# CRYSTAL AND MOLECULAR STRUCTURE OF 2,2,6-TRIMETHYL-6-SELENONO-1,3-DIOXA-2-SILA-6-PHOSPHACYCLOOCTANE 

V.E. SHKLOVER*, Yu.T. STRUCHKOV, N.M. KUDYAKOV and M.G. VORONKOV<br>Nesmeyanov Institute of Organoelement Compounds of the Academy of Sciences of the U.S.S.R., 28 Vanilov Str., Moscow B-312 (U.S.S.R.)

(Received September 25th, 1985)

## Summary

An X-ray structural study of 2,2,6-trimethyl-6-selenono-1,3-dioxa-2-sila-6-phosphacyclooctane ( $R=0.029$ for 1340 reflections) was carried out. The molecule has $C_{s}$ symmetry and its eight-membered heterocycle has a crown conformation. The intramolecular $\mathrm{Si} .$. . Se distance of $4.437(1) \AA$ precludes the possibility of the corresponding transannular attractive interaction.

## Introduction

A number of X-ray investigations have heen devoted to exploring the possibility of transannular interaction in eight-membered heterocycles. For example, the transannular P . . . N interaction was observed in the molecular of 2-oxo-2-methyl-6-aza-6-phenyl-1,3,2-dioxaphosphacynane (I) [1] and a distinct Si . . .S interaction was found in the molecule of 13,13-dimethyl-8,13-dihydro- $5 H$-dibenzo $[d, g][1.2 .6]$ dithiasilonine (II) [2]. However, in the molecule of trans-2,6-dimethyl-1,3-dioxa-2,6-di-phosphacyclooctane-2,6-disulphide (III) the transannular interaction is absent [3].

In the present paper we report the results of an X-ray study of 2,2,6-trimethyl-6-selenono-1,3-dioxa-2-sila-6-phosphacyclooctane (IV) (m.p. $98.5-99.5^{\circ} \mathrm{C}$; the synthesis will be described in a separate paper).

## Results and discussion

The eight-membered heterocycle of molecule IV, which has the crystallographic $C_{s}$ symmetry (Fig. 1), is characterized by an essentially undistorted crown conformation (puckering parameters: $q_{2}=0.012, q_{3}=0.018, q_{4}=1.915, Q=1.916 \AA, \varphi_{2}$ $225.03, \varphi_{3} 292.51^{\circ}$ [4]).

The intramolecular distance Si . . .Se of 4.437(1) $\AA$ as well as the intermolecular


Fig. 1. Structure of molecule IV, having $C_{s}$ symmetry.
distances (the shortest being 5.451(1) $\AA$ ) between these atoms exceed the sum of Van der Waals radii of $4.00 \AA$ [5], thus excluding attractive intramolecular and intermolecular interactions involving the silicon atom in structure IV.

The silicon atoms has slightly distorted tetrahedral geometry: the OSiC bond angles involving the pseudo-axial Me substituent $C(4)$ are somewhat increased (111.3(1) ${ }^{\circ}$ ), while those associated with the pseudo-equatorial Me substituent $\mathrm{C}(5)$ are decreased $\left(105.3(1)^{\circ}\right)$. Equal values of the bond angles at the Si atom would possibly result in shortened intramolecular contacts of the Me group $\mathrm{C}(4)$ with the $\mathrm{C}(2)$ and $\mathrm{C}\left(2^{\prime}\right)$ atoms, because the intramolecular distances $\mathrm{C}(4) \ldots \mathrm{C}(2)$ of 3.398 (3) $\AA$ and $\mathrm{C}(4) \ldots \mathrm{H}(2.2)$ of $2.94(2) \AA$, observed in the crystal of IV, in fact coincide with the sum of the Van der Waals radii ( 3.40 and $2.90 \AA$, respectively [5]).

The $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{C}$ bond lengths, which are equal to $1.636(2) \AA$ and 1.843 , $1.849(3) \AA$, respectively, are in agreement with those found in the molecule of 2,2,5-trimethyl-5-thiono-1,3-dioxa-2-sila-5-phosphorinane ( 1.66 and $1.84 \AA$ ) [6] and with those in other molecules containing carbosiloxane moieties, e.g. in the molecule of 1,3-disila-2-oxa-5-carboxy-1,1,3,3-tetramethylcyclohexane ( 1.630 and $1.837 \AA$ ) [7].

