Journal of Organometallic Chemistry, 280 (1985) C43—C46 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

THE MOLECULAR STRUCTURE OF A GERMENE GeR₂ ($R = CH(SiMe_3)_2$) BY GAS ELECTRON DIFFRACTION; SELF-CONSISTENT-FIELD MOLECULAR ORBITAL CALCULATIONS ON STANNENE, SnH_2 , AND DISTANNENE, Sn_2H_4

TORGNY FJELDBERG,

Department of Chemistry, University of Trondheim, N-7055 Dragvoll (Norway)

ARNE HAALAND, BIRGITTE E.R. SCHILLING, HANS V. VOLDEN,

Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo 3 (Norway)

MICHAEL F. LAPPERT and ANDREW J. THORNE

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received August 9th, 1984)

Summary

Ge[CH(SiMe₃)₂]₂ is a V-shaped monomer in the gas phase at ca. 430 K, with Ge—C 204(2) pm and angle CGeC = $107(2)^{\circ}$; ab initio MO calculations on Sn₂H₄, with better than double ζ basis, indicate that (i) a non-planar *trans*-folded conformation is more stable than a planar structure by 26 kJ mol⁻¹, and (ii) the optimal angle between the Sn—Sn vector and an SnH₂ plane is 46°.

The Group IV metal(II) alkyls $(MR_2)_n$ $(M = Ge \text{ or } Sn, R = CH(SiMe_3)_2)$ at present represent a unique class of compounds, which exist as monomers (n = 1, the carbene analogues) or dimers (n = 2, the alkene analogues) depending on phase. Points of interest for each of MR_2 and M_2R_4 include (i) the equilibrium geometry; (ii) M—C angles and CMC bond lengths and angles; (iii) trends as between M = C, (Si), Ge, and Sn; and (iv) for MR_2 , comparisons with related MX_2 molecules. The present communication addresses these problems, and provides (a) experimental results on the gas phase structure of GeR_2 and (b) computational data on SnH_2 and Sn_2H_4 (as models for SnR_2 and Sn_2R_4).

The compounds GeR_2 and SnR_2 (R = $CH(SiMe_3)_2$) are monomeric in hydrocarbon solution and in the gas phase (by mass spectrometry or photoelectron spectroscopy) [1]. The molecular structure of gaseous SnR_2 (by gas electron dif-

fraction (GED)) is V-shaped, with Sn—C 224(1) pm and angle CSnC 96(1)° [2]. The electron diffraction pattern of GeR₂ was recorded with reservoir and nozzle temperatures of about 430 K corresponding to a vapour pressure of about 1 torr. Structure refinements were based on a model of C_2 symmetry defined by three bond distances (Ge—C, Si—C, and C—H), five valence angles, and three torsional angles. Least-squares refinements gave Ge—C 204(2) and Si—C(mean) 189(1) pm; angles CGeC 107(2)°, GeCSi 111(1)°, and SiCSi 113(1)°. The other structure parameters are unexceptional, Fig. 1.

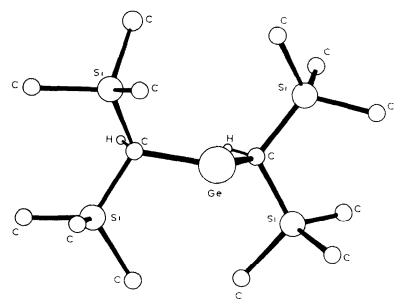
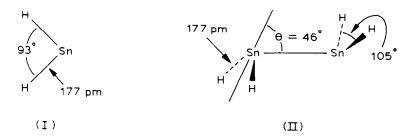



Fig. 1. Molecular structure of Ge[CH(SiMe₃)₂]₂, as determined by gas-phase electron diffraction.

The Ge–C bond distance is about 10 pm larger than in GeMe₄, 194.5(3) pm [3]. A similar $M^{II} \rightarrow M^{IV}$ SnC bond-shortening was noted in SnR₂ vs. SnMe₄ [2]. Surprisingly, the CGeC valence angle is now found to be ca. 10° larger than CSnC in SnR₂. Previously we noted (i) a similar, but somewhat less marked, monotonic decrease in the angle at M of the isoelectronic amides M[N(SiMe₃)₂]₂ (NMN 101(1.5) (M = Ge), 96 (M = Sn), or 91(2)° (M = Pb)), attributed to Bent's rule; and (ii) a similar $M^{IV} - N \rightarrow M^{II} - N$ bond-lengthening [4]. A further manifestation of Bent's rule is that $CM^{II}C > NM^{II}N > OM^{II}O$ (from X-ray data on M(OAr)₂, Ar = C₆H₂But'₂-2,6-Me-4) [5]: however, the large CGeC angle is probably due to steric effects.

Studies by X-ray crystallography show that GeR_2 [6] and SnR_2 [1] are dimeric in the solid phase. The C_2MMC_2 fragments are trans-folded, the angle between the M-M vectors and MC_2 plane being θ 32° (M = Ge) and 41° (M = Sn). Ab initio MO calculations on Ge_2H_4 [7] (see also refs. 2 and 8) have yielded trans-folded equilibrium structures with θ ranging from 34 to 40°.

