Journal of Organometallic Chemistry, 262 (1984) C24—C26 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

REAKTIONSSTEUERUNG BEI UMSETZUNG DISUBSTITUIERTER ALKINE MIT KOHLENMONOXID AN NICKEL(II)-KOMPLEXEN

HEINZ HOBERG* und F. JAVIER FAÑANÁS

Max-Planck-Institut für Kohlenforschung, Postfach 10 13 53, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (B.R.D.)

(Eingegangen den 30. November 1983)

Summary

Depending on temperature and pressure, 2-butyne reacts with s-amines and carbon monoxide in nickel(II) complexes, either stoichiometrically or in a catalytic manner.

Nickel(II)-Komplexe reagieren unter basischen Bedingungen mit Kohlenmonoxid und sek.-Aminen zu Oxalsäurederivaten [1], bei Zugabe monosubstituierter Alkine oder Acetylen zu Acetylencarboxamiden [2] und in Gegenwart von 1,3-Dienen zu Diencarbonsäureamiden [3].

Wir haben unsere Untersuchungen auf disubstituierte Alkine ausgedehnt und fanden, dass in Abhängigkeit von der Temperatur und dem Kohlenmonoxid-Druck verschiedenartige Reaktionsfolgen eintreten. So dominiert im Temperaturbereich um ca. 70°C und bei einem Druck von ca. 15 bar eine stöchiometrische Reaktion, wird hingegen die Temperatur auf ca. 100°C erhöht und gleichzeitig der Druck um ca. eine Zehnerpotenz auf 1 bar gesenkt, so erfolgt eine katalytische Umsetzung.

Lässt man auf eine Suspension von $[(C_2H_5)_2NH]_2NiBr_2$ (I), 2-Butin (II) und $(C_2H_5)_2NH$ (III) (Molverhältnis I/II/III = 1/5/3) in THF/Ether bei 70°C Kohlenmonoxid von P(CO) 15 bar einwirken, so entsteht gemäss A das cis-Doppelcarbamoylierungsprodukt (IV) in ca. 91% Ausbeute (stöchiometrische Reaktion).

Wird jedoch I mit II und III (Molverhältnis 1/50/50) bei $T\simeq 100^{\circ}\mathrm{C}$ und $P(\mathrm{CO})\simeq 1$ (!) bar umgesetzt, so entsteht gemäss B der Heterocyclus V in einer katalytischen Reaktion mit ca. 15 Cyclen bezogen auf I. Als Nebenprodukte werden IV und Tetramethylcyclopent-2-enon [4] (VI) gebildet.

Die Ausdehnung dieser unerwarteten Reaktionssteuerung auf andere Alkine, Alkene, Diene usw., sowie die Aufklärung des Reaktionsablaufes ist Gegenstand weiterer Untersuchungen.

$$H_{3}CC = CCH_{3} \qquad \qquad H_{3}C \qquad CH_{3} \qquad N(C_{2}H_{5})_{2}NH \qquad N(C_{2}H_{5})_{2} \qquad N($$

Experimentelles

Als Reaktionsgefäss dienten V4A Stahlautoklaven (200 und 100 ml) Eigenbau MPI Mülheim. Manometer: (a) bis max, 25 bar, (b) bis max. 6 bar, Skalenwert: 0.05 bar.

Darstellung von IV. In einem 200 ml Rührautoklaven werden 3.6 g (9.87 mmol) $[(C_2H_5)_2NH]_2NiBr_2$ (I) [5] in 90 ml THF/Ether (2/1) suspendiert, dann gibt man 2.2 g (3.0 ml, 29.61 mmol) Diethylamin und 2.67 g (3.93 ml, 49.35 mmol) 2-Butin zu. Anschliessend wird auf ca. 70°C (± 2°C) erwärmt. Bei dieser Temperatur stellt sich ein Innendruck von ca. 1.2 bar ein. Unter Rühren wird nun Kohlenmonoxid aufgepresst bis zu einem Gesamtdruck von ca. 16 bar, nach ca. 1 h ist der Druck auf ca. 6 bar abgefallen. Das erkaltete Reaktionsgemisch wird mit ca. 20 ml 2 N H_2SO_4 hydrolysiert (Vorsicht Ni(CO)₄), die wässrige Phase mit Ether extrahiert, die organische Phase über MgSO₄ getrocknet, vom Lösungsmittel befreit und der Rückstand (ca. 3.5 g) destilliert. Erhalten: 2.28 g (8.98 mmol, 91%) IV, Kp. 81–82°C/0.001 bar. Elementanalyse: Gef.: C, 65.99; H, 10.39; N, 11.13. $C_{14}H_{26}N_2O_2$ (254.4) ber.: C, 66.10; H, 10.30; N, 11.01%. MS: m/z 254 (M^+); IR (Kap.): 1630 ν (C=0) cm⁻¹. ¹H-NMR (CDCl₃): δ (ppm) 0.95–1.3 (m, 12H); 1.85 (s, 6H); 3.1–3.6 (m, 8H); ¹³C-NMR (CDCl₃): δ (ppm) 12.67, 14.10, 15.74 (CH₃); 38.21, 42.80, (CH₂); 128.84 (=C); 170.93 (C=O).

