Journal of Organometallic Chemistry, 310 (1986) 357-366 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

ÜBERGANGSMETALL-CARBIN-KOMPLEXE

LXXXIII *. NEUE ANIONISCHE mer-DIHALOGENO-TRICARBONYL-DIALKYLAMINO-CARBIN-KOMPLEXE DES WOLFRAMS

ALEXANDER CONSTANTIN FILIPPOU, ERNST OTTO FISCHER*

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching (B.R.D.)

und HELMUT GUIDO ALT

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstr. 30, D-8580 Bayreuth (B.R.D.)

(Eingegangen den 25. Februar 1986)

Summary

The reaction of trans-X(CO)₄WCNR₂ (X = Br, R = $^{\circ}$ hex (cyclohexyl); X = Cl, R = $^{\circ}$ hex, i pr (isopropyl)) with M⁺X⁻ (M⁺ = NEt₄⁺, X⁻ = Br⁻; M⁺ = PPN⁺, X⁻ = Cl⁻) leads under substitution of one CO ligand to new anionic dihalo(tricarbonyl)carbyne-tungsten complexes of the type M⁺ mer-[(X)₂(CO)₃WCNR₂]⁻ (M⁺ = NEt₄⁺, X = Br, R = $^{\circ}$ hex; M⁺ = PPN⁺, X = Cl, R = $^{\circ}$ hex, i pr), whose composition and structure were determined by elemental analysis as well as by IR, i H and i3 C NMR spectroscopy. In the anionic carbyne complexes the entered halogen ligand, coordinated in a cis position relative to the carbyne ligand on the metal, can be easily substituted by neutral nucleophiles, as the reaction of PPN⁺ mer-[(Cl)₂(CO)₃WCN^chex₂]⁻ with PPh₃ demonstrates yielding the neutral carbyne complex mer-[Cl(CO)₃(PPh₃)WCN^chex₂].

Zusammenfassung

Die Umsetzung von trans-X(CO)₄WCNR₂ (X = Br, R = $^{\circ}$ hex (cyclohexyl); X = Cl, R = $^{\circ}$ hex, i pr (isopropyl)) mit M⁺X⁻ (M⁺ = NEt₄⁺, X⁻ = Br⁻; M⁺ = PPN⁺, X⁻ = Cl⁻) führt unter Substitution eines CO-Liganden zu neuen anionischen Dihalogeno-Tricarbonyl-Carbin-Komplexen des Wolframs vom Typ M⁺ mer-

^{*} LXXXII. Mitteilung siehe Ref. 1.

[(X)₂(CO)₃WCNR₂]⁻ (M⁺ = NEt₄⁺, X = Br, R = c hex; M⁺ = PPN⁺, X = Cl, R = c hex, i pr), deren Zusammensetzung und Struktur sowohl durch Elementaranalyse als auch durch IR-, ¹H-NMR- und ¹³C-NMR-Spektroskopie bestimmt wurde. Der eingetretene *cis*-ständig zum Carbin-Liganden koordinierte Halogeno-Ligand lässt sich in den anionischen Carbin-Komplexen leicht gegen neutrale Nucleophile austauschen, wie die Reaktion von PPN⁺ mer-[(Cl)₂(CO)₃WCN^chex₂]⁻ mit PPh₃ demonstriert, die zum neutralen Carbin-Komplex mer-[Cl(CO)₃(PPh₃)WCN^chex₂] führt.

