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Summary 

Crystals of dibromo-~5-cyclopentadienyltris(tetrahydrofuran)ytterbium(III) are 
monoclinic, P2,/n (C,‘,, No. 14), with a 15.310(15), b 16.900(17), c 7.968(8) A, j? 
96.66(5)’ and 2 = 4. The ytterbium is pseudo-octahedrally coordinated by a cyclo- 
pentadienyl ligand, tram bromines, and mer tetrahydrofuran ligands, and the 
ytterbium-oxygen distance tram to cyclopentadienyl is longer than the other 
ytterbium-oxygen bonds. 

Introduction 

We have recently reported the synthesis of bromobis(cyclopentadienyl)ytter- 
bium(II1) by the oxidation reaction (eq. 1) [l]. 

2(C,H,),Yb + HgBr, + 2(C,H,),YbBr + Hgl (1) 

Attempted crystallization of the complex, (C,H,),YbBr(thf) (thf = tetrahydrofuran), 
over a prolonged period gave some single crystals with the same space group and 
similar cell dimensions to those of (n5-C,HS)ErC12(thf)3 [2], suggesting formation of 
($-C,H,)YbBr,(thf),. To identify this compound unequivocally, and because no 
crystal structure of an organolanthanoid bromide appears to have been reported 
[3-51, we have determined the crystal and molecular structure of the compound. 
Unit-cell data have also been obtained for the product of a similar decomposition of 

(C,H,),YbCl(thf),,. 

* Part VI: G.B. Deacon, A.J. Koplick and T.D. Tuong, Aust. J. Chem., 37 (1984) 517. 
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Experimental 

A solution of an analytically pure sample of (C,H,),YbBr(thf) [l] in tetrahydro- 
furan was allowed to stand under nitrogen for several months. A number of red 
crystals formed amidst a yellow-orange sludge. These were separated under nitrogen 
and transferred to an argon-filled recirculating dry box. A red wedge shaped crystal 
with approximate dimensions of 0.4 X 0.2 X 0.2 mm was selected and sealed under 
argon in a glass Lindemann capillary. Decomposition of (C,H,),YbCl(thf)o,s over a 
similar prolonged period gave some orange single crystals which were similarly 
isolated and mounted. 

Crystal data 
(a) Dibromo-)7’-cyclopentadienyltris(tetrahydrofuran)ytterbium(III). C ,,H 29- 

Br,O,Yb, M= 614.03, Monoclinic, space group P2,/n (C:,, No. 14) a 15.310(U), 
b 16.900(17), c 7.968(8) A, p 96.66(5)“, U 2047.7 A3, Z=4, D, 1.99 g cmp3, 
F(OOO)= 1180.8, MO-K, radiation, X 0.7107 A, ~(Mo-K,) 82.0 cm-‘. The unit-cell 
parameters were obtained by least-squares refinement of the angular settings of 25 
medium-high angle reflections. 

(b) Dichforo-~5-cyclopentadienyltris(tetrahydrofuran)ytterbium(IIZ). C ,,H 29- 
Cl,O,Yb, M = 535.12, Monoclinic, space group P2Jn CC,‘,, No. 14) a 15.124(15), 
b 17.049(17), c 7.803(8) A, ,& 95.90(5), U 2001.3 A3. 

TABLE 1 

FINAL ATOMIC COORDINATES 

Atom x Y z 

Wl) 0.2358(l) 0.0517(l) -0.0597(l) 

W) 
Br(2) 
C(1) 
cm 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(l0) 
C(l1) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
O(1) 
O(2) 
O(3) 

0.1407(l) 
0.3693(l) 
0.2033(11) 
0.1246(11) 
0.0909(10) 
0.1512(13) 
0.2177(14) 
0.0925( 10) 
0.0626(14) 
0.0950(14) 
0.1772(13) 
0.3536(14) 
0.3745(20) 
0.3790(13) 
0.3277(12) 
0.3164(11) 
0.3960(13) 
0.4700(13) 
0.4282(10) 
0.1648(6) 
0.3161(6) 
0.3371(6) 

0.0172(1 j 
0.0306(l) 
0.2046(8) 
0.1710(9) 
0.1226(9) 
0.1263(10) 
0.1774(9) 

- 0.1007(10) 
-0.1552(11) 
-0.1219(13) 
-0.0784(11) 
- 0.0604(11) 
-0.1444(11) 
-0.1844(10) 
- 0.1340(9) 

0.1521(11) 
0.1990(12) 
‘0.1635(13) 
0.1300(12) 

- 0.0555(5) 
- 0.0592(5) 

0.1138(5) 

0.2067i2j 
- 0.2639(2) 
- 0.1039(22) 
-0.0606(19) 
- 0.1927(23) 
-0.3177(18) 
- 0.2623(22) 
-0.1412(20) 
-0.2858(26) 
- 0.4342(22) 
- 0.3729(17) 

0.2502(20) 
0.2844(25) 
0.1309(23) 

