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Summary

Reactions of substituted dichlorosilanes, R'R?SiCl, (R! = CH,, R? = Ph, vinyl),
with butadienemagnesium yield methoxybutenylsilane derivatives and silacyclopent-
3-enes after treatment with methanol at —70°C. For R =vinyl, a substituted
cyclodeca-3,8-diene is formed in addition to the 1,4-disilylated butenylic species. The
nature of the range of products suggests that silyl-substituted crotyl-Grignard
compounds are the major intermediates.

Introduction

Recently we reported that substituted silacyclopent-3-ene derivatives could be
formed in good yield by treating diorganodichlorosilanes with butadienemagnesium

(1) (eq. 1) [1].

\
SiCl,  +  MglC,Hg) —s Si D (1)

L 2.8

We suggested, by analogy to the reaction of dichlorophosphines with butadiene-
magnesium [2], that vinylsilirane species might be involved as intermediates. Vinyl-
siliranes are believed to be involved in the reaction of photochemically generated
silylene with butadienes [3] but have never been isolated, and would presumably
rearrange rapidly to give substituted silacyclopent-3-enes or, on methanolysis,
methoxybutenylsilicon derivatives.
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Results

We now describe some further reactions between diorganodichlorosilanes and
butadienemagnesium which suggest that a silicon-substituted crotyl-Grignard com-
pound is the key intermediate. Reaction of butadienemagnesium with phenylmethyl-
dichlorosilane in toluene at —78°C followed, after 24 h, by treatment with excess
methanol and triethylamine gave phenylmethylsilacyclopent-3-ene (2) (50% yield,
based on reacted starting material) as the major product, along with the methoxy-
butenylsilane derivatives 3 to 5 (X =O0OCH,) in 12% yield. If the reaction is
quenched after 60 h at —70°C, only isomer 3 is isolated.

Ph Ph
N /\/\ \ /\/\
Si /Sl\
VRN
Me X Me X
X =0CH,4 3 4 5 :Z-isomer
X =Cl 6 ;_ _i:Z-isomer

If in the absence of amine only enough methanol is added to destroy the
unchanged phenylmethyldichlorosilane, then the chloro-substituted analogues of 3 to
5 (X ={l, 6 to 8) can be identified (GC/MS) in the mixture.

When vinylmethyldichlorosilane and butadienemagnesium are brought into reac-
tion and the mixture is subsequently treated with methanol in the presence of
triethylamine only minor amounts of 3-butenylmethylvinylmethoxysilane (10) and
its isomer 11 analogous to 4 or 5 are formed, but vinylmethylsilacyclopent-3-ene (9)
is a major product (20%).

i Si
/
Me OCH, Me/ \OCH3
1 1

In addition, (R*,R*)- and (R*,S*)-3,8-dimethoxy-3,8-dimethyl-3,8-disiladeca-
1,5,9-trienes (12a and 12b) and the dimeric species 1,6-divinyl-1,6-dimethyl-1,6-di-
silacyclodeca-3,8-diene (13), in three isomeric forms, are generated in 8% yield. (The
1,1,6,6-tetramethyl compound analogous to 13 is known [5].) The cis/cis-
arrangement of double bonds in two of these products has been assigned on the
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basis of 'H NMR and IR measurements; the remaining isomer probably has a
cis / trans-arrangement of the double bonds.

Discussion

On the basis of these results we suggest that in reactions involving butadiene-
magnesium a substituted crotyl-Grignard compound I is formed initially. A structur-
ally related intermediate has recently been suggested for the reaction of ZrCl,(n’-
C,H,) with butadienemagnesium [6].

RZ
|—/=—\_
isom. = Ci—Si— MgCi = isom.
l
R1

I

I is the product of an initial electrophilic attack of silicon on a terminal carbon
atom of the butadiene dianion equivalent, which then may further react to give
either 3 to 5 (on methanolysis) or the silacyclopent-3-ene (2). This latter product may
be formed directly by elimination of MgCl, from Ia, or alternatively Ib may cyclize
to a vinylsilarane, which would be expected to rearrange to 2 [3].

Methanolysis of crotyl-Grignard gives 1-butene as the major product rather than
2-butene [4], and this parallels the isomer distribution in methanolysis of I (R = Ph)
which was shown to be 3/4/5=75/2/1, whereas only 3 is formed after reaction at
—70°C (60 h).

If R = vinyl, the intermediate appears to be more reactive towards both dimeriza-

SCHEME 1
4 3 s
\+M90H T+MQOH T+ Me OH
Me M‘e Mg Cl Mle Mg Cl
| = _/J
Ph—Si—/_\_MgCI == Ph—Si \ == Ph-—Si
| |
Cl Cl Cl
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tion and reaction with the starting dichlorosilane, since a 1/1 ratio of the two
isomers of 12 is formed along with 13 on methanolysis. In the absence of methanol
both 13 and the precursor to 12, the 3,8-dichlorosilane 14, are observed (GC/MS).
These results suggest that the silyl-substituted Grignard I is the major inter-
mediate involved in the reaction of butadienemagnesium and dichlorosilanes.

Experimental

Infrared spectra were recorded on a Nicolet 7000 spectrometer. The 'H NMR
spectra were obtained with a Bruker WP-80 or a Varian WH-270. GC analyses were
made with Siemens I or Varian 3700 instruments. Mass spectra were recorded on a
Varian MAT CH-5. All reactions were carried out in an atmosphere of argon.

