropyrimidine or 2-chloropyrazine to $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ yields a mixture of trans- $\left[\mathrm{PdCl}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}-\mathrm{C}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (I) and $\left[\mathrm{PdCl}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}-\right.\right.$ $\left.\left.C^{2}, N^{1}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$ (II) $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}=2\right.$-pyrimidyl or 2-pyrazyl group). The mononuclear complexes I are quantitatively converted into the binuclear species II upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$. The reaction of II with HCl gives the N -monoprotonated derivatives cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}-\mathrm{C}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (III), from which the cationic complexes trans$\left[\mathrm{PdCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}-\mathrm{C}^{2}\right)(\mathrm{L})_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{IV} ; \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{V} ; \mathrm{PEt}_{3}, \mathrm{VI}\right)$ can be prepared by ligand substitution reactions. Reversible proton dissociation occurs in solution for III-VI. The low-temperature ${ }^{1} \mathrm{H}$ NMR spectra of trans-[$\mathrm{PdCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}-\right.$ $\left.\left.C^{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{ClO}_{4}$ show that the heterocyclic moiety undergoes restricted rotation around the $\mathrm{Pd}-\mathrm{C}^{2}$ bond and that the 2 -pyrazyl group is protonated predominantly at the N^{1} atom. These results and the ${ }^{13} \mathrm{C}$ NMR data for the PEt_{3} derivatives are interpreted on the basis of a significant $d_{\pi} \rightarrow \pi^{\star}$ back-bonding contribution to the palladium-carbon bond of the protonated ligands.

Introduction

We previously described the protonation and methylation of some 2-pyridyl-palladium(II) and -platinum(II) compounds by strong mineral acids and dimethylsulfate, respectively [1]. The electrophilic attack occurs only at the nitrogen atom of the σ-bonded heterocyclic group, without cleavage of the metal-carbon bond. The multinuclear NMR spectra of the resulting products suggest a relevant contribution of the carbene-like structure \mathbf{A} to the electronic configuration of this new type of ligand:

(A)

The complex cis-[$\left.\mathrm{PdCl}_{2}(2-\mathrm{pyH})\left(\mathrm{PPh}_{3}\right)\right](2-\mathrm{pyH}=N$-protonated 2-pyridyl) also proved to be a convenient starting material for the preparation of derivatives \mathbf{B} containing an imino(2-pyridyl)methyl group, according to the following reaction sequence [2]:

As an extension of our studies on C-palladated nitrogen ligands, we report here the preparation of 2-pyrimidyl- and 2-pyrazyl-palladium(II) complexes and their protonation. The new compounds have been characterized mainly by multinuclear NMR spectroscopy in order to elucidate the nature of the palladium-carbon bond and to ascertain the site of proton attack.

Results and discussion

Preparation and protonation reactions

The oxidative addition of 2-chloropyrimidine or 2 -chloropyrazine to $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ yields a mixture of products I and II (eq. 1 and Fig. 1), in which the binuclear complex II predominates (molar ratio I/II $-1 / 4$):

[^0]

Fig. 1. ${ }^{31} \mathrm{P}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ of the mixture of products Ib and IIb obtained from the oxidative addition of 2-chloropyrazine to $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (a); after addition of an excess of PPh_{3} (b).

The mononuclear compound I is quantitatively converted into II upon treatment of the mixture with $\mathrm{H}_{2} \mathrm{O}_{2}$. This behaviour can be related to the existence of equilibrium 2, which shifts completely to the right when the free phosphine is oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$, whereas it moves in favour of I when an excess of PPh_{3} is added (Fig. 1).
$2 \mathrm{I} \rightleftarrows \mathrm{II}+2 \mathrm{PPh}_{3}$
TABLE 1
analytical and physical data

Compound	Analyses(Found (calcd.)(\%))				Molar Conductivity " ($\mathrm{ohm}{ }^{1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$)	IR (cm ${ }^{1}$)				
	C	H	N	Cl		$\nu(\mathrm{N}-\mathrm{H})$	$s(\mathrm{Cl}-\mathrm{O})$	$\delta(C 1-0)$	$v(\mathrm{Pd}-\mathrm{P})$	$\nu(\mathrm{Pd}-\mathrm{Cl})$
$\left[\mathrm{PdCl}(\mu-2-\mathrm{pym})\left(\mathrm{PPh}_{3}\right)\right]_{2}$	54.9	3.7	5.8	7.5						328m:
(11a)	(54.68)	(3.75)	(5.80)	(7.34)						314 m
$\left[\mathrm{PdCl}(\mu-2-\mathrm{Pyz})\left(\mathrm{PPh}_{3}\right)\right]_{2}$	54.3	3.8	5.7	7.4						3.34 m
(IIb)	(54.68)	(3.75)	(5.80)	(7.34)						311 m
$\left[\mathrm{PdCl}_{2}(2-\mathrm{pymH})\left(\mathrm{PPh}_{3}\right)\right]$	50.6	3.6	5.4	13.8	$24.3{ }^{h}$	$3180 \mathrm{~ms}: 3145 \mathrm{w}$				312 ms :
(Illa)	(50.84)	(3.68)	(5.39)	(13.64)						292 ms
$\left[\mathrm{PdCl}_{2}(2-\mathrm{pyz} \mathrm{H})\left(\mathrm{PPh}_{3}\right) \mid 1 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$	48.7	3.6	5.1	17.4	$23.1{ }^{\prime \prime}$	$3155 \mathrm{~ms}: 3125 \mathrm{~ms}$				314 ms ;
([IIb)	(48.95)	(3.62)	(5.11)	(17.25)						282 ms
$\text { trans }-\left[\mathrm{PdCl}(2-\mathrm{pymH})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	56.8	4.0	3.3	8.5	90.3	3190w:3160w	$1135 \mathrm{~s} ; 1110 \mathrm{~s}$	627s:		323 m
(IVa)	(56.79)	(4.05)	(3.31)	(8.38)			1050 s	619 s		
trans-[$\mathrm{PdCl}(2-$ pyz H$\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	56.4	4.1	3.3	8.4	108.0	3190sh; 3175w:	1120sh: 1095 vs :	625s:		325 m
(IVb)	(56.79)	(4.05)	(3.31)	(8.38)		3140 w	1050s	620sh		
trans $-\left[\mathrm{PdCl}(2-\mathrm{pymH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{ClO}_{4}$	40.3		4.6		92.7	3210 sh :	1130sh: 1110 vs :	630s;	424m	318m;
(Va)	(40.19)	(4.38)	(4.69)	(11.86)		3200 m .br; 3160 w	1050 s	620 s		300 mw
trans- $\left[\mathrm{PdCl}(2-\mathrm{py} \angle \mathrm{H})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mid \mathrm{ClO}_{4}\right.$	39.9	4.4	4.6	11.7	94.1	3205 m .br:	1025sh; 1112vs:	626s:	427 m	319 m
(Vb)	(40.19)	(4.38)	(4.69)	(11.86)		3180 mw : 3145 mw	1060 s	620.h		
Irans-[$\left.\mathrm{PdCl}\left(2-\mathrm{pymH}^{\text {a }}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$	34.3	6.2	5.0	12.8	94.5	3250 sh :	1110vs:1050s	625s:	$416 w^{\prime}$	325m:
(VIa)	(34.46)	(6.14)	(5.02)	(12.71)		$3200 \mathrm{~m}, \mathrm{br}: 3160 \mathrm{~m}$		620 s		315w
trans- $\mathrm{PdCl}(2-\mathrm{pyzH})\left(\mathrm{PEt}_{3}\right)_{2} \mid(\mathrm{CO})_{4}$	34.6	6.1	5.0	12.6	97.2	$3195 \mathrm{~m} ; 3175 \mathrm{~m}$:	1130sh: 1110 vs :	627s '	418w	328 m :
(VIb)	(34.46)	(6.14)	(5.02)	(12.71)		3135 m	1060 s	620sh		315w