The phosphorus atom has distorted tetrahedral geometry. The $\mathrm{S}=\mathrm{P}-\mathrm{C}$ bond angles (112.69(9) and $112.97(7)^{\circ}$ ) are somewhat larger than the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles (103.0(1) and $\left.111.4(1)^{\circ}\right)$. This inequality is unexceptional for $\mathrm{R}_{3} \mathrm{PX}(\mathrm{X}=\mathrm{O}, \mathrm{S}$ or Se$)$ type compounds. For instance, in the molecule of methylpropylphosphineselenide (V) the $\mathrm{Se}=\mathrm{P}-\mathrm{C}$ angles are equal to $112.6(1), 112.9(1)$ and $113.8(1)^{\circ}$ and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are equal to $105.0(2), 105.4(2)$ and $106.5(2)^{\circ}$ [8]. Noteworthy is the fact that the endocyclic CPC bond angle in IV is significantly larger than the two other CPC angles. This effect was also observed in other P-heterocycles, e.g. in III (endocyclic CPC 109.0(1) ${ }^{\circ}$, exocyclic 101.6(1) and $103.8(1)^{\circ}$ ).

The significant difference between the lengths of the endocyclic (1.822(2) $\AA$ ) and exocyclic (1.804(3) $\AA$ ) $\mathrm{P}-\mathrm{C}$ bonds in IV is similar to that observed in numerous cyclic organophosphorus compounds (e.g. 1.821, 1.828(2) and $1.800(3) \AA$ in III). The steric origin of this effect (as well as of the widening to $117.5(1)^{\circ}$ of the endocyclic $\mathrm{PC}(1) \mathrm{C}(2)$ and $\mathrm{PC}\left(1^{\prime}\right) \mathrm{C}\left(2^{\prime}\right)$ bond angles) seems to be quite real: the $\mathrm{Se} . . \mathrm{C}(2)$ distance of $3.612(2) \AA$ and the $\mathrm{Se} \ldots \mathrm{H}(2.2)$ distance of $3.02(2) \AA$ are close to the corresponding sums of Van der Waals radii ( 3.60 and $3.10 \AA$ [5]).

TABLE 1
ATOMIC COORDINATES ( $\times 10^{5}$ for $\mathrm{Se} ; \times 10^{4}$ for $\mathrm{P}, \mathrm{Si}, \mathrm{O}$ and $\mathrm{C} ; \times 10^{3}$ for H ) AND THERMAL PARAMETERS ( $B_{\text {iso }}^{\text {eq }}$ for non-H, $B_{\text {iso }}$ for H)

| Atom | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $z$ | $\boldsymbol{B}$ |
| :--- | ---: | :---: | :--- | :--- |
| Se | $19755(4)$ | $\frac{1}{4}$ | $4041(3)$ | $1.10(1)$ |
| P | $-277(1)$ | $\frac{1}{4}$ | $1513(1)$ | $0.75(2)$ |
| Si | $3225(1)$ | $\frac{1}{4}$ | $5034(1)$ | $0.76(2)$ |
| O | $1953(2)$ | $4094(2)$ | $4680(2)$ | $1.36(3)$ |
| $\mathrm{C}(1)$ | $-376(3)$ | $4290(2)$ | $2555(2)$ | $1.08(4)$ |
| $\mathrm{C}(2)$ | $1428(3)$ | $4899(2)$ | $3389(2)$ | $1.21(4)$ |
| $\mathrm{C}(3)$ | $-2490(4)$ | $\frac{1}{4}$ | $372(4)$ | $1.79(8)$ |
| $\mathrm{C}(4)$ | $5197(4)$ | $\frac{1}{4}$ | $4086(3)$ | $1.37(7)$ |
| $\mathrm{C}(5)$ | $3927(4)$ | $\frac{1}{4}$ | $6953(3)$ | $1.48(7)$ |
| $\mathrm{H}(1.1)$ | $-138(3)$ | $419(3)$ | $311(2)$ | $1.2(5)$ |
| $\mathrm{H}(1.2)$ | $-84(3)$ | $509(3)$ | $180(3)$ | $2.5(6)$ |
| $\mathrm{H}(2.1)$ | $126(3)$ | $605(3)$ | $353(3)$ | $2.3(6)$ |
| $\mathrm{H}(2.2)$ | $-264(4)$ | $479(3)$ | $283(2)$ | $1.0(5)$ |
| $\mathrm{H}(3.1)$ | $-348(5)$ | $168(3)$ | $-26(3)$ | $2.3(6)$ |
| $\mathrm{H}(3.2)$ | $501(6)$ | $\frac{1}{4}$ | $85(4)$ | $2.2(8)$ |
| $\mathrm{H}(4.1)$ | $594(4)$ | $\frac{1}{4}$ | $309(5)$ | $5.0(10)$ |
| $\mathrm{H}(4.2)$ | $280(6)$ | $164(3)$ | $437(3)$ | $3.0(5)$ |
| $\mathrm{H}(5.1)$ | $465(3)$ | $160(3)$ | $719(5)$ | $4.0(10)$ |
| $\mathrm{H}(5.2)$ |  |  | $723(3)$ | $2.6(6)$ |

