Journal of Organometallic Chemistry, 290 (1985) 307-319 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

CHEMIE POLYFUNKTIONELLER MOLEKÜLE

LXXXVII *. SYNTHESE UND REAKTIONSVERHALTEN VON 4-METHYL-1,2,6-TRISTIBA-TRICYCLO[2.2.1.0^{2,6}]HEPTAN (Sb₃-NORTRICYCLAN) GEGENÜBER CHROM-, MOLYBDÄN- UND WOLFRAMHEXACARBONYL **

JOCHEN ELLERMANN* und ADOLF VEIT

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, D-8520 Erlangen (B.R.D.)

(Eingegangen den 7. Februar 1985)

Summary

The reaction of $CH_3C(CH_2Cl)_3$ and $NaSb(C_6H_5)_2$ in liquid ammonia leads to $Sb_2(C_6H_5)_4$ (I). Using $CH_3C(CH_2Br)_3$ instead of $CH_3C(CH_2Cl)_3$ results in the formation of I and $CH_3C[CH_2Sb(C_6H_5)_2]_3$ (II). Treatment of II with gaseous HCl in dry CH_2Cl_2 yields $CH_3C(CH_2SbCl_2)_3$ (III) under elimination of benzene. The reduction of III with Na in THF gives the first all-cis-organocyclotristibane (Sb₃-nortricyclane) $CH_3C(CH_2Sb)_3$ (IV) which forms the new $CH_3C(CH_2Sb)_3M(CO)_5$ complexes (Va-Vc) with $M(CO)_5THF$ (M=Cr, M0, M1).

Zusammenfassung

Die Umsetzung von $CH_3C(CH_2Cl)_3$ mit $NaSb(C_6H_5)_2$ in flüssigem Ammoniak führt zu $Sb_2(C_6H_5)_4$ (I). Durch Verwendung von $CH_3C(CH_2Br)_3$ an Stelle von $CH_3C(CH_2Cl)_3$ erhält man neben I auch $CH_3C[CH_2Sb(C_6H_5)_2]_3$ (II). Die Verbindung II reagiert mit HCl-Gas in trockenem CH_2Cl_2 unter Eliminierung von Benzol zu $CH_3C(CH_2SbCl_2)_3$ (III). Dieses wird durch Na in THF zum ersten all-cis-Organocyclotristiban $(Sb_3$ -Nortricyclan) $CH_3C(CH_2Sb)_3$ (IV) reduziert. Mit $M(CO)_5THF$ (M=Cr, Mo, W) bildet IV die neuen Komplexe $CH_3C-(CH_2Sb)_3M(CO)_5$ (Va-Vc).

^{*} LXXXVI. Mitteilung siehe Ref. 1.

^{**} Herrn Professor Dr. Dr. h.c. Helmut Behrens zum 70. Geburtstag gewidmet.

Einleitung

Bisher sind von Organostibanen der allgemeinen Formel (RSb)_n (R = organischer Rest) neben Polymeren [2] nur das Organo-cyclohexastiban (C_6H_5Sb)₆ · C_6H_6 [3] bzw. (C_6H_5Sb)₆ · C_6H_6 [3] bzw. (C_6H_5Sb)₆ · C_6H_6 [4] und das -cyclotetrastiban (t- C_4H_9Sb)₄ [5–7] bekannt geworden. Die vorliegende Arbeit beschreibt ausführlich den Syntheseweg für 4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2.6}]heptan, $C_3C(C_1Sb)$ (IV) [8], der über die Vorstufen $C_3C(C_1Sb)$ (II) und $C_3C(C_1Sb)$ verläuft. Schliesslich wird das Reaktionsverhalten von IV gegenüber $C_3C(C_1Sb)$ (M = C_1C_1Sb) (M = C_1C_1Sb) mitgeteilt.

Ergebnisse und Diskussion

Präparative Ergebnisse

Aus der Chemie des Arsens ist bekannt, dass Alkalimetall-diphenyl-arsenide mit Alkylchloriden in höheren Ausbeuten als mit Alkylbromiden zu Alkyldiphenylarsinen reagieren [9]. Es lag daher nahe, 1,1,1-Tris(diphenylstibinomethyl)ethan, CH₃C[CH₂Sb(C₆H₅)₂]₃ (II) nach allgemeinen Methoden [10] durch Umsetzung von CH₃C(CH₂Cl)₃ mit Natriumdiphenylstibid in flüssigem Ammoniak zu synthetisieren. Trotz vielfältiger Änderungen der Reaktionsbedingungen war es jedoch nicht möglich II auf diesem Wege zu erhalten. Die Umsetzung ergab immer in hohen Ausbeuten Tetraphenyldistiban (I), das eindeutig charakterisiert wurde. II war in keinem Falle nachzuweisen. Obwohl es wenig aussichtsreich erschien, wurde daraufhin die Reaktion mit CH₃C(CH₂Br)₃ durchgeführt. Als Hauptprodukt wird auch hier wieder I gewonnen, jedoch entsteht das gesuchte II in 20–25%-iger Ausbeute neben nicht sauber trennbaren und daher auch nicht eindeutig charakterisierbaren organischen und antimonorganischen Nebenprodukten (Gl. 1).

$$2CH_{3}C(CH_{2}Br)_{3} + 6NaSb(C_{6}H_{5})_{2} \xrightarrow{fl.NH_{3}}$$

$$Sb_{2}(C_{6}H_{5})_{4} + CH_{3}C[CH_{2}Sb(C_{6}H_{5})_{2}]_{3} + 6NaBr + ... \qquad (1)$$

$$(I) \qquad (II)$$

Durch fraktionierte Kristallisation (CH₂Cl₂/C₂H₅OH) werden die gelben Kristalle I von den farblosen, mikrokristallinen Nadeln II abgetrennt. Die Umsetzung von II mit HCl-Gas in trockenem CH₂Cl₂ führt unter selektiver Abspaltung der Phenylgruppen in nahezu quantitativer Ausbeute zu 1,1,1-Tris(dichlorstibinomethyl)ethan (III) (Gl. 2).

$$CH_{3}C[CH_{2}Sb(C_{6}H_{5})_{2}]_{3} + 6HCI \rightarrow CH_{3}C(CH_{2}SbCl_{2})_{3} + 6C_{6}H_{6}$$
(II) (III)

III fällt als farbloser, mikrokristalliner Niederschlag aus der Reaktionslösung aus. Leitfähigkeitsmessungen in THF weisen auf ionische Derivate in Lösung hin.

