Journal of Organometallic Chemistry, 291 (1985) 259–272 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PREPARATION AND PROTONATION OF 2-PYRIMIDYL- AND 2-PYRAZYLPALLADIUM(II) COMPLEXES

BRUNO CROCIANI*, FRANCESCA DIBIANCA, AMALIA GIOVENCO

Istituto di Chimica Generale, University of Palermo (Italy)

and ALBERTO SCRIVANTI

Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione, C.N.R., Padova (Italy) (Received February 11th, 1985)

Summary

The oxidative addition of 2-chloropyrimidine or 2-chloropyrazine to $[Pd(PPh_3)_4]$ yields a mixture of *trans*- $[PdCl(C_4H_3N_2-C^2)(PPh_3)_2]$ (I) and $[PdCl(\mu-C_4H_3N_2-C^2, N^1)(PPh_3)]_2$ (II) $(C_4H_3N_2 = 2$ -pyrimidyl or 2-pyrazyl group). The mononuclear complexes I are quantitatively converted into the binuclear species II upon treatment with H_2O_2 . The reaction of II with HCl gives the N-monoprotonated derivatives *cis*- $[PdCl_2(C_4H_4N_2-C^2)(PPh_3)]$ (III), from which the cationic complexes *trans*- $[PdCl(C_4H_4N_2-C^2)(L)_2]ClO_4$ (L = PPh_3, IV; PMe_2Ph, V; PEt_3, VI) can be prepared by ligand substitution reactions. Reversible proton dissociation occurs in solution for III-VI. The low-temperature ¹H NMR spectra of *trans*- $[PdCl(C_4H_4N_2-C^2)(PMe_2Ph)_2]ClO_4$ show that the heterocyclic moiety undergoes restricted rotation around the Pd-C² bond and that the 2-pyrazyl group is protonated predominantly at the N¹ atom. These results and the ¹³C NMR data for the PEt_3 derivatives are interpreted on the basis of a significant $d_{\pi} \rightarrow \pi^*$ back-bonding contribution to the palladium-carbon bond of the protonated ligands.

Introduction

We previously described the protonation and methylation of some 2-pyridyl-palladium(II) and -platinum(II) compounds by strong mineral acids and dimethylsulfate, respectively [1]. The electrophilic attack occurs only at the nitrogen atom of the σ -bonded heterocyclic group, without cleavage of the metal-carbon bond. The multinuclear NMR spectra of the resulting products suggest a relevant contribution of the carbene-like structure A to the electronic configuration of this new type of ligand:

The complex cis-[PdCl₂(2-pyH)(PPh₃)] (2-pyH = N-protonated 2-pyridyl) also proved to be a convenient starting material for the preparation of derivatives **B** containing an imino(2-pyridyl)methyl group, according to the following reaction sequence [2]:

As an extension of our studies on C-palladated nitrogen ligands, we report here the preparation of 2-pyrimidyl- and 2-pyrazyl-palladium(II) complexes and their protonation. The new compounds have been characterized mainly by multinuclear NMR spectroscopy in order to elucidate the nature of the palladium-carbon bond and to ascertain the site of proton attack.

Results and discussion

Preparation and protonation reactions

The oxidative addition of 2-chloropyrimidine or 2-chloropyrazine to $[Pd(PPh_3)_4]$ yields a mixture of products I and II (eq. 1 and Fig. 1), in which the binuclear complex II predominates (molar ratio $I/II \sim 1/4$):

(X = N; Y = CH; 2-pyrimidyi (2-pyr) complexes Ia, IIa; X = CH; Y = N: 2-pyrazyi (2-pyz) complexes Ib, IIb)

Fig. 1. ³¹P NMR spectrum in CD_2Cl_2 of the mixture of products Ib and IIb obtained from the oxidative addition of 2-chloropyrazine to $[Pd(PPh_3)_4]$ (a); after addition of an excess of PPh₃ (b).

The mononuclear compound I is quantitatively converted into II upon treatment of the mixture with H_2O_2 . This behaviour can be related to the existence of equilibrium 2, which shifts completely to the right when the free phosphine is oxidized by H_2O_2 , whereas it moves in favour of I when an excess of PPh₃ is added (Fig. 1).