We now report the results of similar calculations on SnH_2 and Sn_2H_4 , with better than double- ζ basis [9]; the calculated equilibrium structures are summarised in I and II [10].

The optimal Sn—Sn bond distance in Sn_2H_4 , 271 pm, is slightly shorter than the experimental value for Sn_2R_4 , 276 pm [1]. The experimental CSnC angle in SnR_2 is 97° [2]; in Sn_2R_4 it has increased to 112° [1]. A similar difference is now found between the optimal HSnH angles in SnH_2 (93°) and Sn_2H_4 (105°). The larger angles in the alkyl derivatives may be due to steric factors.

The equilibrium conformation of Sn_2H_4 is trans-folded with θ 46°; the experimental values [6] for θ in Ge_2R_4 and Sn_2R_4 are 32 and 42°, respectively. The energy of the equilibrium conformation of Sn_2H_4 is 26 kJ mol⁻¹ below the optimum planar model (where Sn—Sn 255 pm). The stability of a trans-folded relative to a planar structure increases along the series C_2H_4 , Si_2H_4 , Ge_2H_4 , and Sn_2H_4 (as was previously shown diagrammatically for the first three members [2]). In Sn_2H_4 , θ is calculated to be only 6° larger than in Ge_2H_4 , but stabilisation by trans-folding is 26 vs. 12 kJ mol⁻¹.

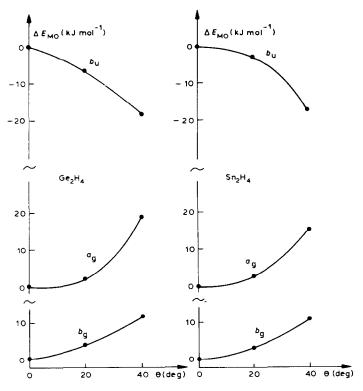


Fig. 2. Variation of energies of the three highest occupied molecular orbitals of Ge_2H_4 and Sn_2H_4 with the fold angle θ .

In Fig. 2 we show the variation of the orbital energies of the HOMO's of Ge_2H_4 and Sn_2H_4 as functions of θ . In both molecules the energy of the b_u (M—M π -bonding) orbital drops when θ is increased from zero. (The effect is due to mixing with the M—M σ -antibonding orbital.) The energy of the a_g (M—M σ -bonding) orbital increases with θ . The non-planar equilibrium structures of these molecules may thus be attributed to the "inertness" of the b_u electrons. In the equilibrium conformation, these electrons constitute a delocalised lone-pair in metal-centred (sp)-hybrid orbitals; the stabilisation by π -bonding in the planar form does not apparently compensate for the $sp \rightarrow p$ promotion energy.

If Ge_2H_4 and Sn_2H_4 were *cis*-folded, mixing of the b_u HOMO with the σ antibonding orbital is forbidden by symmetry. The SCF energy is therefore found to increase with θ , and internal rotation about the M—M bonds is restricted.

Acknowledgements. We thank the S.E.R.C. and Dow Corning PLC (Barry) for a C.A.S.E. grant to A.J.T., the Norwegian Research Council for Science and Technology for a grant to B.E.R.S. and for general support.

References

- 1 D.E. Goldberg, D.H. Harris, M.F. Lappert and K.M. Thomas, J. Chem. Soc., Chem. Commun., (1976) 261; P.J. Davidson, D.H. Harris and M.F. Lappert, J. Chem. Soc., Dalton Trans., (1976) 2268.
- 2 T. Fjeldberg, A. Haaland, M.F. Lappert, B.E.R. Schilling, R. Seip and A.J. Thorne, J. Chem. Soc., Chem. Commun., (1982) 1407.
- 3 J.L. Hencher and F.J. Mustoe, Can. J. Chem., 53 (1975) 3542.
- 4 T. Fjeldberg, H. Hope, M.F. Lappert, P.P. Power, and A.J. Thorne, J. Chem. Soc., Chem. Commun., (1983) 639.
- 5 B. Cetinkaya, I. Gümrükcü, M.F. Lappert, J.L. Atwood, R.D. Rogers and M.J. Zaworotko, J. Am. Chem. Soc., 102 (1980) 2088.
- 6 P.B. Hitchcock, M.F. Lappert, S.J. Miles and A.J. Thorne, J. Chem. Soc., Chem. Commun., (1984) 480.
- 7 G. Trinquier, J.-P. Malrieu and P. Rivière, J. Am. Chem. Soc., 104 (1982) 4529.
- 8 S. Nagase and T. Kudo, J. Mol. Struct. Theochem, 103 (1983) 35.
- 9 Basis set for Sn: A. Strømberg, O. Gropen and U. Wahlgren, J. Comput. Chem., 4 (1983) 181. H: T.H. Dunning, J. Chem. Phys., 53 (1970) 2823. Program DISCO: J. Almløf, K. Faegri, Jr. and K. Korsell, J. Comput. Chem., 3 (1982) 385.
- 10 In the calculations on Sn_2H_4 , the Sn—H bond distance was fixed at 177 pm; the Sn—Sn bond distance, the HSnH angle, and the folding angle θ were optimised.