Die Reduktion von III mit Natriumgranulat in THF führt zum all-cis-Cyclotristiban (Sb₃-Nortricyclan) 4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2,6}]heptan, CH₃C(CH₂Sb)₃ (IV) (Gl. 3).

IV kristallisiert aus dem hellgelben Filtrat der Reaktionslösung in tieforange-

farbenen Kristallplättchen aus. Da bisher wenig über das komplexchemische Verhalten von Polystibanen [11] und Polycyclo-Stibanen [8] bekannt ist, schien es von Interesse das Donor-Acceptor-Verhalten von IV gegenüber den Metallhexacarbonylen der VI. Nebengruppe zu untersuchen. Das dabei übliche Verfahren in einer Eintopfreaktion $M(CO)_6$ (M = Cr, Mo, Mo) mit dem Liganden in THF unter UV-Bestrahlung umzusetzen, führte in allen Fällen aufgrund eintretender Zersetzung von IV nicht zum Erfolg. Setzt man jedoch zunächst $M(CO)_6$ mit THF unter UV-Bestrahlung zu einer Lösung von $M(CO)_5$ THF in THF um, und gibt diese anschliessend zu einer Lösung von IV in THF, so bilden sich die Pentacarbonylkomplexe Va-Vc (Gl. 4).

Nach Abziehen des THF unter vermindertem Druck erhält man Va-Vc, die nach Umkristallisation aus $CH_2Cl_2/Pentan$ analysenrein sind. Während Va und Vc durch langsame Kristallisation in Form grösserer Kristalle (Va: weinrot, Vc: ziegelrot) isoliert werden können, zersetzt sich Vb in $CH_2Cl_2/Pentan$ bei längerem Stehen. Auch im Festzustand neigt Vb zur deutlich rascheren Zersetzung als Va und Vc. So sind letztere unter N_2 und Lichtausschluss mehrere Monate haltbar, während Vb selbst unter diesen Bedingungen schon nach 1-2 Wochen eine sichtbare Zersetzung zeigt. Die Farbe ändert sich dabei von karminrot nach braun; im IR-Spektrum erkennt man deutlich das Auftreten der charakteristischen $\nu(CO)$ -Bande von cis-Mo(CO)₄-Komplexen bei 2010 cm⁻¹.

¹H-NMR-Spektren

Die ¹H-NMR-Daten von II-Vc finden sich im experimentellen Teil. Im Falle der Verbindungen II, III und IV entsprechen Signalmultiplizität und Signallagen den Erwartungen. Bei Va-Vc beobachtet man jeweils ein kompliziertes Multiplett mit etwa 11 Linien. In ihm überlagern die Signale der CH₃- und CH₂-Protonen. Die Kompliziertheit der Spektren ist weiterhin in der Symmetrieerniedrigung des $CH_3C(CH_2Sb)_3$ -Käfigs $(C_{3v} \rightarrow C_s$ bzw. C_1) durch die Metallkoordination begründet. Wegen der begrenzten Löslichkeit von Va-Vc waren Tieftemperaturmessungen nicht möglich. Ausserdem neigen die Verbindungen in CD_2Cl_2 nach einiger Zeit zur

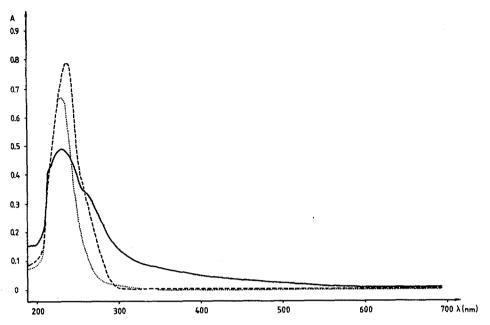


Fig. 1. VIS-UV-Spektren von $CH_3C(CH_2P)_3$ (·····), $CH_3C(CH_2As)_3$ (·····) und $CH_3C(CH_2Sb)_3$ (IV) (———).

Zersetzung, erkenntlich am Auftreten der hochfeldverschobenen Signale des freien Liganden IV (Temperatur am Probenort ca. 38°C).

Massenspektren

Die Molmassen von II-Vc konnten massenspektroskopisch durch die Molekülionen belegt werden. Die wichtigsten Daten der Massenspektren finden sich im experimentellen Teil.

VIS-UV-Spektren

Die ungewöhnlich starke Farbvertiefung der Kristalle von IV gegenüber deren Lösung in THF (blass-gelb-orange) deutet auf intermolekulare Sb-Sb-Wechselwirkungen von Sb₃-Dreiringeinheiten im Kristallverband hin. Die Röntgenstrukturanalyse von IV [12] ergibt mittlere intramolekulare Sb-Sb-Abstände von 280 pm und mittlere intermolekulare Sb...Sb-Abstände von 396-400 pm. Diese Befunde stehen im Einklang mit röntgenographischen Untersuchungen von im Festkörper roten, in Lösung aber ebenfalls gelben Distibanen [13,14]. Die ungewöhnliche Farbvertiefung wird auch hier durch intermolekulare Wechselwirkungen im Kristallverband erklärt. VIS-UV-Spektren der THF-Lösungen von IV und der vergleichbaren, farblosen Homologen CH₂C(CH₂P)₃ [15] und CH₃C(CH₂As)₃ [16] zeigen eine starke Absorption bei etwa der gleichen Wellenlänge (CH₃C(CH₂P)₃: λ $CH_3C(CH_2As)_3$: 237.2, IV: 232.4 nm; $c \cdot 10^{-4} \cdot mol \cdot 1^{-1}$) (Fig. 1). Bei $CH_3C(CH_2P)_3$ und CH₃C(CH₂As)₃ sind im Einklang mit der Farblosigkeit der Verbindungen oberhalb von etwa 300 nm keine Absorptionen zu beobachten, während die deutlich in den sichtbaren Bereich auslaufende rechte Flanke der UV-Bande von IV für dessen blass-gelbe Farbe in Lösung verantwortlich zu machen ist.