$$2 I \rightleftharpoons II + 2 PPh_3 \tag{2}$$

Compound	Analyse	s(Found	(calcd.)	(<u>%</u>))	Molar	IR (cm ⁻¹)				-
	0	Ξ	z	U	Conductivity ^{<i>a</i>} (ohm $^{-1}$ cm ² mol ⁻¹)	μ(N-H)	<i>p</i> (Cl-O)	δ(C1-O)	p(Pd-P)	r(Pd-Cl)
[PdCl(<i>µ</i> -2-pym)(PPh ₃)] ₂	54.9	3.7	5.8	7.5			NY D INTER 200 (NY) I I I I I I I I I I I I I I I I I I I			328m:
(IIa)	(54.68)	(3.75)	(5.80)	(7.34)						314m
$[PdCl(\mu-2-pyz)(PPh_3)]_2$	54.3	3.8	5.7	7.4						334m
(IIb)	(54.68)	(3.75)	(5.80)	(7.34)						311m
[PdCl ₂ (2-pymH)(PPh ₃)]	50.6	3.6	5.4	13.8	24.3 h	3180ms;3145w				312ms:
(IIIa)	(50.84)	(3.68)	(5.39)	(13.64)						292ms
[PdCl ₂ (2-pyzH)(PPh ₃)]1/3CH ₂ Cl ₂	48.7	3.6	5.1	17.4	23.1 ^b	3155ms:3125ms				314ms:
(IIIb)	(48.95)	(3.62)	(5.11)	(17.25)						282ms
trans-[PdCl(2-pymH)(PPh ₃) ₂]ClO ₄	56.8	4.0	3.3	8.5	90.3	3190w:3160w	1135s;1110s	627s:		323m
(IVa)	(56.79)	(4.05)	(3.31)	(8.38)			1050s	619s		
trans-[PdCl(2-pyzH)(PPh ₃) ₂]ClO ₄	56.4	4.1	3.3	8.4	108.0	3190sh;3175w;	1120sh;1095vs;	625s:		325m
(IVb)	(56.79)	(4.05)	(3.31)	(8.38)		3140w	1050s	620sh		
trans-[PdCl(2-pymH)(PMe ₂ Ph) ₂)ClO ₄	40.3	4.4	4.6	12.0	92.7	3210sh:	1130sh;1110vs;	630s;	424m	318m:
(Va)	(40.19)	(4.38)	(4.69)	(11.86)		3200m.br;3160w	1050s	620s		300mw
trans-[PdCl(2-pyzH)(PMe ₂ Ph) ₂]ClO ₄	39.9	4.4	4.6	11.7	94.1	3205m.br;	1025sh;1112vs;	626s;	427m	319m
(Vb)	(40.19)	(4.38)	(4.69)	(11.86)		3180mw;3145mw	1060s	620sh		
trans-[PdCl(2-pymH)(PEt ₃) ₂]ClO ₄	34.3	6.2	5.0	12.8	94.5	3250sh;	1110vs;1050s	625s;	416w'	325m:
(Vla)	(34.46)	(6.14)	(5.02)	(12.71)		3200m.br:3160m		620s		315w
trans-[PdCl(2-pyzH)(PEt ₃) ₂]ClO ₄	34.6	6.1	5.0	12.6	97.2	3195m;3175m;	1130sh;1110vs;	627s '	418w °	328m:
(VIb)	(34.46)	(6.14)	(5.02)	(12.71)		3135m	1060s	620sh		315w

I entative assignment. j 3 solution at Demu Z. 2 LO1 3 2 = 5 FOT 10

262

ANALYTICAL AND PHYSICAL DATA

TABLE 1

The complexes I cannot be isolated as pure samples from reaction 2 even in the presence of a large excess of triphenylphosphine. They are more conveniently prepared by a different route based on deprotonation of derivatives of type IV, as will be described in a forthcoming paper [3].

The dimeric nature of II is confirmed by molecular weight measurements (see Experimental). Their spectral data (Tables 1 and 2) suggest a non-planar structure with bridging C^2 , N¹ heterocyclic ligands and with a *trans*-N-Pd-PPh₃ arrangement, analogous to that reported for the 2-pyridyl complexes $[PdX(\mu-C_5H_4N-C^2, N)(PPh_3)]_2$ (X = Cl, Br) [4,5]. The observed Pd-Cl stretching frequencies (328 and 314 cm⁻¹ for IIa; 334 and 311 cm⁻¹ for IIb) and ³¹P NMR signals (a singlet at 28.4 and 29.9 ppm in CD₂Cl₂ for IIa and IIb, respectively) are quite close to the corresponding values for $[PdCl(\mu-C_5H_4N-C^2, N)(PPh_3)]_2$ (ν (Pd-Cl) 325 and 311 cm⁻¹; δ (³¹P) singlet at 29.7 ppm in CD₂Cl₂).

In particular, the multiplicity of the H⁶ proton resonance in both IIa and IIb can be rationalized by taking into account an additional coupling with the ³¹P nucleus of PPh₃ trans to the N¹-bonded heterocycle. An approximate first-order analysis, depicted in Fig. 2, gives ${}^{4}J(P-H^{6})$ values of 3.0 Hz for IIa and of 3.2 Hz for IIb, which are comparable with those observed for the methyl proton signals of complexes containing trans-(Me)N-Pd-PPh₃ geometries (2-3 Hz) [6].