"For $10^{3} \mathrm{M}$ MeOH solution at $20^{\circ} \mathrm{C}$." For $10^{3} \mathrm{M}$ DMSO solution at $25^{\circ} \mathrm{C}$. "Tentative assignment.

The complexes I cannot be isolated as pure samples from reaction 2 even in the presence of a large excess of triphenylphosphine. They are more conveniently prepared by a different route based on deprotonation of derivatives of type IV, as will be described in a forthcoming paper [3].

The dimeric nature of II is confirmed by molecular weight measurements (see Experimental). Their spectral data (Tables 1 and 2) suggest a non-planar structure with bridging $\mathrm{C}^{2}, \mathrm{~N}^{1}$ heterocyclic ligands and with a trans-N-Pd- PPh_{3} arrangement, analogous to that reported for the 2-pyridyl complexes $\left[\operatorname{PdX}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.\right.$ $\left.\left.C^{2}, N\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})[4,5]$. The observed $\mathrm{Pd}-\mathrm{Cl}$ stretching frequencies (328 and $314 \mathrm{~cm}^{-1}$ for IIa; 334 and $311 \mathrm{~cm}^{-1}$ for IIb) and ${ }^{31} \mathrm{P}$ NMR signals (a singlet at 28.4 and 29.9 ppm in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ for IIa and IIb , respectively) are quite close to the corresponding values for $\left[\mathrm{PdCl}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}^{2}, N\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}(\nu(\mathrm{Pd}-\mathrm{Cl}) 325$ and 311 $\mathrm{cm}^{-1} ; \delta\left({ }^{31} \mathrm{P}\right)$ singlet at 29.7 ppm in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

In particular, the multiplicity of the H^{6} proton resonance in both IIa and IIb can be rationalized by taking into account an additional coupling with the ${ }^{31} \mathrm{P}$ nucleus of PPh_{3} trans to the N^{1}-bonded heterocycle. An approximate first-order analysis, depicted in Fig. 2, gives ${ }^{4} J\left(\mathrm{P}-\mathrm{H}^{6}\right)$ values of 3.0 Hz for IIa and of 3.2 Hz for IIb, which are comparable with those observed for the methyl proton signals of complexes containing trans-(Me)N-Pd- PPh_{3} geometries ($2-3 \mathrm{~Hz}$) [6].

The complexes II react readily with a methanolic solution of HCl to yield the cis- N -protonated derivatives III (Scheme 1), characterized by two $\nu(\mathrm{Pd}-\mathrm{Cl})$ bands in the range $334-311 \mathrm{~cm}^{-1}$ and by $\mathrm{N}-\mathrm{H}$ stretching frequencies in the range $3180-3125$ cm^{-1}.
(continued on p. 266)

SCHEME 1. $\mathrm{X}=\mathrm{N} ; \mathrm{Y}=\mathrm{CH}$: 2-pyrimidyl (2-pym) and N-protonated 2-pyrimidyl (2-pymH) complexes IIIa-VIIIa; $\mathrm{X}=\mathrm{CH} ; \mathrm{Y}=\mathrm{N}: 2$-pyrazyl (2-pyz) and N-protonated 2-pyrazyl (2-pyzH) complexes IIIbVillb.
TABLE 2
${ }^{1} \mathrm{H}$ AND ${ }^{31} \mathrm{P}$ NMR DATA ${ }^{a}$