Schwingungsspektren

Bei den Schwingungsspektren von I und II wird auf die Wiedergabe der substituentenunabhängigen und daher lagekonstanten Phenylschwingungen [17,18] verzichtet. Die sonstigen charakteristischen IR- und Raman-Banden von I und II, sowie alle Schwingungsbanden von III werden im experimentellen Teil mitgeteilt. Die Schwingungsbanden von IV und Va-Vc sind in Tab. 1 zusammengestellt. Für die Aufnahme von Raman-Lösungsspektren waren die Löslichkeiten von IV und Va-Vc selbst in dem am besten geeigneten Lösungsmittel THF zu gering. Die Charakterisierung der Banden des CH₃C(CH₂Sb)₃-Gerüstes erfolgte in Anlehnung an eine Arbeit von Hildbrand und Kaufmann [19], die für ein vergleichbares Ringsystem Zuordnungen an Hand einer Normalkoordinatenanalyse trafen. Weiterhin wird bei der Zuordnung der Schwingungen auf eigene IR- und Ramanspektroskopische Untersuchungen [20,21] Bezug genommen. Im Festzustand besitzt IV C.-Symmetrie [12], jedoch ist die Abweichung von der molekularen C_{3v}-Symmetrie, wie ¹H-NMR- (siehe experimenteller Teil) und Photoelektronenspektren [22] zeigen, geringfügig. Etwas unsicher sind die Zuordnungen zu den (SbC)-Valenzschwingungen, deren Banden im Bereich von 600-500 cm⁻¹ erwartet werden [23]. Offensichtlich überlagern sie mit einer tiefliegenden CH₂-Rockingschwingung [24] bei etwa 630 cm⁻¹. Für den Antimondreiring werden, in Übereinstimmung mit der C.-Symmetrie des festen IV, drei intensive $\nu(Sb_3)$ -Raman-Linien (2A' + A'') zwischen 210 und 150 cm⁻¹ beobachtet. Ausserdem treten unterhalb 200 cm⁻¹ noch zwei schwache Raman-Banden auf, die wegen der geringen Intensität Käfigdeformationschwingungen $[\delta(Sb_3)]$ zugeschrieben werden.

Für die Komplexe Va-Vc muss wegen der Bandenvielzahl, sowohl im Festzustand als auch in der Lösung C.-Symmetrie angenommen werden. Lediglich im ν(CO)-Bereich weisen die IR-Lösungsspektren von Va-Vc Ähnlichkeiten mit den IR-Spektren von $M(CO)_5$ L-Komplexen (Punktgruppe C_{4n}) auf [25]. Dementsprechend kann für die SbM(CO)₅-Koordinationspolyeder (M = Cr, Mo, W) auch eine lokale C₄, Symmetrie diskutiert werden. Die diesbezüglichen Rassenzuordnungen werden daher in Tabelle 1 mitangegeben. Auffallend ist bei Va-Vc weiterhin, dass nicht nur, wie allgemein üblich, die $\nu(CO)$ -, sondern auch die δ (MCO)- und die ν (MC)-Banden, trotz unterschiedlicher Massen der Metalle jeweils in den gleichen Wellenzahlbereichen (δ (MCO): 670–570; ν (MC): 475–375 cm⁻¹) auftreten. Bei der Koordination von IV an die M(CO)_s-Gruppen tritt im Bereich der (SbM)-Valenzschwingungen erwartungsgemäss jeweils eine zusätzliche, intensive Raman-Bande bei etwa 225 cm⁻¹ auf. Überraschenderweise zeigt auch sie, die wegen der grossen Raman-Intensität den (SbM)-Valenzschwingungen zuzuordnen ist, keinen massenabhängigen Gang. Es liegt die Vermutung daher nahe, dass zwischen den M(CO)_s-Koordinationspolyedern und dem halbmetallischen Antimondreiring elektronische Kopplungen auftreten. Auch die hohe Lage der Bande deutet auf einen derartigen Effekt hin. Rassenzuordnungen mit Hilfe von Raman-Polarisationsmessungen waren für Va-c nicht möglich, da die Löslichkeiten der Komplexe in CH₂Cl₂ für Raman-Untersuchungen zu gering waren.

Experimenteller Teil

Sämtliche Versuche wurden unter Luft- und Feuchtigkeitsausschluss in Stickstoffatmosphäre durchgeführt. Sämtliche Lösungsmittel waren destilliert, getrocknet und

TABELLE 1

IR-, FIR- UND RAMMAN-SCHWINGLINGSBRANDEN (cm-1) VON CH3C(CH2Sb)3 (IV), CH3C(CH2Sb)3CE(CD)5 (Va), CH3C(CH2Sb)3MC(CD)5 (Vb) UND CH3C(CH2Sb)3W(CD)5 (Vc)