The complexes II react readily with a methanolic solution of HCl to yield the *cis*-N-protonated derivatives III (Scheme 1), characterized by two ν (Pd–Cl) bands in the range 334–311 cm⁻¹ and by N–H stretching frequencies in the range 3180–3125 cm⁻¹. (*continued on p. 266*)

SCHEME 1. X = N; Y = CH: 2-pyrimidyl (2-pym) and N-protonated 2-pyrimidyl (2-pymH) complexes IIIa-VIIIa; X = CH; Y = N: 2-pyrazyl (2-pyz) and N-protonated 2-pyrazyl (2-pyzH) complexes IIIb-VIIIb.

Compound	Heterocy	yclic ring protons	<i>h</i>			Phosphine pr	otons			s	olvent
	H ¹	H ³	H ⁴	H ⁵	H ⁶	P-C ₆ H ₅	P-CH ₃	P-CH ₂	$P-CH_2-CH_3$	δ(³¹ P)	
lla			m ^c	6.49 T J(H ⁴ -H ⁵) 5.5	8.46 D _T J(H ⁵ -H ⁶) 5.5 J(H ⁴ -H ⁶) 2.5	8.0-7.0 M				28.4 S C	D2Cl2
qII		° E		Ĕ	$J(P-H^{6})$ 3.0 8.34 D _T $J(H^{5}-H^{6})$ 3.2 $J(H^{3}-H^{6})$ 1.4	8.0-7.0 M				29.9 S C	D ₂ Cl ₂
IIIa	n.o.		8.43 D J/H ⁴ _H ⁵) 5 5	7.18 T	J(F-N) 3.2 8.43 D J(H ⁵ -H ⁶) 5 5	7.9-7.3 M				24.1 S D	9 <i>P</i> -OSW
qIII	n.o.	8.91 D J(H ³ -H ⁵) 1.3		8.27 D	8.10 D _D J(H ⁵ -H ⁶) 3.2	7.8-7.2 M				25.8 S D	%p-OSW
IVa	n.o.		7.95 D J(H ⁴ -H ⁵) 5.3	6.63 T	7.95 D 7.95 D	7.6-6.9 M				20.9 S C	DCI 3
IVb	n.o.	8.85 D 111 H 3 H 5 1 1		7.91 D ИН ⁵ Н ⁶ /35	B	7.8-7.1 M				22.3 S C	DCI 3
Va	п.о.		8.4-8.0 br	$J(H^{5} - H^{5}) = 53$	8.0–7.6 br	7.4-7.0 M	1.85 Т J(Р–Н) 7.9 ^d			-3.9 S C	DCI ₃
	n.o. ^و		8.18 D " //H ⁴ -H ⁵) 5 5	6.74 T e	8.18 D " //H ⁵ _H ⁶ 155					0	DCI,
	13.1 br [/]		$S.40 D_D / J(H^4 - H^5) \sim 5.$ $J(H^4 - H^6) \sim 1.2$	6.76 T / .5 5	$J(H^5 - H^6) \sim 5.5$	7.5-7.0 M ^f	1.76 /. <i>s</i> 1.72 /. <i>s</i>			0	D ₂ Cl ₂

.

TABLE 2 ¹H AND ³¹P NMR DATA "

264

VIIa "			8.05 D	6.43 T	8.05 D	7.6-7.0 M	1.55 T		- 7.5	s cdcl,
			J(H ⁴ -H ⁵) 4.9		J(H ⁵ -H ⁶) 4.9		J(P-H) 6.8 ^d			1
٧b	n.o.	8.70 D		8.02 D	7.62 D _D	7.4-7.1 M	1.93 ^g			CD,CI,
		$J(H^{3}-H^{6})$ 1.4			J(H ⁵ -H ⁶) 3.4		1.89 ^g			1
	13.5 br [/]	8.66 S,br ^f		7.98 D [/]	7.45 D _D ^f		1.82 T /		- 2.1	s /cd,cl,
		$J(H_3 - H_{\varphi}) < ($	0.7		J(H ⁵ -H ⁶) 3.1		$1.77 T^{f}$			r
					J(H ¹ -H ⁶) 5.3		$J(P-H) \sim 7$			
VIIb ⁴		8.02 D		7.75 D	8.06 D _D	7.5-7.0 M	1.63 T		- 6.7	s cdcl,
		J(H ³ -H ⁶) 1.5			$J({\rm H}^{5}-{\rm H}^{6})$ 2.9		$J(P-H) 7.0^{d}$)
VIa	n.o.		8.95 D	7.41 T	8.95 D			1.9-1.3 M 1.09 (17.9	s cdcl,
			J(H ⁴ -H ⁵) 5.0		$J(H^{5}-H^{6}) 5.0$					
	13.7 br [/]		9.02 D _D /	7.44 T /	8.75 D _T ⁷					CD,CI,
			$J(H^{4}-H^{5}) 5.0$	$J(H^{5}-H^{6}) \sim 5.3$	$J(\mathrm{H}^{1}-\mathrm{H}^{6})\sim 5.$	5				a r
			J(H ⁴ -H ⁶) 2.1							
VIIIa "			8.60 D	7.00 T	8.60 D			1.8-1.3 M 1.08 (15.5	s cdcl,
			J(H ⁴ -H ⁵) 5.0		$J(H^{5}-H^{6}) 5.0$					2
VIb	n.o.	9.29 D		8.66 D	8.77 D _D			2.1-1.5 M 1.14 C	19.6	s CDCI,
		J(H ³ -H ⁶) 1.1			J(H ⁵ -H ⁶) 3.5					ì