Einleitung

Die Synthese anionischer Übergangsmetall-Carbin-Komplexe, die erst vor kurzem durch die Umsetzung eines substituierten Carbin-Carbonyl-Komplexes vom Typ trans-X(CO)₂L₂WCNEt₂ (X = Br, I; L₂ = 2,2'-bipy, ophen) [2,3] mit dem dianionischen Komplex cis-Mo(CO)₄(PPh₂K)₂ unter Abspaltung des Halogen- und des Chelat-Liganden im neutralen Carbin-Komplex gelungen ist [2], eröffnete den Weg zu einer neuen Klasse von Verbindungen, deren hohe Reaktivität für die Synthese neuartiger Übergangsmetall-Komplexe eingesetzt werden kann. Um einen tieferen Einblick in das Reaktivitätsverhalten solcher Verbindungen zu gewinnen, versuchten wir durch neue Synthesemethoden die Zahl isolierbarer anionischer Carbin-Komplexe unter gleichzeitiger Variation der Koordinationssphäre am Metall zu erhöhen. Dabei erwies sich die geringe thermische Stabilität neutraler, nicht substituierter Übergangsmetall-Carbin-Komplexe vom Typ trans-X(CO) WCR (X = Cl, Br, I; R = Me, Ph, NEt₂) [4-7] als besonders hilfsreiche Eigenschaft. So konnte aus der Umsetzung von trans-(p-MeC₆H₄S)(CO)₄WCNEt, [8] mit NEt₄+ SCN unter Substitution des MeC₆H₄S-Liganden und gleichzeitiger Abspaltung zweier CO-Liganden (NEt₄⁺)₂[(SCN)₃(CO)₂WCNEt₂]²⁻, der erste dianionische Übergangsmetall–Carbin-Komplex isoliert werden [9]. Dagegen führte die Reaktion von trans-Br(CO)₄WCN^c hex₂ [10] mit dem elektronenreichen Olefin $= \overline{\text{CN}(C_6H_5)}$ -CH₂CH₂N(C₆H₅)₂ zur Bildung des monoanionischen Carbin-Komplexes $[HCN(C_6H_5)CH_2CH_2N(C_6H_5)]^+$ mer- $[(Br)_2(CO)_3WCN^chex_2]^-$ [1].

Bereits früher konnte zwar die Bildung anionischer Dihalogeno-Tricarbonyl-Carbin-Komplexe vom Typ mer-[(Br)₂(CO)₃WC(p-C₆H₄R)]⁻ durch Substitution eines CO-Liganden gegen Bromid aus trans-Br(CO)₄WC(p-C₆H₄R) (R = Me, H, CF₃) IR-spektroskopisch nachgewiesen werden, die Verbindungen liessen sich jedoch nicht isolieren [11]. In diesem Zusammenhang blieb die Frage offen, ob durch den Ersatz des Phenyl-Restes am Carbin-Liganden gegen eine Dialkylaminogruppe die Stabilität anionischer Dihalogeno-Tricarbonyl-Carbin-Komplexe sich erhöhen lässt und somit solche Komplexe isoliert werden können.

Präparative Ergebnisse

Die Umsetzung von trans-X(CO)₄WCNR₂ (X = Cl, Br; R = i pr (isopropyl), c hex (cyclohexyl)] [10] mit M⁺X⁻ (M⁺ = NEt₄⁺, PPN⁺; X⁻ = Cl⁻, Br⁻) in CH₂Cl₂ bei 25°C im Molverhältnis 1/1 führt unter Austausch eines CO-Liganden gegen ein

Halogenid zu neuen anionischen Carbin-Komplexen des Wolframs (IIa-IIc):

Die Komplexe IIa-IIc lassen sich in Form gelber, sehr luftempfindlicher Pulver mit $N(C_2H_5)_4^+$ (IIa) bzw. $[(C_6H_5)_3P]_2N^+$ (PPN+) (IIb,IIc) [12] als grossem Gegenkation isolieren. Während sie im festen Zustand bei R.T. thermisch beständig sind, beobachtet man in Lösung bei gelindem Erwärmen langsame Zersetzung. Sie sind in CH_2Cl_2 und THF sehr gut, in Et_2O und gesättigten Kohlenwasserstoffen dagegen schwer löslich. Die Reaktion von trans-X(CO)4WCNR2 (Ia-Ic) mit einem Überschuss an M^+X^- bleibt bei R.T. in CH_2Cl_2 auf der Stufe der monoanionischen Carbin-Komplexe (IIa-IIc) stehen. Unter diesen Bedingungen kann somit die Abspaltung zweier CO-Liganden, die zur Bildung dianionischer Trihalogeno-Dicarbonyl-Carbin-Komplexe (IIIa-IIIc) führen würde, nicht beobachtet werden:

$$M^{+} \begin{bmatrix} x & CO \\ x - W \equiv C - \bar{N} \\ OC & CO \end{bmatrix}^{R} + M^{+} X^{-} \xrightarrow{CH_{2}Cl_{2}} (M^{+})_{2} \begin{bmatrix} x & X \\ x - W \equiv C - \bar{N} \\ OC & CO \end{bmatrix}^{2-} + CO^{+}$$