Zuordnung	N		Va			γp			Vc		
	IR/FIR	Капел	IR/FIR	IR	Raman	IR/FIR	IR	Ramen	IR/FIR	IR	Raman
	CsI	fest	CsI	CH ₂ C1 ₂	fest	CsI	CH ₂ C1 ₂	fest	CsI	CH ₂ C12	fest
v(сн ₃) u. v(сн ₂)	~		2970 s-m		2965 ss	2962 s		2969 ss	2970 s		2967 58
5 A' + 4 A"								2954 ss			
	2935 ₪	2939 s	2945 ss		2938 s	2940 m		2948 s	294B s		2938 s
	2915 s-m, Sch	h 2928 s	Z925 s-m T	2920 s-m	2927 s	2925 s-m		2927 ss	2925 s	2920 s-m	s 6262
	2900 s-m	2904 Sch]	2910 s, Sch		2913 ss	2905 s-m		2902 s	2905 s		2904 s
	2885 s-m	2893 s	2870 s-m		2892 s	2895 s		2890 s	2890 s		2892 s
	2845 s-m] 2850 ss	2850 s	2862 s	2846 s	2862 s	2860 s	2848 ss	2875 s	2860 s	2875 ss
	2830 Sch	2835 ss				2848 s-m			2850 s		2848 ss
	2755 ss	2758 ss			2760 ss	2755 ss					
v(CO) A, bzw. A'	`-		2060 st	2060 m	2054 s	2070 m	2062 s-m	2067 ss	2075 st	2070 ₪	2065 s
8, bzw. A"	Ł		1978 m	1980 s, Sch	1969 s-m	1980 s-m, Sch	1995 Sch	1985 s 1	1977 m-st	1980 s-m, Sch 1 1973 s	1973 s
4			1950 st, Sch 1			1965 m, Sch	1980 m, Sch	1970 Sch	1950 st, Sch		1962 s
ļ	L		1922 sst	1945 sst	1927 s	1925 st	1948 sst	1929 Sch 1	1925 sst	1945 sst	1923 88
A, bzw. A'	_		1905 st, Sch 1920 m, Sch	1920 m, Sch	1912 ss	1905 sst	1920 Sch	1916 s	1905 sst	1922 m-st, Sch 1908 ss	1908 88
6(CH ₃) A'+ A" 1440 s-m	1440 s-m	1443 88	1448 s-m		1442 ss,br	1448 s-m			1450 s-m]		1444 ss
	1427 s		1430 s			1430 Sch			1435 Sch		
δ(CH ₂) A'	1405 s		1410 s			1410 s			1410 s		1410 ss
5(CH2) A' + A"	1377 s-m	1390 ss	1390 s-m		1390 s	1390 s-m		1392 ss	1390 s−m		1392 s
						1380 s			1380 ss		
6(CH ₃) A'	1350 s	1360 ss	1362 ss			1365 s			1365 s		1362 ss
6(C-C-H) A'	1250 s	1248 s	1248 ss		1246 s	1262 s]		1252 ss	1265 58 1		1248 ss
						1252 s J			1255 ss.		

FORTSETZUNG VON TABELLE 1

Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner,	-			The state of the s		***************************************					***************************************
Zuordnung	TN.		Va			Ą			Vc		
	IR/FIR	Ramen	IR/FIR	E.	Raman	IR/FIR	E	Raman	IR/FIR	IR	Raman
	Cs I	fest	CsI	CH ₂ C1 ₂	fest	CsI	CH ₂ C1 ₂	fest	CsI	СН ₂ С1 ₂	fest
6(C-C-H ₂) und	1200 ss	1202 95	1185 s-m]		1184 s, Schi	1186 s		1200 65	1190 s		1184 s
6(C-C-H ₃)	1170 st	1174 s-m	1170 s, Sch		1175 s-m	1170 s-m		s 7711	1172 s-m		1175 s-m
2 A' + 2 A"	1145 s	1150 88				1145 38					1142 SB
	1113 m	1117 33	1120 m		1123 ss	1120 m		1120 95	1122 m]		1119 55
6(C-C-H) A"	1055 ss		1075 ss			1075 ss			1115 Sch		
v(CC) 3 A' + A"	1045 m, Sch.	1044 58	1048 s-m		1046 95	1045 Sch		1048 ss	1050 s-m		1046 85
	1040 m		1040 s-m			1040 m			1040 s⊸m		
	1005 s	1007 s 1	1010 s		1008 s	1010 s		1008 ss	1012 ss]		1006 s
		992 ss				8 Dee			(s 000)		992 ss
	932 s	939 98	922 s		933 ss	930 s		930 ss	932 s		933 ss
						900 s			895 ss		
		B62 88	825 88			B65 ss		860 55			
6(Sb-C-H) bzw.	775 m	773 s	778 s-m		773 s,bt	778 m j		773 95	78O s-m		
p(CH ₂)	762 s-m		770 s-m.			770 Sch			775 s-m		775 ss
2 A' + 3 A"			758 s			760 s			760 ss		
			730 ss			738 s			740 s,br		
	715 s,br	710 ss	710 58			710 ss			712 ss		
6(MCO)			665 st	868 m-st	85 799	669 s-m			670 s,br		
			652 st	₩ 099		650 s-m			655 s		
			642 st			603 m-st	m~s DO9		595 m	285 m	
			583 s-m			580 st	578 s-m		572 m-st	572 s-m	
p(CH ₂) and	625 s	631 s-m	unter 6(CrCO)	_	633 \$	unter		635 s	unter		633 s-m
v(SbC)	572 s-m	577 55	572 s-m		575 98	(MoCO)			6(wca)		575 s,br
		564 55	542 s-M1	550 s	542 ss		545 s				
	500 s, br 1	502 s,br	535 Sch			525 s					
	465 Sch		508 ss	512 s			505 s		490 s		
***************************************		***************************************				*					