^{*a*} ¹H chemical shifts (δ) in ppm from TMS at 30°C; ³¹P chemical shifts (δ) in ppm from external 85% H₃PO₄ (down-field shifts taken as positive); coupling constants in Hz; S, singlet; D, doublet; T, triplet, Q, quintet; D_D, doublet of doublets; D_T, doublet of triplets; M, multiplet; br, broad; n.o., not observed; satisfactory integration

values have been obtained. ^b Heterocyclic protons labelling: $Pd \longrightarrow M^5$ and $Pd \longrightarrow M^5$

 $Pd \leftarrow \bigcirc H^5$ ^c Masked by the intense phenyl proton resonances.

 $^{d}J(P-H) = [^{2}J(P-H)] + ^{4}J(P'-H)]$, " In the presence of trace amount of HCl.¹ Spectrum recorded at $-60^{\circ}C$." Poorly resolved overlapping triplets. ^h Obtained from treatment of the corresponding N-protonated derivative with aqueous KOH.

Έı

°, L

-T

Fig. 2. Signal of the H^6 proton of the complex IIa (a), and of the complex IIb (b), in CD₂Cl₂.

As in the case of $[PdCl(\mu-2-py)(PPh_3)]_2$ [1], the reaction of II with HCl involves breaking of the Pd-N bond and monoprotonation of the heterocyclic ligand (even with an excess of HCl), without cleavage of the Pd-C² σ bond.

The compound IIIb crystallizes with 1/3 of a CH_2Cl_2 molecule, as shown by elemental analysis and by GLC measurements of a saturated solution in dimethylsulfoxide. Both products III are not sufficiently soluble in chlorinated solvents for molecular weight determinations. In CH_2Cl_2 suspension, however, they react smoothly with PPh₃ yielding the cationic complexes IV, isolated as perchlorate salts, from which the PMe₂Ph and PEt₃ analogues V and VI are easily obtained by ligand substituion reactions. The 2-pymH and 2-pyzH groups must be rather strongly bound to the palladium center since they are retained in all the reaction products IV–VI of Scheme I. Further evidence for the formulation of V and VI comes from the easy deprotonation to the corresponding neutral derivatives VII and VIII, characterized in solution by multinuclear NMR spectroscopy (Tables 2 and 3).

The cationic complexes IV-VI are uni-univalent electrolytes in MeOH solution and have a *trans*-P-Pd-P geometry, as shown by the presence of only one singlet in the ³¹P spectrum of each compound and also by the presence of only one ν (Pd-P) vibration in the range 427-424 cm⁻¹ for the PMe₂Ph derivatives V. The splitting into two or three bands of the typical ν (N-H), ν (Cl-O) and δ (Cl-O), and the presence in some cases (complexes Va, VIa, VIb) of a second weaker ν (Pd-Cl) absorption at lower frequency indicate that the 2-pymH and 2-pyzH compounds are largely associated in the solid state through hydrogen bonding beween the N-H group and the perchlorate anion and/or the chloride ligand.

¹H NMR spectra of the protonated complexes

The ¹H NMR spectra (Table 2) can be interpreted on the basis of proton dissociation in solution (eq. 6):

At room temperature the proton exchange is fast, and brings about the disappearance of both the H¹ signal and the ${}^{3}J(H^{1}-H^{6})$ coupling for the H⁶ proton. For complexes III in DMSO- d_{6} , the fast reversible process 6 is followed by a second, slow reversible process involving the formation of a small but detectable amount of the parent dimer II:

For a saturated solution of IIIb at 30°C, a molar ratio IIIb/IIb of ca. 20/1 was estimated from integration of the corresponding ³¹P signals. Addition of a slight excess of HCl shifted the equilibria 7 to the left with complete disappearance of the characteristic ¹H and ³¹P signals of II.

A comparison with the ¹H NMR spectrum of the *N*-protonated 2-pyridyl complex *cis*-[PdCl₂(2-pyH)(PPh₃)], which was recorded under comparable experimental conditions [1], shows that the 2-pymH and 2-pyzH analogues behave as stronger acids, in line with the pK_a values of pyridinium (5.25), pyrimidinium (1.31) and pyridazinium (0.65) cations in aqueous solution [7].

