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Summary 

The results of a VT 13C NMR study of alkoxy and alkylthio derivatives of 2- and 
3-methylpiperidinophenylboranes demonstrate that the p,,-pn bonding between 
boron and oxygen is some 3 kcal mol-’ stronger than that between sulphur and 
boron. 

We have for some time been investigating the nature of pr-p, bonding in 
organoboranes. The results of our proton magnetic resonance studies concerning the 
interaction between trialkylthioboranes and trialkoxyboranes with pyridine and 
y-picoline strongly suggested that p,,-p,, bonding between boron and oxygen is 
greater than between boron and sulphur [2]. However, it has been suggested that for 
planar boron compounds boron-oxygen and boron-sulphur p,-pn bonding are of 
similar magnitudes [3]. 

In this paper we report our results of a VT 13C NMR study of alkoxy and 
alkylthio derivatives of 2- and 3-methylpiperidinophenylboranes. The compounds 
for investigation were carefully chosen with two objectives in mind, namely (i) to 
compare the effect on the AC* values for the p,,-p,, bonding of alkoxy and 
alkylthiomethylpiperidinophenylboranes, and (ii) to determine the effect of steric 
hindrance. 

Although there have been many studies of the restricted rotation about the 
boron-nitrogen bond in aminoboranes [4-61, reports on aminoboranes in which one 
of the substituents is an alkoxy or an alkylthio group are very limited [4,7]. In 
addition except for our own work [g-lo], all the reported AC* values for the 
restricted rotation about the boron-nitrogen bond have come from ‘H NMR 
studies. We have previously demonstrated the value of 13C NMR in obtaining 
information on the rotational barrier about the boron-nitrogen bond in 

* For pait XXVIII see ref. 1. 
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aminoboranes, and it will be appreciated that the ‘H NMR spectra of the com- 
pounds discussed in the present paper are too complex for any meaningful informa- 
tion to be obtained. 

Results and discussion 

In the compounds investigated the barrier to rotation about the boron-nitrogen 
bond is sufficiently high to allow the observation of separate peaks from the cis and 
truns rotational isomers in the 13C NMR spectra at ambient temperature. Tables 1 

and 2 record the results of the VT “C study on the titled compounds. The values of 
AC* were obtained from each pair of resonances arising from isomer shifts, Av, and 
coalescence temperature q, using the relationship AG* = 4.57 T,[9.97 + log,,T,/Av]. 
The results obtained suggest at least two major factors which affect the barrier to 
rotation namely: (a) steric effects, and (b) combined steric, mesomeric and inductive 
effects of the alkoxy and alkylthio groups. 

(a) Steric effects 
For maximum p,,-p, bonding between boron and nitrogen the molecule has to be 

planar, and this is more easily achieved in the 3-methylpiperidino rather than the 
2-methylpiperidino systems. Thus one would expect, and our results show, that AG* 
values for the 2-methylpiperidino derivatives are lower (by some 2 kcal mol-‘) than 
those for the corresponding 3-methylpiperidino derivatives. These observations 
support previous reports on the effect of an increase in steric hindrance in amines on 
the restricted rotation about the boron-nitrogen bond [7]. 

(6) Combined steric, mesomeric and inductive effects 

The results indicate that the barrier to rotation in the alkoxy compounds is about 
3 kcal mol-’ lower than that for the alkylthio compounds. It is noteworthy that a 
similar result was observed for the alkoxy and alkylthio derivatives of dimethyl- 

TABLE 1 

VT 13C NMR RESULTS FOR 2-METHYLPIPERIDINOPHENYLBORANES ” 

Compound 6(C) AV AC* 

(ppm) (Hz) (kcal mol - ’ ) 

91.8 203.8 290 13.9 
t 12.7 28.2 NM _ 

Ph \ i 0 0 _ _ 

Me0 / 14.6 32.4 NM - 
e 0 e 94.7 210.2 290 13.9 

f 6.8 15.1 NM _ 

a 29.5 65.5 342 17.3 
t b 16.6 36.9 335 17.5 

Ph zl 0 0 _ _ 
\ 14.6 32.4 333 17.3 

EtS / 
l d e 37.1 82.4 349 17.2 

f 0 0 _ 

” NM = not measured. 



TABLE 2 

VT 13C NMR RESULTS FOR 3-METHYLPIPERIDINOPHENYLBORANES” 

Compound 8(C) AV 

(ppm) (Ha) 

k7;. 
(s-i) T, 

(K) 

AC* 

(kcal mall’) 

86.9 192.9 333 16.1 

12.7 28.2 307.5 16.0 
0 _ 

19.5 -43.3 312 15.9 

87.9 195.1 333 16.1 

8.8 19.5 NM - 

33.6 74.6 383 19.3 

12.2 27.1 NM NM 
0 0 _ _ 

24.4 54.2 NM NM 

33.6 74.6 383 19.3 

6.1 13.5 NM NM 

a NM = not measured. 

aminophenylborane and di-i-propylaminophenylborane [7]. 
The electronegativity of oxygen is greater than sulphur, and therefore we would 

expect a higher barrier to rotation in the alkoxy than in the alkylthio derivatives. The 
results indicate however, that the mesomeric effects are predominant, and that the 
p,.-p, bonding between boron and oxygen is stronger than that between boron and 
sulphur. 

Experimental 

The 13C NMR spectra were recorded on a JEOL-PS-100 spectrometer using the 
FT mode. An error of t_ 1 K in T, gives an uncertainty of 0.05 kcal mol-’ in AG* 
and an error of + 10% in AV an uncertainty of 0.1 kcal mol-’ in AG*. Since T, is 

generally accurate to k 3 K and Av to + 2 Hz, the calculated AG* values reported 
are accurate to within kO.25 kcal mol-‘. 

The compounds used in the investigation were prepared by established methods 
as follows: methoxy-2-methylpiperidinophenylborane [ll], methoxy-3-methyl- 
piperidinophenylborane [ll], ethanethio-2-methylpiperidinophenylborane [12], and 
ethanethio-3-methylpiperidenophenylborane [12]. 
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