FORTSETZUNG VON TABELLE 1

2uordnung	Į,		Va			γρ			VC		
	IR/FIR	Raman	IR/FIR	IR	Raman	IR/FIR	IR	Ramen	IR/FIR	IR	Raman
	CsI	fest	CsI	сн ₂ с1 ₂	fest	CsI	CH ₂ C1 ₂	fest	CsI (CH2C12	fest
v(MC)			472 Sch		475 s-m	475 Sch 1					
			458 m			460 s		450 s,br	460 \$ 1		462 s-m
						445 Sch			420 Sch		433 s-m
δ(CC _Δ)	410 s,Sch	ss 907	415 s		413 Sch j	390 Sch 1		ss 807	41D s		392 ss
v(MC)					395 s-m∫	375 st			380 m-st		367 ш
8(CC4)	395 s	388 ss	395 a		unter v(CrC)						pun
	362 м	366 s⊶m	368 s		J67 s-m			369 s	365 Sch		v(MC)
		334 55			331 55						
6(0036)		295 35			294 55						295 s
	251 s	253 s	250 s,br		256 \$	250 ss			255 ss		254 85
		239 \$,						
v(SbM) A' und			228 s		227 m-st	225 s		225 m-st	225 s		225 m-st
v(Sb ₃)		210 sst			208 st			210 st	4		206 m-st
		191 s-m			196 sst			196 m-st			196 m-st
6(Sb ₃)		181 s			179 s			177 ss			181 ss
v(Sb ₃)	145 s-m	151 m-st			151 st			153 st			150 sst
6(Sb ₃)		119 s			116 s			129 s			115 s

Abkürzungen; ast = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, Sch = Schulter, br = breit,

mit N₂ gesättigt. Triphenylstibin wurde, analog Triphenylarsin, gemäss Ref. 26, CH₃C(CH₂Cl)₃ gemäss Ref. 27 und CH₃C(CH₂Br)₃ entsprechend Ref. 28 dargestellt. Alle Schmelzpunkte wurde in abgeschmolzenen Kapillaren (N₂) ermittelt. IR-Spektren: Zeiss IMR 16 und 25, Perkin–Elmer 580 B. Raman-Spektren: Varian Cary 82, Kryptonlaser (Erregerlinie 647.1 nm) der Fa. Spectra Physics. VIS-UV-Spektren: Shimadzu UV 260. ¹H-NMR-Spektren: Jeol JNM-PMX 60. Massenspektren: Varian MAT 212 (IXE-5 Quelle, EI, FD). Leitfähigkeit: Fa. WTW, Typ LF 39.

Tetraphenyldistiban (I)

10.6 g (0.46 mol) Na werden in einem 2 l-Kolben in ca. 1.5 l flüssigem Ammoniak unter starkem Rühren gelöst. Die blaue Lösung wird mit 81.5 g (0.23 mol) Triphenylstibin bei -77°C zu Natriumdiphenylstibid und Phenylnatrium umgesetzt. Das aus letzterem durch Ammonolyse entstehende Natriumamid wird anschliessend mit 12.3 g (0.23 mol) NH₄Cl zersetzt. Zu der tief-roten Lösung von Natriumdiphenylstibid in flüssigem Ammoniak tropft man dann bei -77°C innerhalb von 3 h 16.9 g (0.077 mol) 1,1,1-Tris(chloromethyl)ethan in 150 ml THF. Nach dem Abdampfen des Ammoniaks bei Raumtemperatur gibt man 300 ml Ether zu, filtriert vom ausgefallenen Natriumhalogenid ab (G4) und zieht die Lösungsmittel des Filtrats unter vermindertem Druck ab. Das zurückbleibende gelbe Öl nimmt man in 200 ml CH₂Cl₂ auf und gibt 200 ml EtOH zu. Die gelbe Verbindung I kristallisiert bei -24°C aus der Lösung aus, es wird abfiltriert, dreimal mit je 10 ml EtOH gewaschen und im Hochvakuum getrocknet. I ist gut löslich in THF, Ether, CH₂Cl₂ und CHCl3, mässig löslich in Petrolether und Hexan und praktisch unlöslich in EtOH und MeOH. Ausbeute: 33.3 g (52.5%). Schmp. 123-124°C, nach Ref. 10: 125°C. Analyse: Gef.: C, 52.22; H, 3.86. C₂₄H₂₀Sb₂ (551.92) ber.: C, 52.23; H, 3.65%. MS (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 140°C) m/z (rel. Int. %), 550 [M](15)(bez. auf ¹²¹Sb). IR (KBr): ν (CH)[arom.] 3050 s-m, 3030 s-m, 3010 s, 2980 s; Sb-sens. q 1060 m; Sb-sens. y 455 m, 439 m (cm $^{-1}$). Raman (fest): ν (CH)[arom.] 3056 s, 3040 s-m; Sb-sens. q 1062 s; Sb-sens. r 656 m; Sb-sens. y 450 ss; Sb-sens. t 262 m, 246 m-st; Sb-sens. u 225 m, 200 s-m; Sb-sens. x 175 m-st; ν (SbSb) 145 sst cm⁻¹.

1,1,1-Tris(diphenylstibinomethyl)ethan (II)

Die Umsetzung erfolgt analog der für I beschriebenen Methode mit 9.3 g (0.4 mol) Na, 70.6 g (0.20 mol) Triphenylstibin, 10.7 g (0.20 mol) NH₄Cl und 20.6 g (0.066 mol) 1,1,1-Tris(bromomethyl)ethan. In analogerweise wie oben erhält man nach Aufarbeitung ein gelbliches Öl, das in ca. 200 ml CH₂Cl₂ aufgenommen wird. Nach Zugabe von etwa 50 ml EtOH fällt gelbes I (-24°C, 12 h) aus, das abfiltriert wird. Durch weiteren Zusatz von EtOH zum Filtrat und mehrmalige Wiederholung dieser Verfahrensweise wird schliesslich I von dem später in farblosen feinen Nadeln auskristallisierenden II abgetrennt. Die abgetrennten Fraktionen von I und II werden jeweils noch einmal aus CH₂Cl₂/EtOH umkristallisiert, abfiltriert, dreimal mit je 10 ml EtOH gewaschen und im Hochvakuum getrocknet. Sowohl I, wie auch II, sind in THF, Ether, CH₂Cl₂ und CHCl₃ gut, in Petrolether und Hexan mässig und in EtOH und MeOH nahezu unlöslich.