Darstellung von V. In einem 100 ml Rührautoklaven werden 0.81 g (2.22 mmol) $[(C_2H_5)_2NH]_2NiBr_2$ (I) [5] in 45 ml THF/Ether (2/1) suspendiert, dann gibt man 7.3 g (10.3 ml, 100 mmol) Diethylamin und 5.4 g (8 ml, 100 mmol) 2-Butin zu. Anschliessend wird auf ca. $100^{\circ}C$ ($\pm 2^{\circ}C$) erwärmt, wobei sich ein Eigendruck von ca. 2.5 bar einstellt. Nun wird unter Rühren Kohlenmonoxid aufgepresst bis zu einem Gesamtdruck von ca. 3.5 bar (± 0.2 bar) (somit $P(CO) \sim 1$ bar) und gibt verbrauchtes CO kontinuierlich nach.

Nach einer Reaktionszeit von ca. 2 Tagen wird die abgekühlte Suspension mit 20 ml 2 N H₂SO₄ hydrolysiert (Vorsicht Ni(CO)₄), mit Ether extrahiert, die organische Phase über MgSO₄ getrocknet und vom Lösungsmittel befreit.

Der Rückstand (ca. 10 g) wird über eine Säule (l 60, ϕ 3 cm) gepackt mit Kieselgel 60, Elutionsmittel Ether aufgetrennt. 1. Fraktion: Gemisch aus V und VI. 2. Fraktion: IV. Fraktion 1 wurde mit der präparativen GC getrennt. Erhalten: 6.03 g (32.95 mmol, 33%) V; das entspricht 15 Katalysecyclen bezogen auf I. Kp. 46–48°C/0.01 bar. Elementaranalyse: Gef.: C, 65.37; H, 9.45; N, 7.72. $C_{10}H_{17}NO_2$ (183.3) ber.: C, 65.54; H, 9.35; N, 7.64%. MS: m/z 183 (M^+); IR (Kap.): 1750 ν (C=O); 1692 ν (C=C); 1100 ν (C-)) cm⁻¹. ¹H-NMR (CDCl₃): δ (ppm) 1.04 (t, 6H, CH_3 —CH₂); 1.79, 1.84 (m, 6H, CH₃—C=); 2.62 (q, 4H, CH₂); 5.51 (m, 1H CH). ¹³ C-NMR (CDCl₃): δ (ppm) 8.64, 12.18, 13.49, (CH₃); 42.08 (CH₂); 98.53 (CH); 126.83 (=C-C=O); 155.11 (=C-C-N); 173.29 (C=O).

Literatur

- 1 H. Hoberg, F.J. Fananás und H.J. Riegel, J. Organomet, Chem., 254 (1983) 267.
- 2 H. Hoberg und H.J. Riegel, J. Organomet. Chem., 241 (1983) 245.
- 3 H.J. Riegel und H. Hoberg, J. Organomet. Chem., 260 (1984) 121.
- 4 W. Best, B. Fell und G. Schmitt, Chem. Ber., 109 (1976) 2920, beschreiben die Darstellung von VI aus CO und 2-Butin an Ni⁰ unter "sauren" Bedingungen.
- 5 E. Uhlig und K. Staiger, Z. Anorg. Allg. Chem., 336 (1965) 180.

JOURNAL OF ORGANOMETALLIC CHEMISTRY Vol. 262, No. 2.

AUTHOR INDEX

Adams, R.D., 243	Hänig, K., 143	Pattiasina, J.W., 157
Andrianov, V.G., 201	Herrmann, W.A., 253	Pfisterer, H., 253
Auffret, J., C19	Hiraki, K., C11	Pichon, R., C19
	Hoberg, H., C24	Pierpoint, C., 263
Baird, G.J., 215	Horváth, I.T., 243	Postnov, V.N., 201
Baran, A.M., 201	Howell, J.A.S., 227	
Bauer, Ch., 253	Huggins, J.M., 253	Ries, M., C14
Bellefon, C. de Méric de, C14		Rosé, J., 223
Braunstein, P., 223, C14	Iwamoto, A., C11	Rühlmann, K., 143
	•	Rumin, R., C19
Courtot, P., C19	Jones, R.H., 151	Salaun, J.Y., C19
Curzon, E., 263		Sazonova, V.A., 201
	Kaim, W., 171	Segmüller, B.E., 243
Davies, S.G., 215	Kuksenko, E.L., 137	Seyferth, K., 179, 191
De Méric de Bellefon, C., C14	Kumar, R., 227	Stephens, F.S., 227
, ,		Struchkov, Yu.T., 201
Fañanás, F.J., C24	Manning, A.R., 227	bullenkov, 14.1., 201
	Mathur, P., 227	Taube, R., 179, 191
Golding, B.T., 263		Teuben, J.H., 157
Golodov, V.A., 137		1euben, 3.11., 137
Grosse-Ruyken, H., 143	Nieman, J., 157	Waters, B.W., 263
		,,
Hamor, T.A., 151	Onishi, M., C11	Ziegler, M.L., 253
		3 ,, = 50