$$(IIa - IIIc)$$

$$(IIIa - IIIc)$$

In den anionischen Carbin-Komplexen (IIa-IIc) lässt sich der eingetretene Halogen-Ligand leicht gegen Nucleophile austauschen. So beobachtet man bei der Umsetzung von IIb mit PPh₃ in CH₂Cl₂ bei R.T. im Molverhältnis 1/1 die Substitution des *cis*-ständig zum Carbin-Liganden angeordneten Chloro-Liganden durch PPh₃. Aus der Reaktionslösung lässt sich der Komplex IVb in Form eines intensiv gelbgefärbten Pulvers isolieren:

$$PPN^{+}\begin{bmatrix} CI & CO \\ CI - W \equiv C - \bar{N} \\ OC & CO \end{bmatrix} + PPh_{3} \xrightarrow{CH_{2}CI_{2}} CI - W \equiv C - \bar{N} \\ OC & CO \end{bmatrix} + PPN^{+}CI^{-}$$
(IIb)
(IVb)

Der Komplex IVb ist bei R.T. sowohl im festen Zustand als auch in Lösung beständig. Er ist in CH₂Cl₂, THF, Et₂O sehr gut, in gesättigten Kohlenwasserstoffen dagegen wenig löslich.

Spektroskopische Untersuchungen

IR-Spektren

Berücksichtigt man allein die C_{2v} -Symmetrie des Metallcarbonylgerüstes in den Komplexen IIa-IIc und IVb, so erwartet man nach gruppentheoretischen Überlegungen drei infrarotaktive $\nu(\text{CO})$ -Schwingungen, zwei der Rasse A_1 ($A_1^{(1)}$ und $A_1^{(2)}$) und eine der Rasse B_1 [13,14].

Man beobachtet im IR-Spektrum von IVb im Carbonylbereich drei Absorptionsbanden. Die IR-Spektren der anionischen Carbin-Komplexe zeigen jedoch nur zwei Absorptionsbanden. Lage und Intensität der Banden gehen aus Tabelle 1 hervor.

Die kürzerwellige Absorptionsbande muss aufgrund ihrer Lage und Intensität der $A_1^{(2)}$ -Schwingung zugeordnet werden, die hauptsächlich von den zwei *trans*-ständig zueinander angeordneten CO-Liganden stammt [15,16]. Somit setzt sich bei den anionischen Carbin-Komplexen IIa-IIc die längerwellige Absorptionsbande aus der Überlagerung der $A_1^{(1)}$ - und B_1 -Bande zusammen, welche im polaren Lösungsmittel nicht getrennt beobachtet werden können. Ein Zusammenfallen beider Banden konnte bereits früher bei anderen Verbindungen, die drei CO-Liganden in meridionaler Anordnung enthalten, festgestellt werden [6,16].

Der Dialkylaminocarbin-Ligand besitzt ein grösseres σ -Donor/ π -Akzeptor-Verhältnis als der Phenylcarbin-Ligand, wie aus der Verschiebung der ν (CO)-Banden zu tieferen Wellenzahlen in IIa-IIc im Vergleich zu mer-[(Br)₂(CO)₃WCPh]⁻ (A₁⁽²⁾ 2076; B₁ 1992; A₁⁽¹⁾ 1942 cm⁻¹; CH₂Cl₂-Lösung) [11] und in IVb im Vergleich zu mer-[Br(CO)₃(PPh₃)WCPh (A₁⁽²⁾ 2078; B₁ 1998; A₁⁽¹⁾ 1998 cm⁻¹; CH₂Cl₂-Lösung) [6] hervorgeht.

Die Verschiebung der ν (CO)-Absorptionsbanden zu höheren Wellenzahlen in IVb, im Vergleich zu IIb, ist auf die Erniedrigung der Elektronendichte am Metall und die damit verbundene Schwächung der Metall-CO-Rückbindung zurückzuführen.

In Tricarbonyl-Komplexen mit meridionaler Anordnung der drei CO-Liganden ist die Lage der $A_1^{(1)}$ -Absorptionsbande wesentlich stärker vom π -Akzeptor-Vermögen des zum einen CO-Liganden trans-ständig gebundenen Liganden L (IIa-IIc: L = Br⁻, Cl⁻; IVb: L = PPh₃) abhängig als die Lage der B₁-Absorptionsbande [16]. Darüber hinaus verschiebt sich die Lage der $A_1^{(1)}$ -Absorptionsbande mit stärker werdendem π -Akzeptor-Vermögen des Liganden L nach höheren Wellenzahlen [16]. Da der PPh₃-Ligand ein stärkeres π -Akzeptor-Vermögen als der Cl⁻Ligand besitzt, erwartet man beim Übergang von IIb ($A_1^{(1)} = B_1 = 1924$ cm⁻¹) zu

TABELLE 1 IR-SPEKTREN DER VERBINDUNGEN IIa-IIc UND IVb IM ν (CO)-BEREICH (2200–1800 cm $^{-1}$); (Lösungsmittel CH $_2$ Cl $_2$) a

Komplex	A ₁ ⁽²⁾	A ₁ ⁽¹⁾	B ₁	
IIa	2034w	1925vs	1925vs	
IIb	2032w	1924vs	1924vs	
IIc	2027w	1924vs	1924vs	
IVb	2049w	1970m	1930s	

a w: weak; m: medium; s: strong; vs: very strong.