I: Ausbeute: 20.23 g (36.6%). Schmp. 123–124°C, nach Ref. 10: 125°C. Analyse: Gef.: C, 52.21; H, 3.67. C₂₄H₂₀Sb₂ (551.92) ber.: C, 52.23; H, 3.65%. MS (EI, 70 eV,

Quellentemp. 150°C, Einlasstemp. 130°C) m/z (rel. Int. %) 550 [M](15)(bez. auf 121 Sb).

II: Ausbeute: 13.98 g (23.9%). Schmp. 120–121°C. Analyse: Gef.: C, 55.01; H, 4.48. $C_{41}H_{39}Sb_3$ (897.01) ber.: C, 54.90; H, 4.38%. ¹H-NMR (CDCl₃, TMS int.): δ 7.2 (m; 30 H, C_6H_5), 2.3 (s; 6 H, CH₂), 1.2 ppm (s; 3 H, CH₃). MS (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 200°C), m/z (rel. Int. %), 894 [M](<1)(bez. auf ¹²¹Sb), 817 [$M - C_6H_5$](12), 740 [$M - 2C_6H_5$](1), 663 [$M - 3C_6H_5$](3), 619 [$M - Sb(C_6H_5)_2$](27), 275 [Sb(C_6H_5)₂](100). IR(KBr): ν (CH)[arom.] 3060 m, 3050 s-m, 3020 s, 2990 s; ν (CH)[aliph.] 2945 s-m, 2925 s-m, 2890 s; δ_{as} (CH₃) 1448 s-m; δ (CH₂) 1405 s-m; δ s(CH₃) 1370 s-m; γ (CH₂) und τ (CH₂) 1262 s-m, 1208 s; ν (CC)[aliph.] 1095 s-m,br; Sb-sens. q 1068 m; ν (CC)[aliph.] 1048 s; ρ (CH₂) 803 s-m, 775 s, 755 s-m; Sb-sens. y 462 m-st, 449 m; Sb-sens. t 260 s-m, 250 s-m (cm⁻¹). Raman (fest): ν (CH)[arom.] 3042 s, 3016 ss; δ _{as}(CH₃) 1448 ss; δ (CH₂) 1404 s; γ (CH₂) und τ (CH₂) 1262 s, 1208 s, 1121 s; Sb-sens. q 1068 s; ν (CC) 1048 ss; Sb-sens. r 656 m; ν (SbC)[aliph.] 606 s, 570 m; Sb-sens. y 460 s; δ (CC₄) 412 ss, 344 s, 317 s; Sb-sens. t 262 m, 246 m; Sb-sens. u 225 m; Sb-sens. x 191 s, 159 s cm⁻¹.

1,1,1-Tris(dichlorstibinomethyl)ethan (III)

In eine auf 0°C gekühlte Lösung von 11.3 g (12.6 mmol) 1,1,1-Tris(diphenylstibinomethyl)ethan (II) in 200 ml CH₂Cl₂ leitet man bis zur beginnenden Trübung (ca. 1 h) trockenes Chlorwasserstoff-Gas ein. Die mit HCl gesättigte Lösung wird noch ca. 2 h bei 0°C gerührt. III fällt dabei aus der Lösung analysenrein in Form eines farblosen, mikrokristallinen Niederschlags aus, der abfiltriert, dreimal mit je 20 ml CH₂Cl₂ gewaschen und im Hochvakuum getrocknet wird. III ist in DMSO. DMF, THF und Aceton gut, in Ether mässig und in allen anderen gängigen org. Lösungsmitteln unlöslich. Ausbeute: 7.8 g (95.7%). Schmp. (Zers.) 231-233°C. Analyse: Gef.: C, 9.49; H, 1.42; Cl, 33.65. C₅H₉Sb₃Cl₆ (647.09) ber.: C, 9.28; H, 1.40; Cl, 32.87%. ¹H-NMR (Aceton- d_6 , TMS int.): δ 2.95 (s; 6 H, CH₂), 1.65 ppm (s; 3 H, CH₃). MS (FD, THF), m/z, 642 [M](bez. auf ³⁵Cl und ¹²¹Sb), (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 240°), m/z (rel. Int. %), 607 [M - Cl](2)(bez. auf ³⁵Cl und ¹²¹Sb), 572 [M-2Cl](<1), 537 [M-3Cl](<1), 502 [M-4Cl](2), 467 [M-5Cl](<1), 432 [M-6Cl](5), 189 $[C_5H_8Sb](100)$. IR (KBr): ν (CH) 2945 m-st, 2890 s, 2860 m; $\delta_{as}(CH_3)$ 1450 st; $\delta(CH_2)$ 1430 s, 1402 s-m; $\delta_s(CH_3)$ 1375 m; $\gamma(CH_2)$ und $\tau(CH_2)$ 1263 m, 1210 m, 1142 s; $\nu(CC)$ 1060 m, 995 m, 945 s-m, 890 s; $\rho(CH_2)$ 762 m, 750 m, 735 m-st, 695 m, 629 m-st; $\nu(SbC)$ 542 s, 450 s, 425 m; ν (SbCl) 345 sst, 308 sst, 280 m-st cm⁻¹. Raman (fest): ν (CH) 2944 s, 2870 s; $\delta_{\rm s}({\rm CH_3})$ 1372 ss; $\gamma({\rm CH_2})$ und $\tau({\rm CH_2})$ 1212 s, 1145 s; $\nu({\rm CC})$ 1000 ss; $\rho({\rm CH_2})$ 765 ss, 754 s, 629 s-m; ν (SbC) 533 m, 450 s, 427 s; δ (CC₄) 377 s; ν (SbCl) 325 st, 285 s, 271 s; δ (CSbCl) 177 s; δ (SbCl₂) 150 m cm⁻¹.