This is further supported by the increase in molar conductivity values of the *cis* neutral complexes in dimethylsulfoxide at 25°C on going from *cis*-[PdCl₂(2-pyH)(PPh₃)], 6.3 ohm⁻¹ cm² mol⁻¹, to *cis*-[PdCl₂(2-pyzH)(PPh₃)], 23.1, and to *cis*-[PdCl₂(2-pymH)(PPh₃)], 24.3.

The heterocyclic ring protons of the 2-pym derivatives VIIa and VIIIa give rise to first-order AX₂ spectra. For the N-protonated 2-pymH species, time-averaged AX₂ spectra are also observed at 30°C due to the fast exchange of the proton between the N^1 and N^3 atoms in the equilibrium 6. Exceptionally, for complex Va, *trans*-[PdCl(2-pymH)(PMe, Ph),]ClO₄, this exchange is relatively slow, and the protons H^4 and H^6 appear as two broad unresolved resonances in the ranges 8.4–8.0 and 8.0-7.6 ppm, respectively. Addition of trace amount of HCl to the CDCl₃ solution increases the exchange rate (probably through formation of low-concentration N¹,N³-diprotonated species) and causes the coalescence of the H⁴ and H⁶ signals into a sharp doublet at 8.18 ppm. When a CD₂Cl₂ solution of Va is cooled to -60° C the exchange rate decreases markedly and the equilibrium 6 shifts almost completely to the left, so that the N-H resonance is now clearly detected at 13.1 ppm. In these conditions, the H⁴, H⁵ and H⁶ protons appear as an AMX system, with an additional coupling of H⁶ with the N-H proton. The low-temperature spectrum of VIa, trans-[PdCl(2-pymH)(PEt₃)₂]ClO₄, in CD₂Cl₂ is quite similar, except for a down-field shift of 0.6-1 ppm for the 2-pymH signals. Also in this case, the N-H proton resonates at a rather low field, 13.7 ppm, and H⁶ appears as a doublet of triplets because of the similarity of the values of ${}^{3}J(H^{5}-H^{6})$ and ${}^{3}J(\mathrm{H}^{1}-\mathrm{H}^{6})$ (spectrum (c) of Fig. 3).

The ring protons of the 2-pyz and 2-pyzH derivatives give rise to ABX spectra, which can reasonably be analyzed by first-order approximation because of the large $\Delta \nu/J$ ratio of the AB system (H⁵ and H⁶ protons). The assignment of H³, H⁵ and H⁶ resonances is based on the relative values of coupling constants, in accordance

Fig. 3. ¹H NMR spectrum in the range 8.7–7.4 ppm of the complex Vb in CD_2Cl_2 at 30°C (a) and at $-60^{\circ}C$ (b): ¹H NMR spectrum in the range 9.3–7.1 ppm of complex Vla in CD_2Cl_2 at $-60^{\circ}C$ (c).

with literature data on 2-substituted pyrazines and N-protonated or methylated pyrazinium cations [8–10]. Since in the 2-palladated species ${}^{4}J(H^{3}-H^{5})$ is very close to zero, and is never observed within the resolution limit of the instrument, $\delta(H^{6})$ is easily assigned to the resonance with a doublet of doublets pattern (see Table 2). The protonation of the 2-pyz group may occur at either the N¹ or the N⁴ nitrogen atom. The variable temperature spectra of Vb, *trans*-[PdCl(2-pyzH)(PMe_2Ph)_2]ClO₄, in CD₂Cl₂ show that equilibrium 6 shifts in favour of the N¹-protonated species on cooling. The H⁶ signal at 7.62 ppm broadens progressively, and at -60° C the

Compound	Heterocyclic r	ing carbons				Phosphine cart	oons
	C ²	C ³	C ⁴	C ⁵	C ⁶	$P-CH_2$	$P-CH_2-CH_3$
VIIIa ^{<i>b</i>}	189.8		154.2	115.1	154.2	14.4 J(P-C) 25.6 ^c	7.6
VIa	194.3 ² J(P-C) 8.2		160.8 ^d	116.1	147.5 ^d	14.5 J(P-C) 27.8 °	7.7
VIIIb *	177.2	152.3 ³ J(P-C) 12.3		137.8	145.7	14.3 J(P-C) 25.8 ^c	7.8
VIb	181.3 ² J(P-C) 17.2	159.5 ³ J(P-C) 4.8		142.0	139.6	14.9 J(P-C) 27.4 °	7.9

TABLE 3 ¹³C NMR SPECTRAL DATA FOR PEt₃ DERIVATIVES "

^a Chemical shifts (δ) in ppm from TMS, in CD₂Cl₂ at 30°C; coupling constants in Hz; ring carbon labelling: Pd $- \begin{pmatrix} N & 4 \\ 2 & 5 \end{pmatrix}$, Pd $- \begin{pmatrix} 2 & 5 \\ 2 & 5 \end{pmatrix}$ ^b Obtained from treatment of the corresponding N-proto-

nated derivative with aqueous KOH. $^{c} J(P-C) = |^{1}J(P-C) + {}^{3}J(P'-C)|$. ^d The two signals coalesce into a broad singlet at 154.2 ppm upon addition of a minute amount of HCl.