Compound	Heterocyclic ring protons ${ }^{\text {b }}$					Phosphine protons				$\delta\left({ }^{31} \mathrm{P}\right)$	Solvent
	H^{1}	H^{3}	H^{4}	H^{5}	H^{6}	$\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{P}-\mathrm{CH}_{3}$	$\mathrm{P}-\mathrm{CH}_{2}$	$\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$		
11 a			m ${ }^{\text {c }}$	$\begin{aligned} & 6.49 \mathrm{~T} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right) 5.5 \end{aligned}$	$\begin{aligned} & 8.46 \mathrm{D}_{\mathrm{T}} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.5 \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{6}\right) 2.5 \\ & J\left(\mathrm{P}-\mathrm{H}^{6}\right) 3.0 \end{aligned}$	$8.0-7.0 \mathrm{M}$				28.4 S	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
IIb		$\mathrm{m}^{\text {c }}$		$\mathrm{m}^{\text {c }}$	$\begin{aligned} & 8.34 \mathrm{D}_{\mathrm{T}} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.2 \\ & J\left(\mathrm{H}^{3}-\mathrm{H}^{6}\right) 1.4 \\ & J\left(\mathrm{P}^{2}-\mathrm{H}^{6}\right) 3.2 \end{aligned}$	$8.0-7.0 \mathrm{M}$				29.9 S	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
IIIa	n.o.		$\begin{aligned} & 8.43 \mathrm{D} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right) 5.5 \end{aligned}$	7.18 T	$\begin{aligned} & 8.43 \mathrm{D} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.5 \end{aligned}$	7.9-7.3 M				24.1 S	DMSO- d_{6}
IIIb	n.o.	$\begin{aligned} & 8.91 \mathrm{D} \\ & J\left(\mathrm{H}^{3}-\mathrm{H}^{5}\right) 1.3 \end{aligned}$		8.27 D	$\begin{aligned} & 8.10 \mathrm{D}_{\mathrm{D}} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.2 \end{aligned}$	7.8-7.2 M				25.8 S	DMSO-d
IVa	n.o.		$\begin{aligned} & 7.95 \mathrm{D} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right) 5.3 \end{aligned}$	6.63 T	$\begin{aligned} & 7.95 \mathrm{D} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.3 \end{aligned}$	7.6-6.9 M				20.9 S	CDCl_{3}
IVb	n.o.	$\begin{aligned} & 8.85 \mathrm{D} \\ & J\left(\mathrm{H}^{3}-\mathrm{HI}^{5}\right) 1.1 \end{aligned}$		$\begin{aligned} & 7.91 \mathrm{D} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.5 \end{aligned}$	m ${ }^{\text {c }}$	$7.8-7.1 \mathrm{M}$				22.3 S	CDCl_{3}
Va	n.o.		$8.4-8.0 \mathrm{br}$	$\begin{aligned} & 6.67 \mathrm{~T} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right)= \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right)=5.3 \end{aligned}$	$8.0-7.6 \mathrm{br}$	7.4-7.0 M	$\begin{aligned} & 1.85 \mathrm{~T} \\ & J(\mathrm{P}-\mathrm{H}) 7.9^{d} \end{aligned}$			-3.9 S	CDCl_{3}
	n. . $^{\text {e }}$		$\begin{aligned} & 8.18 \mathrm{D}^{6} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right) 5.5 \end{aligned}$	$6.74 \mathrm{~T}^{\text {c }}$	$\begin{aligned} & 8.18 \mathrm{D} \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.5 \end{aligned}$						CDCl_{3}
	13.1 br ${ }^{f}$		$\begin{aligned} & 8.40 \mathrm{D}_{\mathrm{D}}{ }^{\prime} \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right)-5.5 \\ & J\left(\mathrm{H}^{4}-\mathrm{H}^{6}\right) \sim 1.5 \end{aligned}$	$6.76 \mathrm{~T}^{f}$	$\begin{aligned} & 7.76 \mathrm{D}_{\mathrm{T}} \\ & J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right)-5.5 \\ & J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right)-5.5 \end{aligned}$	$7.5-7.0 \mathrm{M}^{\prime}$	$\begin{aligned} & 1.76 \mathrm{f} .8 \\ & 1.72 \mathrm{f} . \mathrm{m} \end{aligned}$				$\mathrm{CD}_{2} \mathrm{Cl}_{2}$

$-7.5 \mathrm{~S} \mathrm{CDCl}_{3}$
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$-2.1 \mathrm{~S}^{/} \mathrm{CD}_{2} \mathrm{Cl}_{2}$
$-6.7 \mathrm{~S} \mathrm{CDCl}_{3}$

17.9 S CDCl
3
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
15.5 $\mathrm{S} \mathrm{CDCl}_{3}$
$19.6 \mathrm{~S} \mathrm{CDCl}_{3}$
$1.9-1.3 \mathrm{M} \quad 1.09 \mathrm{Q}$
$7.5-7.0 \mathrm{M} \begin{aligned} & \mathrm{J}(\mathrm{P}-\mathrm{H}) \sim 7 \\ & 1.63 \mathrm{~T}\end{aligned}$

$7.6-7.0 \mathrm{M} \quad 1.55 \mathrm{~T}$ 8.05 D
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 4.9$
$7.62 \mathrm{D}_{\mathrm{D}}$
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.4$
$7.45 \mathrm{D}_{\mathrm{D}}{ }^{\prime}$
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.1$
$J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right) 5.3$
$8.06 \mathrm{D}_{\mathrm{D}}$
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 2.9$
8.95 D
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.0$
$8.75 \mathrm{D}_{\mathrm{T}}{ }^{\prime}$
$J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right) \sim 5.5$
$8.60 \mathrm{D}^{2}$
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.0$
$8.77 \mathrm{D}_{\mathrm{D}}$
$J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 3.5$

$1.8-1.3 \mathrm{M} \quad 1.08 \mathrm{Q}$
2.1-1.5 M 1.14 Q

$$
p 0 \angle\left(\mathrm{H}^{-\mathrm{d}}\right) r
$$

6.8^{d}
 1.82 T $J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right) 5.0$
$8.75 \mathrm{D}_{\mathrm{T}} f$
$J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right)-5.5$
${ }^{a}{ }^{1} \mathrm{H}$ chemical shifts (δ) in ppm from TMS at $30{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ chemical shifts (δ) in ppm frem external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (down-field shifts taken as positive); coupling constants in Hz ; S, singlet; D, doublet; T, triplet, Q, quintet; D_{D}, doublet of doublets; D_{T}, doublet of triplets; M , multiplet; br, broad; n.o., not observed; satisfactory integration = $J(\mathrm{P}-\mathrm{H})=\mathrm{p}^{2}(\mathrm{P}-\mathrm{H})+4 J(\mathrm{P}) \cdot$. NOH .