$4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2,6}] heptan~(IV)$

Zu 3.84 g (5.93 mmol) III in 200 ml THF werden unter Rühren 10 g (4.35 mol) granuliertes Natrium gegeben. Man erhitzt ca. 0.5 h unter Rückfluss und filtriert die erkaltende Lösung bei beginnender Orangefärbung von überschüssigem Na, ungelöstem NaCl und Zersetzungsprodukten ab. Der Rückstand wird dreimal mit je 10 ml THF gewaschen und das Lösungsmittel unter vermindertem Druck bis auf ca. 50 ml abgezogen. IV kristallisiert aus der gelben Lösung in Form oranger Kristallplättchen bei -24° C aus, wird abfiltriert, dreimal mit je 5 ml Hexan

gewaschen und im Hochvakuum getrocknet. Nach Stehenlassen des Filtrats bei – 24°C erhält man nochmals eine analysenreine Nachfällung von IV, die wie die 1. Fraktion behandelt wird. IV ist gut in THF, mässig in CH₂Cl₂ und CHCl₃ und in allen anderen gängigen org. Lösungsmitteln unlöslich. Ausbeute: 1.80 g (70%). Schmp. (Subl.) 216–218°C. Analyse: Gef.: C, 13.94; H, 2.15. C₅H₉Sb₃ (434.38) ber.: C, 13.82; H, 2.09%. ¹H-NMR (CDCl₃, TMS int.): δ 1.65 (s; 3 H, CH₃), 1.45 ppm (s; 6 H, CH₂). MS (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 70°C), m/z (rel. Int. %), 432 [M](73)(bez. auf ¹²¹Sb), 417 [M – CH₃](13), 377 [CH₂Sb₃](7), 363 [Sb₃](100).

4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2,6}]heptan-pentacarbonyl-chrom(0) (Va)

55 mg (0.25 mmol) Cr(CO)₆ werden in 5 ml THF unter Rühren 2 h mit UV-Licht bestrahlt. Die Lösung von Cr(CO)₅THF wird dann innerhalb von 5 min zu einer Lösung von 100 mg (0.23 mmol) IV in 10 ml THF getropft. Nach 2 h Rühren bei Raumtemperatur zieht man das Solvens unter vermindertem Druck ab, nimmt das ölige Produkt in 5 ml CH₂Cl₂ auf, filtriert von Unlöslichem ab und gibt 10 ml n-Hexan hinzu. Innerhalb von 5 d bei -24°C scheidet sich analysenreines Va in Form dunkelroter Kristalle ab, die abfiltriert, dreimal mit je 3 ml n-Hexan gewaschen und im Hochvakuum getrocknet werden. Va ist gut löslich in THF, CH₂Cl₂ und CHCl₃, mässig in Benzol und unlöslich in Petrolether und n-Hexan. Ausbeute: 110 mg (76.4%). Schmp. (Zers.) 231-234°C. Analyse: Gef.: C, 19.29; H, 1.67. C₁₀H₉O₅Sb₃Cr (626.42) ber.: C, 19.17; H, 1.45%. ¹H-NMR (CD₂Cl₂, TMS int.): δ 2.0 ppm (m; CH₂, CH₃). MS (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 120°C), m/z (rel. Int. %), 624 [M](6)(bez. auf ⁵²Cr und ¹²¹Sb), 596 [M - CO](6), 568 [M - 2CO](2), 540 [M - 3CO](4), 512 [M - 4CO](4), 484 [M - 5CO](11), 432 [M - Cr(CO)₆](95), 363 [Sb₃](100).

4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2,6}]heptan-pentacarbonyl-molybdän(0) (Vb)

75 mg (0.28 mmol) Mo(CO)₆ werden in 10 ml THF unter Rühren 1 h mit UV-Licht bestrahlt. Die Lösung von Mo(CO)₅THF wird dann innerhalb von 5 min zu einer Lösung von 100 mg (0.23 mmol) IV in 10 ml THF getropft. Nach 1 h Rühren bei Raumtemperatur zieht man das Solvens unter vermindertem Druck ab, nimmt das feste rotbraune Rohprodukt in 5 ml CH₂Cl₂ auf, filtriert von Unlöslichem ab und gibt 15 ml n-Pentan hinzu. Es scheidet sich dabei sofort ein braunes Produkt ab, das abfiltriert wird. Aus dem Filtrat kristallisiert Vb innerhalb von 2 h bei -24°C in feinen, karminroten Nadeln aus, die abfiltriert, dreimal mit je 3 ml n-Pentan gewaschen und im Hochvakuum getrocknet werden. Vb is gut löslich in THF, CH₂Cl₂ und CHCl₃, mässig in Benzol und unlöslich in Petrolether, n-Hexan und n-Pentan. Ausbeute: 75 mg (48.6%). Schmp. (Zers.) 125-127°C. Analyse: Gef.: C, 17.97; H, 1.38. $C_{10}H_9O_5Sb_3Mo$ (670.37) ber.: C, 17.92; H, 1.35%. ¹H-NMR $(CD_2Cl_2, TMS int.)$: δ 2.0 ppm (m; CH_2, CH_3). MS (FD, CH_2Cl_2), m/z, 670 [M](bez. auf 98 Mo und 121 Sb), (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 120°C), m/z (rel. Int. %), 670 [M] (<1)(bez. auf ⁹⁸Mo und ¹²¹Sb), 642 [M-CO(<1), 614 [M-2CO](<1), 599 $[M-2CO-CH_3](<1)$, 530 [M-5CO](<1), 432 $[M - Mo(CO)_5](81)$, 363 $[Sb_3](100)$.