 ${}^{3}J(H^{1}-H^{6})$ coupling is clearly observed (spectrum (b) of Fig. 3), along with the N-H resonance at 13.5 ppm.

At 30°C some N⁴-protonated groups may be present, but the N¹-H species is still predominant, as can be inferred from the small effect of temperature on the H³, H⁵, H⁶ chemical shifts and from the enhanced basicity of the N¹ nitrogen atom in Pd-C² bonded heterocycles. The 2-pyridyl complex *trans*-[PdBr(C₅H₄N-C²)-(PEt₃)₂] is actually a stronger base (pK_a 8.04) than its 3-pyridyl analogue *trans*-[PdBr(C₅H₄N-C³)(PEt₃)₂] (pK_a 5.47) [5].

As can be seen in Table 2, the protonation of 2-pym and 2-pyz groups of VIIa and VIIb, respectively, brings about a down-field shift for the pyrimidyl H⁴, H⁵ protons and for the pyrazyl H³, H⁵ protons, and an up-field shift for the H⁶ proton of both ligands. Furthermore, the equivalence of the two ³¹P phosphine nuclei and the occurrence of two P-Me triplets (1/1 integration ratio) for the 2-pymH complex Va (at -60° C) and for the 2-pyzH complex Vb (in the temperature range -60 to 30° C) indicate a molecular structure in which the asymmetric N¹-protonated ligands are perpendicular to the palladium coordination plane, with restricted rotation about the metal-carbon bond. In contrast the 2-pyz group appears to be freely rotating in VIIb, since its NMR spectra are characterized by a $\delta(^{31}$ P) singlet at -6.7 ppm and by only one $\delta(H) 1/2/1$ P-Me triplet at 1.63 ppm.

¹³C NMR spectra

The ¹³C{¹H} NMR spectra of PEt₃ derivatives are listed in Table 3. The assignment of the heterocycle ring carbons is based on coupling constant and chemical shift considerations, in comparison with the literature data for 2-substituted pyrimidines [11] and pyrazines [12], for monoprotonated or monomethylated nitrogen heteroaromatic compounds [13], and for the 2-pyridyl complexes *trans*-[MX(2-py)(PEt₃)₂] and *trans*-[MX (2-pyH)(PEt₃)₂]ClO₄ (M = Pd, Pt; X = Cl, Br) [1,5]. The lower field resonance is attributed to the palladium bonded C² carbon. For complexes VI, this is supported by the 1/2/1 triplet pattern of the signal, which

is due to coupling with the equivalent ³¹P nuclei of the *trans* PEt₃ ligands. Because of its reduced intensity, no ³¹P coupling is observed for the deprotonated derivatives VIII. In accordance with the good donor properties of the *trans*-PdBr(PEt₃), group, which induces a higher electron density on the para (C^5) carbon of the 2-pyridyl ligand [5], the higher field resonance of VIIIa (115.1 ppm) and of VIIIb (137.8 ppm) is assigned to the C⁵ atom of 2-pym and 2-pyz ligands, respectively. In 2-substituted pyrimidines and pyrazines, the C⁵ carbon is increasingly shielded with increasing electron-donating abilities of the substituent [11,12]. On the other hand, the signal at 145.7 ppm of VIIIb can reasonably be assigned to the 2-pyrazyl C⁶ carbon, as it is the least affected by the substituent properties [12] (cf. the pyrazine ¹³C resonance at 145.04 ppm [12b]). In contrast to its ¹H NMR spectrum at 30°C and to the ¹³C NMR spectra of monoprotonated pyrimidinium cations [13], the ¹³C NMR spectrum of the 2-pymH complex VIa in CD₂Cl₂ is not time-averaged by the proton exchange between the equivalent N^1 and N^3 nitrogen atoms in the equilibrium 6. The C^4 and C^6 resonances are in fact detected as two well-separated singlets at 160.8 and 147.5 ppm, respectively, and coalesce to a broad signal at 154.2 ppm only on addition of a minute amount of HCl. By taking into account the frequency separation between $\delta(C^4)$ and $\delta(C^6)$ (266 Hz) and that between $\delta(H^4)$ and $\delta(H^6)$ under conditions of slow exchange (21.5 Hz, at -60° C), the life-time (τ) for the N-protonated 2-pymH group in VIa at 30°C can be estimated approximately in the range: $6 \times 10^{-4} < \tau < 7 \times 10^{-3}$ sec. The effects of protonation on the ¹³C chemical shifts of the 2-pyz ligand in VIIIb are quite similar to those observed for the 2-pyridyl ligand in *trans*-[MX $(2-py)(PEt_3)_2$] [1], suggesting that the 2-pyz group is essentially still N¹-protonated at 30°C, in agreement with the ¹H NMR data.