Fig. 2. Signal of the H^{6} proton of the complex IIa (a), and of the complex IIb (b), in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
As in the case of $\left[\mathrm{PdCl}(\mu-2-\mathrm{py})\left(\mathrm{PPh}_{3}\right)\right]_{2}[1]$, the reaction of II with HCl involves breaking of the $\mathrm{Pd}-\mathrm{N}$ bond and monoprotonation of the heterocyclic ligand (even with an excess of HCl), without cleavage of the $\mathrm{Pd}-\mathrm{C}^{2} \sigma$ bond.

The compound IIIb crystallizes with $1 / 3$ of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule, as shown by elemental analysis and by GLC measurements of a saturated solution in dimethylsulfoxide. Both products III are not sufficiently soluble in chlorinated solvents for molecular weight determinations. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ suspension, however. they react smoothly with PPh_{3} yielding the cationic complexes IV, isolated as perchlorate salts, from which the $\mathrm{PMe}_{2} \mathrm{Ph}$ and PEt_{3} analogues V and VI are easily obtained by ligand substituion reactions. The $2-p y m H$ and $2-p y z H$ groups must be rather strongly bound to the palladium center since they are retained in all the reaction products IV-VI of Scheme I. Further evidence for the formulation of V and VI comes from the easy deprotonation to the corresponding neutral derivatives VII and VIII, characterized in solution by multinuclear NMR spectroscopy (Tables 2 and 3).

The cationic complexes IV-VI are uni-univalent electrolytes in MeOH solution and have a trans- $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ geometry, as shown by the presence of only one singlet in the ${ }^{31} \mathrm{P}$ spectrum of each compound and also by the presence of only one $\boldsymbol{v}(\mathrm{Pd}-\mathrm{P})$ vibration in the range $427-424 \mathrm{~cm}^{-1}$ for the $\mathrm{PMe}_{2} \mathrm{Ph}$ derivatives V . The splitting into two or three bands of the typical $\nu(\mathrm{N}-\mathrm{H}), \nu(\mathrm{Cl}-\mathrm{O})$ and $\delta(\mathrm{Cl}-\mathrm{O})$, and the presence in some cases (complexes Va, VIa, VIb) of a second weaker $\nu(\mathrm{Pd}-\mathrm{Cl})$ absorption at lower frequency indicate that the 2-pymH and 2-pyzH compounds are largely associated in the solid state through hydrogen bonding beween the N H group and the perchlorate anion and/or the chloride ligand.
${ }^{\prime} H$ NMR spectra of the protonated complexes
The ${ }^{1} \mathrm{H}$ NMR spectra (Table 2) can be interpreted on the basis of proton dissociation in solution (eq. 6):

At room temperature the proton exchange is fast, and brings about the disappearance of both the \mathbf{H}^{1} signal and the ${ }^{3} J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right)$ coupling for the H^{6} proton. For complexes III in DMSO- d_{6}, the fast reversible process 6 is followed by a second, slow reversible process involving the formation of a small but detectable amount of the parent dimer II:

For a saturated solution of IIIb at $30^{\circ} \mathrm{C}$, a molar ratio IIIb/IIb of ca. $20 / 1$ was estimated from integration of the corresponding ${ }^{31} \mathrm{P}$ signals. Addition of a slight excess of HCl shifted the equilibria 7 to the left with complete disappearance of the characteristic ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ signals of II.

A comparison with the ${ }^{1} \mathrm{H}$ NMR spectrum of the N-protonated 2-pyridyl complex cis-[$\left.\mathrm{PdCl}_{2}(2-\mathrm{pyH})\left(\mathrm{PPh}_{3}\right)\right]$, which was recorded under comparable experimental conditions [1], shows that the 2-pymH and 2-pyzH analogues behave as stronger acids, in line with the $\mathrm{p} K_{\mathrm{a}}$ values of pyridinium (5.25), pyrimidinium (1.31) and pyridazinium (0.65) cations in aqueous solution [7].

This is further supported by the increase in molar conductivity values of the cis neutral complexes in dimethylsulfoxide at $25^{\circ} \mathrm{C}$ on going from cis- $\left[\mathrm{PdCl}_{2}(2-\right.$ $\left.\mathrm{pyH})\left(\mathrm{PPh}_{3}\right)\right], 6.3$ ohm${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, to cis- $\left[\mathrm{PdCl}_{2}(2-\mathrm{pyzH})\left(\mathrm{PPh}_{3}\right)\right], 23.1$, and to $c i s-\left[\mathrm{PdCl}_{2}(2-\mathrm{pymH})\left(\mathrm{PPh}_{3}\right)\right], 24.3$.