$4-Methyl-1,2,6-tristiba-tricyclo[2.2.1.0^{2.6}] heptan-pentacarbonyl-wolfram (0) \ (Vc)$

83 mg (0.24 mmol) W(CO)₆ werden in 10 ml THF unter Rühren 2 h mit UV-Licht bestrahlt. Die Lösung von W(CO)₅THF wird dann innerhalb von 5 min

zu einer Lösung von 85 mg (0.20 mmol) IV in 10 ml THF getropft. Nach 2 h Rühren bei Raumtemperatur zieht man das Solvens unter vermindertem Druck ab, nimmt das feste hellrote Produkt in 5 ml $\rm CH_2Cl_2$ auf, filtriert von Unlöslichem ab und gibt 10 ml n-Pentan zu. Analysenreines Vc scheidet sich bei $-24^{\circ}\rm C$ innerhalb von 2 d in Form karminroter Kristalle ab, die abfiltriert, dreimal mit je 3 ml n-Pentan gewaschen und im Hochvakuum getrocknet werden. Vc is gut löslich in THF, $\rm CH_2Cl_2$ und $\rm CHCl_3$, mässig in Benzol und unlöslich in Petrolether, n-Hexan und n-Pentan. Ausbeute: 96 mg (63.3%). Schmp. (Zers.) 148–150°C. Analyse: Gef.: C, 15.83; H, 1.26. $\rm C_{10}H_9O_5Sb_3W$ (758.28) ber.: C, 15.84; H, 1.20%. $\rm ^1H$ -NMR ($\rm CD_2Cl_2$, TMS int.): δ 2.0 ppm (m; $\rm CH_2$, $\rm CH_3$). MS (EI, 70 eV, Quellentemp. 150°C, Einlasstemp. 130°C), m/z (rel. Int. %), 754 [M](<1), (bez. auf $\rm ^{121}Sb$ und $\rm ^{182}W$), 726 [M – $\rm CO$](1), 698 [M – 2 $\rm CO$](<1), 642 [M – 4 $\rm CO$](<1), 629 [M – 4 $\rm CO$ – $\rm CH_3$](<1), 614 [M – 5 $\rm CO$](1), 545 [Sb₃W](<1), 432 [M – W($\rm CO$)₅](95), 363 [Sb₃](100).

Dank

Der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie und Fonds der Chemischen Industrie danken wir für die Unterstützung und Förderung der vorliegenden Arbeit. Herrn S. Lahner gilt unser Dank für die Aufnahme der VIS-UV-Spektren.

Literatur

- 1 J. Ellermann, L. Brehm, E. Lindner, R. Fawzi, W. Hiller, F.L. Dickert und M. Waidhas, J. Chem. Soc., Dalton Trans., zur Veröffentlichung eingereicht.
- 2 Gmelin Handbook of Inorganic Chemistry, Sb, Organoantimony Compounds Part 2, 8 th edit., S, 150, Springer Verlag, Berlin 1981.
- 3 K. Issleib und A. Balszuweit, Z. Anorg. Allg. Chem., 419 (1976) 87.
- 4 H.J. Breunig, K. Häberle, M. Dräger und T. Severengiz. Angew. Chem., 97 (1985) 62.
- 5 K. Issleib, B. Hamann und L. Schmidt, Z. Anorg. Allg. Chem., 339 (1965) 298.
- 6 H.J. Breunig, Z. Naturforsch. B, 33 (1978) 242.
- 7 O. Mundt, G. Becker, H.-J. Wessely, H.J. Breunig und H. Kischkel, Z. Anorg. Allg. Chem., 486 (1982) 70.
- 8 J. Ellermann und A. Veit, Angew. Chem., 94 (1982) 377; Angew. Chem. Int. Ed. Engl., 21 (1982) 375.
- 9 Houben-Weyl, Methoden der organischen Chemie, Bd. XII, 8, Metallorganische Verbindungen, As, Sb, Bi, H. Kropf (Hrsg.), S. Samaan (Bearbeiter), G. Thieme Verlag, Stuttgart 1978.
- 10 W. Hewertson und H.R. Watson, J. Chem. Soc. (London), (1962) 1490.
- 11 W. Fichtner, Synthesen, Charakterisierung und Reaktionen von Übergangsmetallcarbonylkomplexen mit Tetraalkyl- und Tetraphenyldistiban-Liganden, Minerva Publikation, München 1981.
- 12 J. Ellermann, E. Köck und H. Burzlaff, Acta Cryst. C, (1985) zur Veröffentlichung eingereicht.
- 13 A.J. Ashe, III, W. Butler und T.R. Diephouse, J. Am. Chem. Soc., 103 (1981) 207.
- 14 O. Mundt, H. Riffel, G. Becker und A. Simon, Z. Naturforsch. B, 39 (1984) 317.
- 15 J. Ellermann und A.A.M. Demuth, Angew. Chem., 96 (1984) 785; Angew. Chem. Int. Ed. Engl., 23 (1984) 805.
- J. Ellermann und H. Schössner, Angew. Chem., 86 (1974) 646; Angew. Chem. Int. Ed. Engl., 13 (1974) 601; G. Thiele, G. Zoubek, H.A. Lindner und J. Ellermann, Angew. Chem., 90 (1978) 133; Angew. Chem. Int. Ed. Engl., 17 (1978) 135.
- 17 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 18 K.M. Mackay, D.B. Sowerby und W.C. Young, Spectrochim. Acta A, 24 (1968) 11.
- 19 J. Hildbrand und G. Kaufmann, Spectrochim. Acta A, 26 (1970) 1407.
- 20 J. Ellermann, H.A. Lindner, H. Schössner, G. Thiele und G. Zoubek, Z. Naturforsch. B, 33 (1978) 1386.
- 21 J. Ellermann, H.A. Lindner und H. Gäbelein, J. Organomet. Chem., 172 (1979) 39.

- 22 R. Gleiter, H. Köppel, P. Hofmann, H.R. Schmidt und J. Ellermann, Inorg. Chem., 24 (1985) zur Veröffentlichung eingereicht.
- 23 J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen I, S. 213, Georg Thieme Verlag Stuttgart, New York 1981.
- 24 F. Oswald, Z. Analyt. Chemie, 197 (1963) 309.
- 25 D.M. Adams, Metal-Ligand and Related Vibrations, S. 98, Edward Arnold Publishers, London, 1966.
- 26 H. Gilman und F. Schulze, Org. Synt. Coll., Vol. I, 2. Aufl., (1932) 550.
- 27 W.M. Urry und J.R. Eiszner, J. Am. Chem. Soc., 74 (1952) 5822.
- 28 H. Stetter und W. Böckmann, Chem. Ber., 84 (1951) 836.