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Summary 

The complexes [Ru,(CO),(p-CO)@-CMe)(p-C,H,),]’ and [Ru,(CO), - 
(~-CO)(CI-CCH*)(~~-C,H,),] react together to give [ {Ru,(CO),(~-C~H~)~ }2 - 
(p-CMeCHCH)]’ and [ {Ru~(CO)~(~-C~H~)~ }(P-CCH,CHC){RU,(CO)~- 
(n-CsH,), 11, each characterised by X-ray diffraction. The former results from 
ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrange- 
ment. 

The Cc-ethylidyne cation [Ru,(CO),(p-CO)(p-CMe)(q-C,H,),]’ (I) and the 
I-1-vinylidene complex [Ru,(CO),(p-CO)(p-CCH,)(n-C,H,),] (II) are readily 
interconverted; protonation of II yields I, which upon treatment with triethyl- 
amine, methyllithium, or water regenerates II smoothly [l] . The deprotona- 
tion of I also gives two minor products, tetraruthenium (III) (9%) and penta- 
ruthenium (IV) (l%), as air-stable red crystals. However, when deprotonation 
is performed at -78°C rather than at room temperature III becomes the 
major product (65%) while IV remains in very low yield. (Scheme 1). We were 
unable to identify these complexes from their IR and NMR spectra and there- 
fore subjected each to an X-ray diffraction study, which revealed them to be 
of formulation [ {Ru,(CO),(T&H,), }z (II-CMeCHCH)] [BF,] (IIIa)* and 

*Selected spectroscopic data (IR in CH,Cl,, NMR as stated, coupling constants in Hz): III, red 
crystals, v(C0) at 2002 s. 1970 m, 1931 w, 1852 w-m, 1802 m cm-‘, ’ H NMR (at -3S°C in C,D,N) 

5 3.73 (s. Me), 3.95 (s, Me), 5.63 (s. CsH,), 5.76 (s. 2CsHs). 5.83 (s. C,H,). 5.84, (s. C,H,), 6.18 (s, 
CsHs), 6.22 (s. 2 CsH,), 10.59 (d, J 11, p-CH). 10.63 (d, J 11, p-CH) (the P-CH proton of each 
isomer is obscured by the C,H, resonance at 6 6.22): IV, red crystals, u(C0) at 1990 s, 1949 w, 
1799 s, and 1748 m cm-‘, ’ H NMR (in CDCl,) 6 5.23 (s, 3 C,H,), 5.33 (s, CsH,), 5.43 (s, CsH,). 
6.08 (dd. J 7 and 17. CH), 6.41 (dd. J 3 and 17. 1 H of CH,), 6.82 (dd, J 3 and 7. 1 H of CH,). 
‘sC NMR (in CDCl,) 6 71.8 (CH,) and 140.8 (CH) ppm; VII. yellow crystals, v(C0) at 1977 s. 
1939 m, and 1780 m cm-‘, ‘H NMR (in CDCl,) 6 1.85 (d, J 7, Me), 4.95 (m, CH). 5.24 (s, 2 C,H,). 
6.91 (dd, J 10 and 12. CH), 11.03 (d. J 12. /&CH). 
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Fig.l.Molecularstructure of IV.Bond distances: Ru(l)-Ru(2) 2.701(1),Ru(l)-Ru(3)2.683(2). 
Ru(2)-Ru(3) 2.712(1).Ru(l)-C(19) 2.016(12).Ru(2)-+(19) 2.008(12),Ru(3)-C(19)2.044(12). 
Ru(4)-Ru(6) 2.703(2).Ru(4)-C(22) 2.038(13),Ru(5)-C(22) 2.011(13),C(19)-C(20)1.61(2), 
C(2O)-C(21) 1.52(2),C(21)-(22) 1.34(2)& 

[ON(CO)B(~-C~J%)~ }(cL-CCH*CHC)(RU~(CO)~(~~-C,H,), 11 (IV)*. 
Crystal data for IIIa_(acetone soluate). C33HJ1BF40,R~q, A4 = 1 030.8, 

triclinic, space group Pl (No. 2), a 12.186(4), b 12.385(3), c 13.033(4) A, 
(Y 114.05(3), fl 97.79(3), 7 84.76(3)“, U 1778.2(g) A3, F(OOO) = 1 004, D, 
1.93 g cmv3 ; 2 = 2, ~(Mo-&) 17.0 cm-l ; R = 0.06 for 1954 independent 
reflections (at 293 K in range 2.9 < 8 < 45” with 1> 2.50(I), Nicolet P3 dif- 
fractometer, MO-& X-radiation, X 0.71069 A). 