The length, 2.121(1) $\AA$, of the $\mathrm{P}=\mathrm{S}$ double bond agrees well with the values observed earlier, e.g. 2.119(2) $\AA$ in molecule $V$.

## Experimental

The colourless crystals of IV are monoclinic, a 7.339(2), $b$ 8.407(3), c 9.719(4) A, $\beta 99.78(3)^{\circ}, V 590.9(5) \mathrm{A}^{3}, M_{\mathrm{r}}=271.0, d_{\text {calc }} 1.542 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2, \mathrm{C}_{7} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{PSeSi}$, space group $P 2_{1} / m, \mu 36.1 \mathrm{~cm}^{-1}, F(000)=276$.

The cell parameters and intensities of 1531 independent reflections were measured with a four-circle Syntex $\mathrm{P} 2_{1}$ diffractometer at $150 \mathrm{~K}\left(\lambda \mathrm{Mo}-K_{\alpha}, \theta / 2 \theta\right.$ scan, $\theta_{\max } 28^{\circ}$ ). The structure was solved by direct methods and refined by full-matrix least-squares with anisotropic thermal parameters for non-hydrogen atoms and isotropic ones for H atoms located in the difference Fourier map. Final values of $R=0.029$ and $R_{w}=0.038$ were obtained for 1340 reflections with $I \geqslant 3 \sigma$. All calculations were performed with an Eclipse $S / 200$ computer using INEXTL programs [9]. Absorption correction was applied using the DIFABS program [10]. The atomic coordinates are listed in Table 1 ; bond lengths and angles with participation of non-hydrogen atoms are given in Fig. 1.

## References

[^0]3 C. Piccini-Leopardi, G. Germain, J.P. Declercq, M. Van. Meersche, J.B. Robert and K. Jurkschat, Acta Crystallogr., B, 38 (1982) 2197.
4 V.A. Palyulin, N.S. Zefirov, V.E. Shklover and Yu.T. Struchkov, J. Mol. Struct., 70 (1981) 65.
5 A. Bondi, J. Phys. Chem., 68 (1964) 441; 70 (1966) 3006.
6 A.I. Gusev, M.G. Los', N.V. Alexeev, N.M. Kudyakov and M.G. Voronkov, Dokl. Akad. Nauk SSSR, 270 (1983) 1398.
7 I.L. Dubchak, T.V. Timofeeva, V.E. Shklover, Yu.T. Struchkov, A.A. Zhdanov, E.A. Kashutina and O.I. Schegolichina, J. Strukt. Khim., 1, 22 (1981) 74.

8 Z. Galdecki, M.L. Glowka, J. Michalski, A. Okruszek and W.J. Stec, Acta Crystallogr., B, 33 (1977) 2322.

9 R.G. Gerr, A.I. Yanovsky and Yu.T. Struchkov, Kristallographiya, 28 (1983) 1029.
10 N. Walker and D. Stuart, Acta Crystallogr., A, 39 (1983) 158.


[^0]:    1 A.E. Kalinin, V.G. Andrianov and Yu.T. Struchkov, J. Strukt. Khim., 16 (1975) 1041.
    2 V.E. Shklover, Yu.T. Struchkov, O.G. Rodin, V.F. Traven' and B.I. Stepanov, J. Organomet. Chem., 266 (1984) 117.