- 0.0017(20) 
0.2974(18) 
0.3584(23) 
0.2827(25) 
0.1157(19) 

- 0.2015(10) 
0.0764(10) 
0.142qlo) 
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Data collection, structure solution, and refinement for (I$-C5 H,) YbBr,(thf), 
Data were collected with a Philips PWllOO automatic four-circle diffractometer 

equipped with a graphite monochromator [6]. A total of 3205 unique reflections were 
collected of which 2413 were considered above background [F, >, 6a( Fe)]. Intensity 
data were collected for 6” d 219 < 48” at a speed of 0.06” SK’ and a scan width of 
(I.20 + 0.2 tan8)’ in 8. Every 4 h, 3 standard reflections were measured and these 
showed no significant change in intensity over the data collection period. Intensity 
data were corrected for Lorentz and polarization effects [7]. A numerical absorption 
correction based on the indexed crystal faces was also applied [8]. 

The structure was solved by a three dimensional Patterson synthesis, which 
readily gave the position of the ytterbium atom. A difference Fourier synthesis 
revealed unambiguously the position of all remaining non-hydrogen atoms. The full 
matrix least squares refinement [8] converged at R = 0.049 and R,. = 0.047 [R,,. = 
CW”~(II F, I - I F, ll)/Cw”* IF, 1; w = [a( F)]-2], with hydrogen atoms included in 
their geometrically calculated positions with one common isotropic temperature 
factor. The atomic scattering factors for neutral Yb, Br, C, H, and 0 atoms [9] were 
corrected for anomalous dispersion. Final positional and thermal parameters are 
given in Table 1. A complete list of bond lengths and angles and of observed and 
calculated structure factor amplitudes are available from the authors. 

Results and discussion 

The molecular structure of dibromo-)75-cyclopentadienyltris(tetrahydrofuran)yt- 
terbium(II1) (Fig. 1) is a monomeric unit in which formally eight coordinate 
ytterbium is pseudo-octahedrally coordinated by a cyclopentadienyl group, tram 
bromines, and mer tetrahydrofuran ligands. Thus, it is similar to the structure of 
( T$-C5H5)ErC12(thf)j [2]. Bond distances and angles relating to the stereochemistry 
of ytterbium are listed in Table 2 together with corresponding data for ($- 
CgHS)ErCl,(thf),. Subtraction of the ionic radius (0.985 A) [lOlOfor eight coordinate 
Yb3+ from the average Yb-C(C,H,) bond distance gives 1.655 A which is within the 
range 1.64 + 0.4 A for the effective ionic radius of cyclopentadienyl or substituted 
cyclopentadienyl ligands [ll]. A similar calculation for the erbium compound gives 
1.663 A, indicating substantially ionic bonding in each case. Subtraction of the 
ytterbium ionic radius from the Yb-O(l), Yb-O(3), and Yb-O(2) distances gives 
1.350, 1.363, and 1.443 A respectively. The first two values are close to the average 
ether oxygen radius [1.34(5) A] determined for a range of organolanthanoid-ether 
complexes [12], whilst the last reflects the substantial relayed steric effect on the 
ligand tram to the bulky cyclopentadienyl group (see also below). The 
erbium-oxygen distances (Table 2) conform to a similar pattern [12]. Different 
behaviour is observed for two stereochemically similar (q5-L)UX,L; (X = Cl or Br) 
complexes. In (p5-MeC,H,)UCl,(thf), [13], both the equatorial and axial U-O 
bonds are lengthened, and subtraction of the ionic radius (1.00 A [lo]) for eight-co- 
ordinate U4+ gives 1.449 and 1.451 A respectively. With ($-C,I;I,)UBr,(thf)(OPPh,) 
[14], the equatorial U-O(thf) bond is elongated [2.479(14) A], whereas the axial 
U-O(OPPh,) distance [2.320(14) A] is much shorter. The lengthening of the 
equatorial U-O(thf) bonds may be partly associated with steric effects derived from 
the methyl and benzo substituents on the cyclopentadienyl rings. 

The difference in metal-halogen distances between ($-C5H5)YbBr2(thf), and 
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Fig. 1. Molecular structure of (q’-CsHs)YbBr,(thf)s 

($-C,H,)ErCl,(thf), (after allowance for the slight difference in metal ion radii 
[lo]) corresponds closely to the difference [lo] in the halide ionic radii. However, the 
Yb-Br and Er-Cl distances (Table 2) are significantly less (ca. 0.17 A) than the sum 

TABLE 2 

BOND LENGTHS (A) AND ANGLES (“) RELATING TO COORDINATION OF THE METAL 
FOR ($-CsHs)MX2(thf)a (M =Yb, X = Br (1) ‘or M = Er, X = Cl (2) ‘) 

Bond 

M-C(l) 
M-C(2) 
M-C(3) 
M-C(4) 
M-C(5) 