The heterocyclic ring protons of the 2-pym derivatives VIIa and VIIla give rise to first-order AX_{2} spectra. For the N-protonated 2-pymH species, time-averaged AX_{2} spectra are also observed at $30^{\circ} \mathrm{C}$ due to the fast exchange of the proton between the N^{1} and N^{3} atoms in the equilibrium 6. Exceptionally, for complex Va, trans-$\left[\mathrm{PdCl}(2-\mathrm{pymH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{ClO}_{4}$, this exchange is relatively slow, and the protons H^{4} and H^{6} appear as two broad unresolved resonances in the ranges 8.4-8.0 and $8.0-7.6 \mathrm{ppm}$, respectively. Addition of trace amount of HCl to the CDCl_{3} solution increases the exchange rate (probably through formation of low-concentration $\mathrm{N}^{1}, \mathrm{~N}^{3}$-diprotonated species) and causes the coalescence of the H^{4} and H^{6} signals into a sharp doublet at 8.18 ppm . When a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of Va is cooled to $-60^{\circ} \mathrm{C}$ the exchange rate decreases markedly and the equilibrium 6 shifts almost completely to the left, so that the $\mathrm{N}-\mathrm{H}$ resonance is now clearly detected at 13.1 ppm. In these conditions, the $\mathrm{H}^{4}, \mathrm{H}^{5}$ and H^{6} protons appear as an AMX system, with an additional coupling of H^{6} with the $\mathrm{N}-\mathrm{H}$ proton. The low-temperature spectrum of VIa, trans- $\left[\mathrm{PdCl}(2-\mathrm{pymH})\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ is quite similar, except for a down-field shift of $0.6-1 \mathrm{ppm}$ for the 2 -pymH signals. Also in this case, the $\mathrm{N}-\mathrm{H}$ proton resonates at a rather low field, 13.7 ppm , and H^{6} appears as a doublet of triplets because of the similarity of the values of ${ }^{3} J\left(\mathrm{H}^{5}-\mathrm{H}^{6}\right)$ and ${ }^{3} J\left(\mathrm{H}^{1}-\mathrm{H}^{6}\right)$ (spectrum (c) of Fig. 3).

The ring protons of the 2-pyz and 2-pyzH derivatives give rise to $A B X$ spectra, which can reasonably be analyzed by first-order approximation because of the large $\Delta \nu / J$ ratio of the AB system (H^{5} and H^{6} protons). The assignment of $\mathrm{H}^{3}, \mathrm{H}^{5}$ and H^{6} resonances is based on the relative values of coupling constants, in accordance

Fig. 3. ${ }^{1} \mathrm{H}$ NMR spectrum in the range $8.7-7.4 \mathrm{ppm}$ of the complex Vb in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $30^{\circ} \mathrm{C}$ (a) and at $-60^{\circ} \mathrm{C}(b):{ }^{1} \mathrm{H}$ NMR spectrum in the range $9.3-7.1 \mathrm{ppm}$ of complex Vla in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$ (c).
with literature data on 2-substituted pyrazines and N-protonated or methylated pyrazinium cations [8-10]. Since in the 2-palladated species ${ }^{4} J\left(\mathrm{H}^{3}-\mathrm{H}^{5}\right)$ is very close to zero, and is never observed within the resolution limit of the instrument, $\delta\left(\mathrm{H}^{6}\right)$ is easily assigned to the resonance with a doublet of doublets pattern (see Table 2). The protonation of the 2-pyz group may occur at either the N^{1} or the N^{4} nitrogen atom. The variable temperature spectra of Vb , trans $-\left[\mathrm{PdCl}(2-\mathrm{pyzH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{ClO}_{4}$, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ show that equilibrium 6 shifts in favour of the N^{1}-protonated species on cooling. The H^{6} signal at 7.62 ppm broadens progressively. and at $-60^{\circ} \mathrm{C}$ the

TABLE 3
${ }^{13} \mathrm{C}$ NMR SPECTRAL DATA FOR PEt_{3} DERIVATIVES ${ }^{a}$

Compound	Heterocyclic ring carbons					Phosphine carbons	
	C^{2}	C^{3}	C^{4}	C^{5}	C^{6}	$\mathrm{P}-\mathrm{CH}_{2}$	$\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$\overline{\text { VIIIa }}^{\text {b }}$	189.8		154.2	115.1	154.2	14.4	7.6
						$J(\mathrm{P}-\mathrm{C}) 25.6^{\circ}$	
VIa	$\begin{aligned} & 194.3 \\ & { }^{2} J(\mathrm{P}-\mathrm{C}) 8.2 \end{aligned}$		$160.8{ }^{\text {d }}$	116.1	$147.5{ }^{\text {d }}$	14.5	7.7
			$J(\mathrm{P}-\mathrm{C}) 27.8^{*}$				
VIIIb ${ }^{\text {b }}$	177.2	$\begin{aligned} & 152.3 \\ & { }^{3} J(\mathrm{P}-\mathrm{C}) 12.3 \end{aligned}$		137.8	145.7	14.3	7.8
						$J(\mathrm{P}-\mathrm{C}) 25.8{ }^{\text {c }}$	
VIb	$\begin{aligned} & 181.3 \\ & { }^{2} J(\mathrm{P}-\mathrm{C}) 17.2 \end{aligned}$	$\begin{aligned} & 159.5 \\ & { }^{3} J(\mathrm{P}-\mathrm{C}) 4.8 \end{aligned}$		142.0	139.6	14.9	7.9
						$J(\mathrm{P}-\mathrm{C}) 27.4^{\text {c }}$	

${ }^{a}$ Chemical shifts (δ) in ppm from TMS, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $30^{\circ} \mathrm{C}$; coupling constants in Hz ; ring carbon labelling: $\mathrm{Pd}-\left(\begin{array}{cc}\mathrm{N} \\ 2 & 5 \\ 4 \\ 5\end{array}\right)$, $\mathrm{Pd}-\left(\begin{array}{cc}3 \\ 2^{3} & 5 \\ \mathrm{~N}^{2}\end{array}\right) \quad{ }^{n}$ Obtained from treatment of the corresponding N -protonated derivative with aqueous $\mathrm{KOH} .{ }^{c} J(\mathrm{P}-\mathrm{C})=\left.\right|^{1} J(\mathrm{P}-\mathrm{C})+{ }^{3} J\left(\mathrm{P}^{\prime}-\mathrm{C}\right) \mid$. ${ }^{d}$ The two signals coalesce into a broad singlet at 154.2 ppm upon addition of a minute amount of HCl .
${ }^{3} J\left(\mathbf{H}^{1}-\mathbf{H}^{6}\right)$ coupling is clearly observed (spectrum (b) of Fig. 3), along with the $\mathrm{N}-\mathrm{H}$ resonance at 13.5 ppm .