Another interesting feature of the ¹³C NMR spectra is the deshielding of the palladium bound C² carbon upon protonation of both 2-pym and 2-pyz moieties, which parallels the down-field shift of $\delta(C^2)$ in *trans*-[MX (2-pyH)(PEt_3)_2]ClO₄ [1], but is in contrast to the shielding of the α carbons (C² and C⁶) of monoprotonated or monomethylated nitrogen heteroaromatics [13].

By using the same arguments as for N-protonated 2-pyridyl complexes [1], the C^2 deshielding can be explained by an increased $Pd-C^2$ bond order, or , in terms of valence bond theory, by a significant contribution of the carbene-like limiting structure **C** to the electronic configuration of the protonated ligands:

Consistently, the restricted rotation of 2-pymH and 2-pyzH groups in the PMe_2Ph derivatives V is better rationalized in terms of an electronic effect than by an unusual increase in steric bulk of the 2-pym and 2-pyz ligands upon protonation.

Experimental

The complex $[Pd(PPh_3)_4]$ was prepared by a published method [14]. All other chemicals were reagent grade and used without further purification. Infrared spectra were recorded with a Perkin–Elmer 983 instrument, using Nujol mulls and CsI plates in the range 4000–200 cm⁻¹. The ¹H, ³¹P{¹H} and ¹³C{¹H} NMR spectra

were recorded with a Varian FT80A spectrometer operating at 79.542, 32.203 and 20.000 MHz, respectively, at 30°C. The molecular weights were determined in 1,2-dichloroethane at 37°C with a Knauer osmometer. Conductivity measurements were carried out with a Philips PR 9500 bridge.

All reactions were carried out at room temperature, unless otherwise stated. When required, an inert atmosphere (N_2) was used. The solvents were evaporated to small volume or to dryness at reduced pressure in a rotary evaporator.

Preparation of $[PdCl(\mu-2-pym)(PPh_3)]$, (IIa) and $[PdCl(\mu-2-pyz)(PPh_3)]_2$ (IIb)

A suspension of [Pd(PPh₃)₄] (4.62 g, 4 mmol) in benzene (ca. 200 ml) was treated with 2-chloropyrimidine or 2-chloropyrazine (0.69 g, 6 mmol) under N_2 . The mixture was heated to reflux for 6-8 h. The solid $[Pd(PPh_3)_4]$ quickly dissolved and a yellow product began to precipitate within 1 h. Concentration to small volume and dilution with Et₂O gave a mixture of Ia and IIa (1.85 g) or Ib and IIb (2.36 g) in a molar ratio I/II of ca. 1/4, as shown by ³¹P NMR spectroscopy in CD₂Cl₂ (δ (³¹P) as a singlet at 23.5 and 22.7 ppm for Ia and Ib, respectively). The mixture was suspended in CH₂Cl₂ (ca. 250 ml), an excess of H_2O_2 (3 ml of a 30% aqueous solution) was added and the mixture was stirred for 3-4 h. The resulting yellow solution was dried (Na_2SO_4) , filtered, and concentrated to small volume. Addition of Et₂O gave the crude product II as a yellow precipitate, which was redissolved in CH₂Cl₂ (ca. 200 ml) and treated with charcoal. After filtration, MeOH (ca. 50 ml) was added to the clear solution and CH₂Cl₂ was evaporated off until a precipitate appeared. Precipitation was completed by dropwise addition of Et₂O. (Yields, based on the initial amount of [Pd(PPh₃)₄]: IIa, 1.78 g, 92.1%; IIb, 1.66 g, 85.9%. Mol. weight found, 980 for IIa, 1020 for IIb; calcd. 966.4).

Preparation of cis-[PdCl₂(2-pymH)(PPh₃)] (IIIa) and cis-[PdCl₂(2-pyzH)(PPh₃] $\cdot \frac{1}{3}$ CH₂Cl₂ (IIIb)

A solution of II (0.97 g, 1 mmol) in CH_2Cl_2 (ca. 150 ml) was treated with HCl (6.3 ml of a 0.35 *M* methanolic solution, molar ratio Pd/HCl 1/1.1). Some pale-yellow product III began to precipitate after 10–15 min. The mixture was set aside overnight, the solvent was then partially evaporated, and the precipitation was completed by adding Et₂O. (Yields, based on the theoretical amount: IIIa, 0.98 g, 93.9%; IIIb, 1.03 g, 93.6%)

Preparation of trans- $[PdCl(2-pymH)(PPh_3)_2]ClO_4$ (IVa) and trans- $[PdCl(2-pyzH)(PPh_3)_2]ClO_4$ (IVb)

A suspension of III (2 mmol) suspended in CH_2Cl_2 (100 ml) was treated with PPh₃ (0.525 g, 2 mmol) with stirring. When dissolution was complete (ca. 30 min), a solution of NaClO₄ · H₂O (0.56 g, 4 mmol) in MeOH (5 ml) was added. After 10 min stirring the mixture was evaporated to dryness and the solid residue was extracted with CH_2Cl_2 (80 ml) and charcoal. After filtration of the extract and concentration, the white product was precipitated by dropwise addition of Et_2O (Yield: IVa, 1.63 g, 96.3%; IVb, 1.62 g, 95.7%).