(M-C),,,: 
M-Cent ’ 
M-X(l) 
M-X(2) 
M-O(l) 
M-0(2) 
M-0(3) 

1 

2.647(16) 
2.639(16) 
2.632(16) 
2.622(15) 
2.662(17) 
2.640(16) 
2.358(16) 
2.771(2) 
2.779(2) 
2.335(8) 
2.428(9) 
2.348(9) 

2.674(5) 
2.663(7) 
2.665(7) 
2.664(6) 
2.663(6) 
2.667(6) 
2.389(3) 
2.613(l) 
2.620(l) 
2.350(3) 
2.452(3) 
2.365(3) 

Difference 

- 0.027 
- 0.031 

0.158 
0.159 

-0.015 
- 0.024 
-0.017 

Angle 

X(1)-M-X(2) 
Cent-M-O(l) 102.2(2) 
Cent-M-0(2) 179.0(2) 
Cent-M-0(3) 102.1(2) 
Cent-M-X(l) 102.0(5) 
Cent-M-X(2) 102.6(5) 
0(1)-M-O(2) 78.5(3) 
0(1)-M-O(3) 155.7(3) 
0(2)-M-0(3) 77.2(3) 
X(1)-M-O(1) 87.2(2) 
X(1)-M-0(2) 77.2(2) 
X(1)-M-0(3) 86.2(2) 
X(2)-M-O(1) 87.1(2) 
X(2)-M-O(2) 78.1(2) 
X(2)-M-O(3) 89.2(2) 

1 2 

155.31(5) 154.85(4) 
102.0(i) 
179.3(l) 
102.8(l) 
102.4(l) 
102.8(l) 

78.1(l) 
155.18(l) 

77.1(l) 
87.7(l) 
77.0(l) 
86.2(l) 
86.9(l) 
77.9(l) 
88.4(l) 

u A complete set of bond lengths and angles and lists of thermal parameters and structure factors are 
available from the authors. h From Ref. 2. ’ Average of preceding five bond lenghts. ’ Cent is the centre 
of the ring described by the cyclopentadienyl carbons. 
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of the appropriate lanthanoid(II1) and halide ionic radii [lo] suggesting some 
covalent character in the bonding. The only other available Yb-Br distances for 
solid compounds are those for six coordinate YbBr, (2.798 A [15]) and YbBr, (ave. 
2.92 A [16]), which have bridging Yb-Br bonds. Subtraction of the appropriate 
ytterbium ionic radii gives values of 1.930 and 1.904 A respectively. The correspond- 
ing value (1.790 A) derived from the average of the Yb-Br distances of (n5- 
C,H,)YbBr*(thf), is smaller as might be expected for terminal Yb-Br bonds. A 
more meaningful comparison can be made with the mutually rrans U-Br bonds of 
(q-C,H,)UBr,(thf)(OPPhs) [14], for which a similar calculation gives a comparable 
value of 1.754 A. 

For the metal coordination sphere, the bond angle differences between ($- 
C,H,)YbBr,(thf)3 and ($-C,HS)ErC12(thf)3 are all less than 1” (Table 2) em- 
phasizing the structural similarity. Thus, any increase in steric repulsion derived 
from the larger size of bromine appears to be substantially offset by the increase in 
bond length from Er-Cl to Yb-Br. The Cent-Yb-O(l), Cent-Yb-O(3), and 
Cent-Yb-Br angles are opened to ca. 102’ owing to the steric bulk of the 
cyclopentadienyl ligands. Even with0 this distortion the C(2)-Br(1) and C(5)-Br(2) 
distances (3.352(15) and 3.398(19) A respectively) are well within the sum of the 
C(C,H,) and Br Van der Waals radii (3.65 A) [17], whilst the C(3)-Br(1) and 
C(4)-Br(2) distances are very close to this value. Further distortion is hardly 
possible since the Br(l)-O(2) and Br(2)-O(2) distances (3.255(10) and 3.292(9) A 
respectively) are already within the sum of the Van der Waals radii of oxygen and 
bromine (3.35 A) [17]. Comparison of these non-bonding contacts with the corre- 
sponding data for (TJ’-C,H,)E~CI,(~~~)~ [2] suggests marginally greater steric crowd- 
ing in the bromo complex. 

The formation of ($-C,H,)YbBr,(thf), from (C,H,),YbBr(thf) on standing (see 
Experimental) can be attributed to hydrolysis by adventitious water followed by 
protolysis of a cyclopentadienyl-ytterbium bond (reactions 2 and 3). 

(C,H,),YbBr(thf) + H,O + (C,H,),Yb(OH) + HBr + thf (2) 

(C,H,),YbBr(thf) + HBr + 2thf + (C,H,)YbBr,(thf), + C,H, (3) 

The complex ($-C,H,)YbCl,(thf), has-also been prepared in a similar manner and 
the unit-cell dimensions and space group (Experimental section) show it to be 
isostructural with the dibromo complex and with ($-C,H,)ErCl,(thf),. 
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