At $30^{\circ} \mathrm{C}$ some N^{4}-protonated groups may be present, but the $\mathrm{N}^{1}-\mathrm{H}$ species is still predominant, as can be inferred from the small effect of temperature on the $\mathrm{H}^{3}, \mathrm{H}^{5}$, H^{6} chemical shifts and from the enhanced basicity of the N^{1} nitrogen atom in $\mathrm{Pd}-\mathrm{C}^{2}$ bonded heterocycles. The 2-pyridyl complex trans- $\left[\mathrm{PdBr}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}^{2}\right)\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]$ is actually a stronger base ($\mathrm{p} K_{\mathrm{a}} 8.04$) than its 3-pyridyl analogue trans$\left[\operatorname{PdBr}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}^{3}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\left(\mathrm{p} K_{\mathrm{a}} 5.47\right)$ [5].

As can be seen in Table 2, the protonation of 2-pym and 2-pyz groups of VIIa and VIIb, respectively, brings about a down-field shift for the pyrimidyl $\mathrm{H}^{4}, \mathrm{H}^{5}$ protons and for the pyrazyl $\mathrm{H}^{3}, \mathrm{H}^{5}$ protons, and an up-field shift for the H^{6} proton of both ligands. Furthermore, the equivalence of the two ${ }^{31} \mathrm{P}$ phosphine nuclei and the occurrence of two $\mathrm{P}-\mathrm{Me}$ triplets ($1 / 1$ integration ratio) for the 2-pymH complex $\mathrm{Va}\left(\right.$ at $-60^{\circ} \mathrm{C}$) and for the $2-\mathrm{pyzH}$ complex Vb (in the temperature range -60 to $30^{\circ} \mathrm{C}$) indicate a molecular structure in which the asymmetric N^{1}-protonated ligands are perpendicular to the palladium coordination plane, with restricted rotation about the metal-carbon bond. In contrast the 2-pyz group appears to be freely rotating in VIIb, since its NMR spectra are characterized by a $\delta\left({ }^{31} \mathrm{P}\right)$ singlet at -6.7 ppm and by only one $\delta(\mathrm{H}) 1 / 2 / 1 \mathrm{P}$-Me triplet at 1.63 ppm .

${ }^{13} \mathrm{C}$ NMR spectra

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of PEt_{3} derivatives are listed in Table 3. The assignment of the heterocycle ring carbons is based on coupling constant and chemical shift considerations, in comparison with the literature data for 2 -substituted pyrimidines [11] and pyrazines [12], for monoprotonated or monomethylated nitrogen heteroaromatic compounds [13], and for the 2-pyridyl complexes trans-$\left[\mathrm{MX}(2-\mathrm{py})\left(\mathrm{PEt}_{3}\right)_{2}\right]$ and trans-[MX (2-pyH) $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ $[1,5]$. The lower field resonance is attributed to the palladium bonded C^{2} carbon. For complexes VI, this is supported by the $1 / 2 / 1$ triplet pattern of the signal, which
is due to coupling with the equivalent ${ }^{31} \mathrm{P}$ nuclei of the trans PEt_{3} ligands. Because of its reduced intensity, no ${ }^{31} \mathrm{P}$ coupling is observed for the deprotonated derivatives VIII. In accordance with the good donor properties of the trans $-\mathrm{PdBr}\left(\mathrm{PEt}_{3}\right)_{2}$ group. which induces a higher electron density on the para (C^{5}) carbon of the 2-pyridyl ligand [5], the higher field resonance of VIIIa (115.1 ppm) and of VIIIb (137.8 ppm) is assigned to the C^{5} atom of 2 -pym and 2-pyz ligands, respectively. In 2-substituted pyrimidines and pyrazines, the C^{5} carbon is increasingly shielded with increasing electron-donating abilities of the substituent [11,12]. On the other hand, the signal at 145.7 ppm of Villb can reasonably be assigned to the 2-pyrazyl C^{6} carbon, as it is the least affected by the substituent properties [12] (cf. the pyrazine ${ }^{13} \mathrm{C}$ resonance at $145.04 \mathrm{ppm}[12 \mathrm{~b}]$). In contrast to its ${ }^{1} \mathrm{H}$ NMR spectrum at $30^{\circ} \mathrm{C}$ and to the ${ }^{13} \mathrm{C}$ NMR spectra of monoprotonated pyrimidinium cations [13], the ${ }^{13} \mathrm{C}$ NMR spectrum of the 2-pymH complex VIa in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ is not time-averaged by the proton exchange between the equivalent N^{1} and $\mathrm{N}^{3^{2}}$ nitrogen atoms in the equilibrium 6 . The C^{4} and C^{6} resonances are in fact detected as two well-separated singlets at 160.8 and 147.5 ppm , respectively, and coalesce to a broad signal at 154.2 ppm only on addition of a minute amount of HCl . By taking into account the frequency separation between $\delta\left(\mathrm{C}^{4}\right)$ and $\delta\left(\mathrm{C}^{6}\right)(266 \mathrm{~Hz})$ and that between $\delta\left(\mathrm{H}^{4}\right)$ and $\delta\left(\mathrm{H}^{6}\right)$ under conditions of slow exchange $\left(21.5 \mathrm{~Hz}\right.$, at $-60^{\circ} \mathrm{C}$), the life-time (τ) for the N-protonated 2-pymH group in VIa at $30^{\circ} \mathrm{C}$ can be estimated approximately in the range: $6 \times 10^{-4}<\tau<7 \times 10^{-3} \mathrm{scc}$. The cffects of protonation on the ${ }^{1.3} \mathrm{C}$ chemical shifts of the 2-pyz ligand in VIIIb are quite similar to those observed for the 2-pyridyl ligand in trans-[MX (2-py) $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right][1]$, suggesting that the 2-pyz group is essentially still N^{\prime}-protonated at $30^{\circ} \mathrm{C}$, in agreement with the ${ }^{\prime} \mathrm{H}$ NMR data.

