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Summary 

Addition of [(Q’ -CgHS)Fe(CO)(PPh3)CH20Me] to HBF, etherate generates 
[(v’ -CsHS)Fe(CO)(PPh3)=CH2]+ BF,- which abstracts hydride from the 
starting complex to generate equimolar amounts of [ (ns -Cs Hs )Fe(CO)- 
(PPh,)Me] and [(Q’ -C,H,)Fe(CO)(PPh,)=CH(OMe)]’ BF4-. 

It has recently been reported that protonation of the methoxymethyl 
complex [ (71’ -Cs Me, )Fe( CO), CH2 OMe] generates the methyl complex 
[ (77’ -CsMes )Fe(CO),Me] [l] . This result confirms Pettit’s earlier observa- 
tions on [ (77’ -C, H, )Fe(CO), CH,OMe] [ 21 but in neither case has any 
mechanistic evidence been presented. We describe here some of our mechanistic 
studies on this type of reaction, which indicate a disproportionation mechanism 
between an initially formed methylene cationic complex and the starting 
methoxymethyl complex. It is a general reaction for methoxymethyl com- 
plexes to generate on acid treatment cationic methylene complexes which can 
act as methylene transfer agents [ 31 or disproportionate to form cationic 
q2 -ethene complexes [ 2,4] . 

The methoxymethyliron complex 2 is readily available by ligand exchange 
on the known [ (7’ -Cs Hs )Fe(CO), CH,OMe] (1) [ 51. Hydride abstraction 
from 2 with trityl cation generates the methoxymethylene cationic com- 
plex 3 [6]. We have recently shown that nucleophilic addition to cation 3 
is highly stereoselective [ 71, and were interested to determine whether nu- 
cleophilic additions to similar substituted methylene complexes lacking the 
methoxyl group were also stereoselective. 

Addition of acid to complex 2 at -78°C followed by excess phenyllithium 
gave two isolable products in low yield; the expected benzyliron complex 5 
presumably formed by addition of PhLi to the methyleneiron cation 4, and 
unexpectedly the a-methoxybenzyl complex 6 as a single diastereoisomer. 
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identified by comparison of the ‘H NMR spectra and IR car-bony1 stretching 
frequencies with those of authentic samples*. 
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The inverse addition of 2 to the acid allows the first equivalent of 2 to remove 
all of the acid with formation of 4, which subsequently reacts with the second 
equivalent of 2 to give 3 and 7. Under these conditions 7 is not generated 
in the presence of acid and is stable and isolable. This experiment clearly 
shows that the methylene cation 4 is capable of abstracting hydride from the 
methoxymethyl complex 2 to generate the more stable methoxymethylene 
cationic complex 3. Such a mechanism has been postulated previously to ex- 
plain the mass spectrometric behaviour of [ (7~’ -C5 H5 )Fe( CO)z CH2 OMe] [ 81. 
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*300 MHz ‘H NMR (CD,Cl,): 2, 6 7.4 (15H. m, aryl H). 4.37 (5H, d,J(PH) 1.1 Hz, f&H,). 4.1 (2H. 

m, CH,), 2.95 (3H, s. OCH,): 3, 13.24 (lH, s, CHOMe), 7.6-7.3 (15H, m, aryl H), 5.05 (5H, d, 

J(PH) 1.1 Hz, C,H,). 3.95 (3H, s, OCH,); 7, 7.4 (15H, m, an’1 H). 4.26 (5H, d,J(PH) 0.7 Hz, C,H,), 

4.22 (3H, d, J(PH) 6.5 Hz, CH,). IR (CH,Cl,): 2, 1905 cm-’ (CO); 3, 1995 cm-’ (CO); 7, 

1905 cm-’ (CO). 