Reaction of butadienemagnesium with phenylmethyldichlorosilane. Butadiene-
magnesium (1) (7.2 g, 32.4 mmol) was added in portions to a stirred solution of
phenylmethyldichlorosilane (6 g, 31.4 mmol) in 150 ml of dry toluene at —70°C.
The mixture was kept at —70°C for 24 hour then treated with Et;N/MeOH (4.5
ml/2.5 ml). After filtration and removal of the solvent the residual mixture was
distilled. A 2.5 g fraction contained 20% of phenylmethyldimethoxysilane, 59% of 2,
1.3% of Z-4, 0.5% of E-2-butenylphenylmethylmethoxysilane (5), and 2.6% of
3-butenylphenylmethylmethoxysilane (3). Preparative GC (22 m PS; FID; 220°C/
60-320°C /330°C, 8°C/min, He 1.5 bar) gave pure 3 ('"H NMR: 0.35, s (CH;, 3H);
2, m (CH,, 4H); 342, s (OCH;, 3H); 4.8 and 5.90, m (vinyl, 3H); 7.3, 7.5, m
(phenyl, SH). MS (m/e): 206 (3%), 181, 178 (20%), 151 (100%), 121 (40%), 59, and 4
and 5 (not fully separated) ("H NMR: 0.34, s (CH,); 1.48, 2d (C-CH;); 1.74, m
(CH,); 3.43, s (O-CH,;); 5.36, m (HC=CH), 7.3, 7.5, m (phenyl). MS (m/e): 206,
151 (100%), 121 (40%), 59 (compare ref. 3).

Reaction of 1 with phenylmethyldichlorosilane followed by treatment with MeOH.
The procedure was as described above, but only one equivalent of MeOH was added
after 24 h. A fraction of 2.5 g was isolated, and this consisted of 19% of unreacted
phenylmethyldichlorosilane, 51% of phenylmethyldimethoxysilane, 7% of 2, and
4.0%, 71% of Z-6, E-2-butenylphenylmethylchlorosilane and 3.1% of 8, and 3-
butenylphenylmethylchlorosilane (7) (Retention times 17.0, 17.5 and 17.9). MS
(m/e) for 6 and 8: 212, 210, 157 (40%), 155 (100%), 91, 63. For 7: 212, 210, 182,
171, 169, 157 (40%), 155 (100%), 117, 91, 63.

Reaction of 1 with vinylmethyldichlorosilane. This mixture formed from 11.5 g (82
mmol) of vinylmethyldichlorosilane in 500 ml of dry toluene and 20 g of 1 was kept
for 20 h and then treated with 3.3 ml of MeOH (82 mmol) and Et;N (2.2 ml). A 8.5
g fraction found to contain 54% of toluene, 3.5% of 9, and 6.3% of 3-butenylvinyl-
methylmethoxysilane (10), 4.6% of 2-butenylvinylmethylmethoxysilane (11), 5.6% of
3,8-dimethoxy-3,8-dimethyl-3,8-disiladeca-1,5,9-triene (12), and 3.3% of 1,6-divinyl-
1,6-dimethyl-1,6-disilacyclodeca-3,8-diene (13) and was separated by preparative
GC. For GC 55 m PS-240, FID, 200°C/60-240°C/250°C, 0.8 bar H,).

10: '"H NMR: 0.14, s (CH,, 3H); 0.72, m (SiCH,, 2H); 2.0, m (CH,, 2H); 3.28, s
(OCH,;, 3H), 5.0-6.0, m (2 vinyl, 6H). MS (m/e): 156 (1%), 141, 128 (20%), 101
(100%), 75 (30%). C4H,,0Si (156.21) Found: C, 61.9; H, 9.9; Si, 17.8 Calcd.: C,
61.5; H, 10.3, Si, 17.9.

11: '"H NMR: 0.17, s (CH,, 3H); 1.55, d (CH,, 3H); 1.63, d (SiCH,, 2H); 3.31, s
(OCH,;, 3H); 5.5, m (HC=CH, 2H); 6.0, m (vinyl, 3H). MS (m/e): 156 (5%), 141,
101 (100%), 75 (20%).
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12: "H NMR: 0.19, s (CH,, 6H); 1.65, m (SiCH,, 4H); 3.32, s (OCH,, 6H); 5.47,
m (HC=CH, 2H); 6.0, m (2 vinyl, 6H). MS (m/e): 256, 241, 215, 161, 101 (100%),
75 (25%), 45. IR: 1625 cm™?, shoulder at 1638 cm ™!, predominantly (Z). The GC
clearly shows two peaks, retention time 33.8 and 34.5 min, presumably (R*, R*) and
(S*, R*) isomers.

13: 'H NMR: 3 isomers, 53,/29/18 ratio; major isomer Z, Z, C, symmetry: 0.08,
s (CH,, 6H); 1.58, m (SiCH,, 8H); 5.39, qu (HC=CH, 4H); 5.70, 5.96, 6.15 (vinyl,
6H). Second isomer, Z,Z, C, symmetry: 0.07, s (CH;, 6H); 1.6, m (SiCH,, 8H);
5.27, qu (HC=CH, 4H); 5.70, 5.96, 6.15 (vinyl, 6H). Third isomer, presumably Z, E;
similar 'H NMR spectrum. MS (m/e): 248 (20%), 124 (15%), 109, 96 (100%), 71
(40%), 55. IR: 3005, 1640 cm ™!, Z-isomer; 1660 cm™", weak, E-isomer.

Reaction of 1 with vinylmethyldichlorosilane, followed by treatment with MeOH.
After a procedure analogous to that above analysis by GC/MS (20 m OV 1;
100-300°C, He 0.55 bar showed to produce 3,8-dimethyl-3,8-dichloro-3,8-disiladeca-
1,9-diene (14); MS (m/e): 266, 264, 223, 124, 107, 105 (100%), 96 (90%), 79 (60%),
63.
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