Another interesting feature of the ${ }^{13} \mathrm{C}$ NMR spectra is the deshielding of the palladium bound C^{2} carbon upon protonation of both $2-\mathrm{pym}$ and 2 -pyz moieties, which parallels the down-field shift of $\delta\left(\mathrm{C}^{2}\right)$ in trans-[MX $\left.(2-\mathrm{pyH})\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{ClO}_{4}[1]$. but is in contrast to the shielding of the α carbons (C^{2} and C^{6}) of monoprotonated or monomethylated nitrogen heteroaromatics [13].

By using the same arguments as for N -protonated 2-pyridyl complexes [1], the C^{2} deshielding can be explained by an increased $\mathrm{Pd}-\mathrm{C}^{2}$ bond order, or, in terms of valence bond theory, by a significant contribution of the carbene-like limiting structure \mathbf{C} to the electronic configuration of the protonated ligands:

Consistently, the restricted rotation of $2-\mathrm{pymH}$ and $2-\mathrm{pyzH}$ groups in the $\mathrm{PMe}_{2} \mathrm{Ph}$ derivatives V is better rationalized in terms of an electronic effect than by an unusual increase in steric bulk of the 2-pym and 2-pyz ligands upon protonation.

Experimental

The complex $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ was prepared by a published method [14]. All other chemicals were reagent grade and used without further purification. Infrared spectra were recorded with a Perkin-Elmer 983 instrument, using Nujol mulls and CsI plates in the range $4000-200 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra
were recorded with a Varian FT80A spectrometer operating at 79.542, 32.203 and 20.000 MHz , respectively, at $30^{\circ} \mathrm{C}$. The molecular weights were determined in 1,2 -dichloroethane at $37^{\circ} \mathrm{C}$ with a Knauer osmometer. Conductivity measurements were carried out with a Philips PR 9500 bridge.

All reactions were carried out at room temperature, unless otherwise stated. When required, an inert atmosphere $\left(\mathrm{N}_{2}\right)$ was used. The solvents were evaporated to small volume or to dryness at reduced pressure in a rotary evaporator.

Preparation of $\left[\mathrm{PdCl}(\mu-2-\mathrm{pym})\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathrm{IIa})$ and $\left[\mathrm{PdCl}(\mu-2-\mathrm{pyz})\left(\mathrm{PPh}_{3}\right)\right]_{2}$ (IIb)
A suspension of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](4.62 \mathrm{~g}, 4 \mathrm{mmol})$ in benzene $(\mathrm{ca} .200 \mathrm{ml})$ was treated with 2-chloropyrimidine or 2-chloropyrazine ($0.69 \mathrm{~g}, 6 \mathrm{mmol}$) under N_{2}. The mixture was heated to reflux for $6-8 \mathrm{~h}$. The solid $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ quickly dissolved and a yellow product began to precipitate within 1 h . Concentration to small volume and dilution with $\mathrm{Et}_{2} \mathrm{O}$ gave a mixture of Ia and IIa (1.85 g) or Ib and $\mathrm{IIb}(2.36 \mathrm{~g})$ in a molar ratio I / II of ca. $1 / 4$, as shown by ${ }^{31} \mathrm{P}$ NMR spectroscopy in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\delta\left({ }^{31} \mathrm{P}\right)\right.$ as a singlet at 23.5 and 22.7 ppm for Ia and Ib , respectively). The mixture was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 250 ml), an excess of $\mathrm{H}_{2} \mathrm{O}_{2}$ (3 ml of a 30% aqueous solution) was added and the mixture was stirred for $3-4 \mathrm{~h}$. The resulting yellow solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to small volume. Addition of $\mathrm{Et}_{2} \mathrm{O}$ gave the crude product II as a yellow precipitate, which was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 200 $\mathrm{ml})$ and treated with charcoal. After filtration, MeOH (ca. 50 ml) was added to the clear solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated off until a precipitate appeared. Precipitation was completed by dropwise addition of $\mathrm{Et}_{2} \mathrm{O}$. (Yields, based on the initial amount of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$: IIa, $1.78 \mathrm{~g}, 92.1 \%$; IIb, $1.66 \mathrm{~g}, 85.9 \%$. Mol. weight found, 980 for IIa, 1020 for IIb; calcd. 966.4).

Preparation of cis-[PdCl $\left.2_{2}(2-p y m H)\left(\mathrm{PPh}_{3}\right)\right]$ (IIIa) and cis-[PdCl $2(2-\mathrm{pyzH})\left(\mathrm{PPh}_{3}\right]$. ${ }_{3}^{\frac{1}{3} \mathrm{CH}_{2} \mathrm{Cl}_{2} \text { (IIIb) }}$

A solution of II ($0.97 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 150 ml) was treated with HCl $(6.3 \mathrm{ml}$ of a 0.35 M methanolic solution, molar ratio $\mathrm{Pd} / \mathrm{HCl} 1 / 1.1)$. Some pale-yellow product III began to precipitate after $10-15 \mathrm{~min}$. The mixture was set aside overnight, the solvent was then partially evaporated, and the precipitation was completed by adding $\mathrm{Et}_{2} \mathrm{O}$. (Yields, based on the theoretical amount: IIIa, 0.98 g , 93.9%; IIIb, $1.03 \mathrm{~g}, 93.6 \%$)

Preparation of trans-[PdCl(2-pymH $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ (IVa) and trans-[PdCl(2$\mathrm{pyzH}^{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{JClO}_{4}(\mathrm{IVb})$

A suspension of III (2 mmol) suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was treated with $\mathrm{PPh}_{3}(0.525 \mathrm{~g}, 2 \mathrm{mmol})$ with stirring. When dissolution was complete (ca. 30 min), a solution of $\mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.56 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was added. After 10 min stirring the mixture was evaporated to dryness and the solid residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ and charcoal. After filtration of the extract and concentration, the white product was precipitated by dropwise addition of $\mathrm{Et}_{2} \mathrm{O}$ (Yield: IVa, 1.63 g , 96.3%; IVb, $1.62 \mathrm{~g}, 95.7 \%$).