Preparation of trans- $[PdCl(2-pymH)(L)_2]ClO_4$ ($L = PMe_2Ph$, Va; PEt_3 , VIa) and trans- $[PdCl(2-pyzH)(L)_2]ClO_4$ ($L = PMe_2Ph$, Vb; PEt_3 , VIb)

(a) A solution of IVa (0.85 g, 1 mmol) in CH₂Cl₂ (100 ml) was treated with

 PMe_2Ph (0.28 g, 2 mmol) under N₂. After 1 h stirring the solution was concentrated to small volume and the white product Va was precipitated by dilution with Et₂O. It was purified by reprecipitation from the same solvents (0.4 g, 66.6%).

(b) A suspension of IVa (2.11 g, 2.5 mmol) in a solution of PEt₃ (0.65 g, 5.5 mmol) in Et₂O (250 ml) under N₂ was stirred overnight. The white product VIa was filtered off and purified by two successive precipitations from CH_2Cl_2/Et_2O (0.88 g, 63.3%).

(c) A suspension of IVb (0.85 g, 1 mmol) in a solution of PMe_2Ph (0.28 g, 2 mmol) in Et₂O (ca. 80 ml) under N₂ was stirred overnight. The white product Vb was purified as described above for VIa (0.50 g, 83.2%).

(d) A suspension of IVb (0.85 g, 1 mmol) in a solution of PEt₃ (0.25 g, 2.1 mmol) in Et₂O (ca. 80 ml) under N₂ was stirred overnight. The white product VIb was purified as described above for VIa (0.47 g, 83.9%).

Acknowledgements

Financial support from the Ministerio della Publica Istruzione (Research Fund 60%) is gratefully acknowledged.

References

- 1 B. Crociani, F. DiBianca, A. Giovenco and A. Scrivanti, J. Organomet, Chem., 251 (1983) 393.
- 2 B. Crociani, F. DiBianca, R. Bertani and C. Bisi Castellani, Inorg. Chim, Acta, in press.
- 3 R. Bertani, F. DiBianca, A. Giovenco and B. Crociani, in preparation.
- 4 K. Nakatsu, K. Kinoshita, H. Kanda, K. Isobe, Y. Nakamura and S. Kawaguchi, Chem. Lett., (1980) 913.
- 5 K. Isobe and S. Kawaguchi, Heterocycles, 16 (1981) 1603.
- 6 B. Crociani, F. DiBianca and A. Mantovani, Inorg. Chim. Acta, 73 (1983) 189.
- 7 Handbook of Tables for Organic Compound Identification, 3rd ed., The Chemical Rubber Co., Cleveland, Ohio, 1967 p. 436-A37.
- 8 R.H. Cox and A.A. Bothner-By, J. Phys. Chem., 72 (1968) 1646.
- 9 V.M.S. Gil and A.J.L. Pinto, Mol. Phys., 19 (1970) 573.
- 10 D.J. Elias, A.G. Moritz and D.B. Paul, Aust. J. Chem., 25 (1972) 427.
- 11 (a) J. Riand, M.T. Chenon and N. Lumbroso-Bader, Tetrahedron Lett., (1974) 3123; (b) J.P. Geerts, H.C. van der Plas and A. van Veldhuizen, Org. Magn. Reson., 7 (1975) 86; (c) C.J. Turner and G.W.H. Cheeseman, Org. Magn. Reson., 8 (1976) 357.
- 12 (a) C.J. Turner and G.W.H. Cheeseman, Org. Magn. Reson, 6 (1974) 663; (b) T. Tsujimoto, T. Nomura, M. Iifuru and Y. Sasaki, Chem. Pharm. Bull., 27 (1979) 1169; (c) T. Tsujimoto, C. Kobayashi, T. Nomura, M. Iifuru and Y. Sasaki, Chem. Pharm. Bull., 27 (1979) 2105.
- (a) R.J. Pugmire and D.M. Grant, J. Am. Chem. Soc., 90 (1968) 697; (b) E. Breitmaier and K.H. Spohn, Tetrahedron, 29 (1973) 1145; (c) P. van de Weijer and C. Mohan, Org. Magn. Reson., 9 (1977) 53; (d) J. Riand, M.T. Chenon and N. Lumbroso-Bader, J. Amer. Chem. Soc., 99 (1977) 6838.
- 14 D.R. Coulson, Inorg. Synt., 13 (1972) 121.