Crystal data for IV (dichloromethane sohte). C36H30C1206R~5, M = 1 147.0, 
orthorhombic, space group Pbcu (No. 61), a 18.124(2), b 24.320(3), c 
16.587(3) A, U 7311(2) A3, F(OOO) = 4384, D, 2.09 g cmm3, 2 = 8, ~(Mo-K,) 
21.7 cm-’ ; R = 0.048 for 3012 independent reflections (at 298 K in range 
2.9 < 8 < 50” with 1>3.0a(I), Nicolet P3 diffractometer, MO& X-radiation, 
X 0.71069 A). 

The molecular structure of IV (Fig. 1) consists of Ru~(~-CO)~(T&H~)~ 
and Ru,(CO), (p-CO)(n-C,H, )? fragments linked by a CCHz CH=C chain 
which at one end caps the Ru3 triangle as a b3 -alkyIidyne ligand and at the 
other bridges the Ruz unit as a p-vinylidene. The other complex is ionic and 
the cation IIIa (Fig. 2) also contains a C4 ligand, of the form C(Me)=CHCH, 
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Fig. 2. Molecular structure of the cation IIIa. Bond distances: Ru(l)-Ru(2) 2.767(3), Ru(l)-C(7) 

2.17(2). Ru(2)-C(7) 2.08(3), Ru(l)-C(G) 2.40(2), Ru(l)-C(121) 2.19(3), Ru(2)-C(121) 1.89(3), 
Ru(3)-Ru(4) 2.716(3), Ru(3)-C(5) 2.08(2), Ru(4)-C(5) 2.09(2), C(5)-C(6) 1.44(4). C(6)-%(7) 
1.38(3) A. 

but this now links two Ru, (CO),(p-CO)(T$,H, )z fragments such that one is 
bridged in a p-vinyl fashion and the other by a p-alkylidene. All four of the 
modes of hydrocarbon coordination seen in III and IV are known [ 21, but 
this pair of complexes is unique in having two modes present simultaneously. 

It is difficult to envisage a pathway for the formation of IV, but for III a 
likely mechanism is apparent. The p-vinylidene complex II is protonated to 
afford I, as discussed earlier, and if I itself acts as an electrophile towards II 
then initial formation of cation V is to be expected. Casey et al. have shown [3] 
that p-alkylidyne cations with alkyl substituents on the carbon (Y to the P- 
carbon isomerise readily, via a hydrogen shift, to give a p-vinyl cation; such a 
process for V yields the observed product III. The production of III in high 
yield when I is deprotonated at -78” C is now explicable; at this temperature 
deprotonation is evidently slow enough that appreciable concentrations of I 
and II are present simultaneously, allowing the reaction with one another to 
become significant. Confirmation of this was obtained by mixing samples of 
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I and II in CH2Clz at 25”C, when III was isolated in 42% yield. The best 
yield (80%) of III is achieved by adding an excess of CFJCOzH to II; presum- 
ably because CF,CO*H is a much weaker acid than HBF4 an equilibrium 
is set up between I and II, and their interreaction can then proceed nearly to 
completion. 

In the crystal of III the alkylidene-bridged diruthenium unit adopts a 
configuration with the v-&H, ligands mutually cis, while the vinyl-bridged 
diruthenium unit is truns (the “cis-tram” isomer IIIa). The ‘H NMR spectrum 
clearly shows, however, that in solution there are two isomers present in al- 
most equal concentration. Below -10°C these do not interconvert, at am- 
bient temperatures exchange on the NMR time scale results in broadened 
signals, and above 100” C a time-averaged spectrum is seen. A full description 
of these observations will be given elsewhere; they are consistent with the 
existence of both the “cis-truns” isomer IIIa and a “cis4s” isomer IIIb in 
solution, interconverting via cis=+ truns isomerisation of the vinyl-bridged di- 
ruthenium unit, and superimposed on this a p-vinyl group oscillation. Both 
these processes have been identified in diruthenium complexes [ 41. 

We can view III as a vinyl-bridged diruthenium cation with a rather exotic 
diruthenium-based substituent on the p-carbon of the p-vinyl. Such cations 
normally suffer hydride attack at this b-carbon to give p-alkylidene com- 
plexes [4] . However, treatment of III with NaBH4 gave only VII*, which can 
be traced to hydride attack upon the a-carbon of the p-vinyl. In this event 
“alkene” complex VI would be formed and, on the basis of previous work 
[ 51, would be unstable, releasing the bulky “alkene” VII from complexation. 
The ‘H NMR spectrum of VII indicates that the complex retains the cis orienta- 
tion of the vinyl substituents in III. Presumably attack is directed to the OL- 
rather than p-carbon by the evident crowding (see Fig. 2) about the latter. 

The possibility that electrophilic attack of transition metal carbo-cations 
upon p-vinylidene will provide a general route to complexes in which poly- 
nuclear metal units are bridged by hydrocarbons is under investigation. 
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