TABELLE 2 1 H-NMR-SPEKTREN DER VERBINDUNGEN IIa-IIc UND IVb IN CD₂Cl₂; chem. Verschiebungen in δ rel. CDHCl₂ (δ 5.32 ppm); rel. Intensitäten und Multiplizitäten in (); Kopplungskonstanten in Hz

Komplex	$N(CH_2CH_3)_4^+$	CH(CH ₃) ₂	CH(CH ₂) ₅	NCH	$N(CH_2CH_3)_4^+$	PPN ⁺ ; PPh ₃	T (°C)
IIa	1.28 (12,t) ³ J(HH) 7.2	_	1.1-1.8 (20,m)	2.73 (2,m)	3.27 (8,q) ³ J(HH) 7.2	_	-30
ПР	-	-	1.2-1.9 (20,m)	2.80 (2,m)	-	7.50-7.52 (30,m)	0
IIc	-	1.25(12,d) ³ J(HH) 6.7	-	3.20(2,h) ³ J(HH) 6.7	_	7.41-7.65 (30,m)	-30
IVb	-	-	0.90-1.75 (20,m)	2.65(2,m)	_	7.20-7.70 (15,m)	+ 25

IVb eine stärkere Verschiebung der $A_1^{(1)}$ -Bande zu hohen Wellenzahlen als der B_1 -Bande. Somit wird in IVb die Bande bei 1970 cm⁻¹ der $A_1^{(1)}$ -, die bei 1930 cm⁻¹ der B_1 -Schwingung zugeordnet.

¹H-NMR-Spektren

In den ¹H-NMR-Spektren der Verbindungen IIa-IIc und IVb beobachtet man ausser den Signalen für die Protonen der Kationen in IIa-IIc und für die Protonen des PPh₃-Liganden in IVb die Signale der Diisopropyl- bzw. Dicyclohexylaminogruppe des Carbin-Liganden (s. Tab. 2).

Im Vergleich zu trans-Cl(CO)₄WCNⁱpr₂ (δ (NCH(C H_3)₂ 1.44, δ (NCH) 3.56 ppm) [10] sind die Signale der Diisopropylaminogruppe im anionischen Carbin-Komplex IIc hochfeldverschoben.

13C-NMR-Spektren

In den ¹³C-NMR-Spektren von IIa-IIc und IVb wird das intensivere, abgeschirmtere CO-Signal (COcis) den zwei trans-ständig zueinander angeordneten CO-Liganden, das schwächere, entschirmtere CO-Signal dem einen zum Liganden L trans-ständig angeordneten CO-Liganden (CO_{trans}) (IIa: L = Br; IIb, IIc: L = Cl; IVb: L = PPh₁) zugeordnet. Diese Zuordnung beruht auf früheren Befunden, wonach in substituierten Carbonyl-Komplexen der VI. Nebengruppe CO-Liganden, die trans-ständig zu Liganden mit einem grösseren σ-Donor/π-Akzeptor-Verhältnis als CO am Metall koordiniert sind, Signale bei tieferem Feld, als cis-ständig dazu angeordnete CO-Liganden, liefern [17-19]. Ausserdem stimmt in IVb diese Zuordnung mit der Grösse der beobachteten Kopplungskonstanten ²J(PC) überein, da bereits früher gezeigt werden konnte, dass in substituierten Carbonyl-Komplexen vom Typ LW(CO)₅, cis-L₂W(CO)₄, trans-L₂W(CO)₄ und fac-L₃W(CO)₃ (L = PPh₃, P(OPh)₃, P(OMe)₃, PCl₃) die ²J(PC)-trans-Kopplungskonstanten stets grösser sind als die analogen cis-Kopplungskonstanten. Die chemische Verschiebung der Carbin-C-Atome in IIa-IIc unterscheidet sich weder stark von der im dianionischen Carbin-Komplex (NEt₄⁺)₂ [(SCN)₃(CO)₂WCNEt₂]²⁻ (δ(C(Carbin) 249.4 ppm; CD₂Cl₂-Lösung, -10°C) [9] noch von der in den neutralen Ausgangsverbindungen Ia-Ic (Ia: δ(C(Carbin) 245.1 ppm; CD₂Cl₂-Lösung, -20°C) [10] gefundenen

