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Summary

The synthesis of novel ferrocene bis-crown ethers is reported. Variable tempera-
ture *C NMR studies on these compounds reveal a common intramolecular
dynamic process involving rotation about the N-CO bond.

Several groups of workers have recently reported the syntheses of macrocyclic
compounds containing the ferrocene unit as an integral part of the macrocyclic
skeleton [1-6]. These multidentate ligands incorporate a crown ether framework
designed to bind guest metal cations in close proximity to the iron metallocene atom.
Hence these compounds can facilitate the study of metallocene metal atom-guest
metal cation interactions at short interatomic distances using electrochemical and
spectroscopic techniques.

The condensation of 1,1’-bis(chlorocarbonyl)ferrocene (1) [7] with the aza-crown
ethers 2 and 3 [8] in the presence of triethylamine gave after column chromatogra-
phy (alumina, 99% CH,Cl,, 1% MeOH) the respective ferrocene bis-crown ethers 4
(85% yield, m.p. 69-70°C orange crystals) and 5 (80% yield, m.p. 65-66°C orange
crystals) (see Scheme 1). Both new bis-crown ethers gave satisfactory elemental
analyses, '"H NMR and molecular weights by mass spectrometry.

The *C NMR of 4 and 5 were recorded at various temperatures and the details
of the spectra are reported in Tables 1 and 2.

At —20°C the '*C NMR reveals two absorptions for the respective N-CH,
carbons of 4 and 5. On warming these individual signals begin to broaden and at
temperatures of 46.3°C for 4 and 46°C for 5 coalescence is observed (Fig. 1). Also
the respective eight and ten OCH, carbon absorptions of 4 and 5 collapse to give
simplified broadened peaks.

These observations suggest that at the coalescence temperatures and above the
aza-crown ether rings of 4 and 5 are no longer fixed relative to the respective
carbonyl groups and rotation about the amide N-CO bond is fast on the NMR
timescale (Fig. 2).
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The AG* values for this intramolecular dynamic process common to both 4 and 5
were calculated using initially the Gutowsky equation {9]:

= mAv /Y2

where Av 1s the frequency separation of resolved signals at the temperature at which

TABLE |
VARIABLE TEMPERATURE *C NMR DATA FOR 4 FROM BROAD BAND DECOUPLED AND
DEPT SPECTRA [4] (solvent CDCly: ref. TMS)

Assignment 8 (—20°C) § (20°C) 8 (55°C)
N-C 49.62 49.84
N-C 50.32 50.78 .6 br
68.21
69.21 69.14
69.36 70.09
69 46 70.20
0-C 69.50 70.67 69.9 br
69.61 71.59 70.8 by
70.00 71.92 71.4 br
7110 71.6 br
. 7132¢
Ferrocene-C 71 45
Ferrocene-C(ipso) 78.21 79.30 79.37
C=0 16927 169.35 169.42

¢ TIntegrates for two carbons.
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TABLE 2

VARIABLE TEMPERATURE *C NMR DATA FOR 5 FROM BROAD BAND DECOUPLED AND
DEPT SPECTRA [4] (solvent CDCl;; ref. TMS)

Assignment 8 (—20°0) 3 (20°C) 8 (55°QC)
N-C 4722 47.53
N-C 49.20 49.43 48.3 br
69.08
69.62
69.87 69.46
70.11 69.90
0-C 70.18 70.37 69.9 br
70.26 ¢ 70.52 70.6 br
70.31¢ 70.66 70.7 br
70.42 71.66 70.9 br
71.80
71.64 ¢ 71.58
Ferrocene-C 7170 71.88
Ferrocene-C (ipso) 79.26 79.83 79.41
C=0 169.71 169.81 169.86
¢ Integrates for two carbons.
+55°C
+46.3°C
-20°C
[ 1 l ! J
810 50.0 49.0 48.0
s(ppm)

Fig. 1. Expanded variable temperature broad band decoupled '>C NMR spectra of the N-C region of 4
at 100 MHz in CDCl;.



Fig. 2. Rotation about the N-CO bond in 4 (n =1y and 5 {n = 2).

the amide bond rotation was stopped on the NMR timescale. The energy barriers
AG* were then obtained from the equation [10]:

AG*F=2.303 RT_(10.319 — log, k + log,,T.)

where R 8.314 J mol " 'deg ' and T, is the respective coalescence temperatures. AG*F
values for rotation about the amide bond in 4 is 65 kJ mol " and 5 is 62 kJ mol .
These results are in good agreement with the barriers to rotation about conventional
amide linkages [11]. The coordination chemistries of these ferrecene bis-crown ethers
are currently under investigation.

Experimental

'"H NMR spectra were recorded at 400 MHz and '*(’ NMR spectra at 67.8 and
100 MHz using TMS as internal standard.

1.1"-Bis(chlorocarbonyhferrocene, aza-15-crown-5 and aza-18-crown-6 were pre-
pared according to literature methods [7.8]. Toluene was dried bv distillation from
sodium.

1.17-Bis(1,4,7.10-1etraoxa-13-azacyclopentadecane- 1 3-carbonyvijferrocene (4

A solution of 1,1’-bis(chlorocarbonylferrocene (0.71 g, 2.28 mmol} in dry toluene
{70 mly was added dropwise over 30 min to a stirred solution of aza-15-crown (1.0 g,
4.56 mmol) in toluene (100 mlj containing triethvlamine (0.46 g. 4.56 mmol). When
addition was complete stirring was continued for 1 h and the solution filtered. After
removal of solvents the crude product was chromatographed on a column of alumina
using methylene chloride,/1% methanol. An orange band was coliected and after
solvents were removed recrystallisation from diethyl ether, hexane gave 4 (1.31 g,
85%) as orange crystals, m.p. 69-70°C. Anal. Found: C. 56.9: H. 7.4: N_ 4.4,
CH (N,Oy caled.: € 56.8: H. 7.1 N 42%. m /2 676
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'H NMR (CDCl,): & 3.46-3.63 (m, 40H), 4.21 (t, J 1.7 Hz, 4H) and 4.54 (t, J
1.7 Hz, 4H).

1,1°-Bis(1,4,7,10,13-pentaoxa-16-azacyclo-octadecane-16-carbonyl)ferrocene (5)

The procedure for the preparation of § followed that described for 4. A solution
of 1,1’-bis(chlorocarbonyl)ferrocene (0.295 g, 0.95 mmol) in dry toluene (50 ml) was
added dropwise over 30 min to a stirred solution of aza-18-crown-6 (0.5 g, 1.9 mmol)
in toluene (70 ml) containing triethylamine (0.19 g, 1.9 mmol). When addition was
complete stirring was continued for 1 h and the solution filtered. Removal of
solvents gave the crude product which was chromatographed on an alumina column
using methylene chloride /1% methanol. Recrystallisation from diethyl ether /hexane
gave S5 (0.58 g, 80%) as orange crystals, m.p. 65-66°C. Anal. Found: C, 56.7; H, 7.0;
N, 3.4. C3xH(N,O,; caled.: C, 56.4; H, 7.3; N, 3.7%. m/z 764.

'"H NMR (CDCl,): 6 3.60-3.77 (m, 48H), 4.33 (t, J 2 Hz, 4H) and 4.65 (¢, J 2
Hz, 4H).
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