Preparation of trans-[PdCl(2-pymH $)\left(L_{2}\right)_{2} \mathrm{ClO}_{4}\left(\mathrm{~L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{Va} ; \mathrm{PEt}_{3}, \mathrm{VIa}\right)$ and trans- $\left[\mathrm{PdCl}(2-\mathrm{pyz} \mathrm{H})\left(\mathrm{L}_{2} \mathrm{JClO}_{4}\left(\mathrm{~L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{Vb} ; \mathrm{PEt}_{3}, \mathrm{VIb}\right)\right.\right.$
(a) A solution of IVa ($0.85 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was treated with
$\mathrm{PMe}_{2} \mathrm{Ph}(0.28 \mathrm{~g}, 2 \mathrm{mmol})$ under N_{2}. After 1 h stirring the solution was concentrated to small volume and the white product Va was precipitated by dilution with $\mathrm{Et}_{2} \mathrm{O}$. It was purified by reprecipitation from the same solvents ($0.4 \mathrm{~g}, 66.6 \%$).
(b) A suspension of IVa ($2.11 \mathrm{~g}, 2.5 \mathrm{mmol}$) in a solution of $\mathrm{PEt}_{3}(0.65 \mathrm{~g}, 5.5$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ under N_{2} was stirred overnight. The white product VIa was filtered off and purified by two successive precipitations from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(0.88$ g. 63.3%).
(c) A suspension of $\operatorname{IVb}(0.85 \mathrm{~g}, 1 \mathrm{mmol})$ in a solution of $\mathrm{PMe} 2_{2} \mathrm{Ph}(0.28 \mathrm{~g}, 2$ mmol) in $\mathrm{Et}_{2} \mathrm{O}$ (ca. 80 ml) under N_{2} was stirred overnight. The white product Vb was purified as described above for VIa ($0.50 \mathrm{~g}, 83.2 \%$).
(d) A suspension of $\mathrm{IVb}(0.85 \mathrm{~g}, 1 \mathrm{mmol})$ in a solution of PF.t ${ }_{3}(0.25 \mathrm{~g}, 2.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (ca. 80 ml) under N_{2} was stirred overnight. The white product VIb was purified as described above for VIa ($0.47 \mathrm{~g}, 83.9 \%$).

Acknowledgements

Financial support from the Ministerio della Publica Istruzione (Research Fund 60%) is gratefully acknowledged.

References

1 B. Crociani, F. DiBianca, A. Giovenco and A. Scrivanti, J. Organomet, Chem.. 251 (1983) 393.
2 B. Crociani, F. DiBianca, R. Bertani and C. Bisi Castellani, Inorg. Chim, Acta, in press.
3 R. Bertani. F. DiBianca, A. Giovenco and B. Crociani, in preparation.
4 K. Nakatsu, K. Kinoshita, H. Kanda, K. Isobe, Y. Nakamura and S. Kawaguchi, Chem. Lett., (1980) 913.

5 K. Isobe and S. Kawaguchi, Heterocycles, 16 (1981) 1603.
6 B. Crociani, F. DiBianca and A. Mantovani, Inorg. Chim. Acta, 73 (1983) 189
7 Handbook of Tables for Organic Compound Identification, 3rd ed., The Chemical Rubber Co.. Cleveland, Ohio, 1967 p. 436-A37.
8 R.H. Cox and A.A. Bothner-By, J. Phys. Chem., 72 (1968) 1646.
9 V.M.S. Gil and A.J.L. Pinto, Mol. Phys., 19 (1970) 573.
10 D.J. Elias, A.G. Moritz and D.B. Paul, Aust. J. Chem., 25 (1972) 427.
11 (a) J. Riand, M.T. Chenon and N. Lumbroso-Bader, Tetrahedron Lett., (1974) 3123; (b) J.P. Geerts, H.C. van der Plas and A. van Veldhuizen, Org. Magn. Reson., 7 (1975) 86; (c) C.J. Turner and G.W.H. Cheeseman, Org. Magn. Reson., 8 (1976) 357.

12 (a) C.J. Turner and G.W.H. Cheeseman, Org. Magn. Reson, 6 (1974) 663; (b) T. Tsujimoto. T. Nomura, M. Iifuru and Y. Sasaki, Chem. Pharm. Bull., 27 (1979) 1169; (c) T. Tsujimoto, C. Kobayashi, T. Nomura, M. Iifuru and Y. Sasaki, Chem. Pharm. Bull., 27 (1979) 2105.
13 (a) R.J. Pugmire and D.M. Grant, J. Am. Chem. Soc., 90 (1968) 697: (b) E. Breitmaier and K.H. Spohn, Tetrahedron, 29 (1973) 1145; (c) P. van de Weijer and C. Mohan, Org. Magn. Reson., 9 (1977) 53; (d) J. Riand, M.T. Chenon and N. Lumbroso-Bader, J. Amer. Chem. Soc., 99 (1977) 6838.
14 D.R. Coulson, Inorg. Synt., 13 (1972) 121.

[^0]: ($\mathrm{X}=\mathrm{N}: \mathrm{Y}=\mathrm{CH}: 2-\mathrm{pyrimidyl}(2-\mathrm{pym})$ complexes Ia, IIa;
 $X=C H ; Y=N: 2-p y r a z y l(2-p y z)$ complexes Ib, IID)