TABELLE 3 13 C-NMR-SPEKTREN DER VERBINDUNGEN IIa-IIc UND IVb IN CD_2Cl_2 ; chem. Verschiebungen in δ rel. CD_2Cl_2 (δ 53.8 ppm); Kopplungskonstanten in Hz

Kom- plex	N(CH ₂ - CH ₃) ₄ +	NCH(CH ₃) ₂ / NCH(CH ₂) ₅	N(CH ₂ - CH ₃) ₄ +	NCH	PPN+; PPh ₃	CO _{cis}	CO _{trans}	W≡C	T (°C)
IIa	7.6	25.0; 25.8; 32.7	52.3	60.9	_	201.5	214.9	248.0	-30
IIb	-	25.5; 26.3; 33.2	-	61.5	126.6- 134.0 ^a	202.8	218.1	247.2	0
IIc	_	22.2	-	52.8	124.2- 133.6	201.9	217.0	246.2	-30
IVb	-	25.3; 26.1; 32.9	-	58.7	128.7– 135.0	202.2 ² J(PC) 7.7	207.0 ² J(PC) ^b 42.7	239.6 ² J(PC) 9.2	+ 25

^a Bereich der chemischen Verschiebung, in welchem die Signale der aromatischen C-Atome beobachtet werden. ^b Unter ²J(PC) versteht man die Kopplung des ³¹P-Kerns mit dem ¹³C-Kern über zwei Bindungen.

chemischen Verschiebung der Carbin-C-Atome. Sie unterscheidet sich dagegen stark von der chemischen Verschiebung des Carbin-C-Atoms in $(NEt_4)^+[(CO)_4Mo(\mu-PPh_2)_2W(CO)_2(CNEt_2)]^-(\delta(C(Carbin) 290.8 ppm; DMF-Lösung, <math>-20^{\circ}C)$ [2].

Diskussion

Bei der Umsetzung der Neutralkomplexe trans- $X(CO)_4WCNR_2$ (X = Cl, Br; $R = {}^{i}pr$, ${}^{c}hex$) mit X^- (X = Cl, Br) beobachtet man eine nucleophile Addition von X^- an das Wolfram-Atom, wobei unter Abspaltung eines CO-Liganden neue anionische Carbin-Komplexe des Wolframs gebildet werden. Die Entstehung ähnlich aufgebauter, anionischer Carbin-Komplexe konnte zwar in der Vergangenheit bei der Umsetzung von trans-Br(CO) $_4$ WCR ($R = C_6H_5$, p- C_6H_4 CF $_3$, p- C_6H_4 CH $_3$) mit Br $^-$ IR-spektroskopisch nachgewiesen werden, die Verbindungen waren jedoch aufgrund ihrer thermischen Labilität nicht isolierbar. Die Variation des Restes R am Carbin-Liganden (N^c hex $_2$ bzw. N^i pr $_2$ statt C_6H_5) übt somit einen entscheidenden Einfluss auf die Stabilität der anionischen Dihalogeno-Tricarbonyl-Carbin-Komplexe aus, die auf diesem Reaktionsweg in hohen Ausbeuten zugänglich werden.

Die CO-Substitution in trans-X(CO)₄WCNR₂ durch X⁻ ist aufgrund der höheren, erzielbaren Ausbeute an anionischen Dihalogeno-Tricarbonyl-Carbin-Komplexen einem bereits früher beschriebenen Syntheseweg zur Isolierung eines Vertreters dieser Verbindungsklasse, der Reaktion von trans-Br(CO)₄WCN^chex₂ mit einem elektronenreichen Olefin [1], eindeutig vorzuziehen.

Aufgrund von IR-, ¹H-NMR- und ¹³C-NMR-Daten nehmen wir an, dass die anionischen Carbin-Komplexe als Isomeres A vorliegen:

$$\begin{bmatrix} x & co \\ x-w\equiv c-\bar{N} \\ oc & co \end{bmatrix} \qquad \begin{bmatrix} x & x \\ oc-w\equiv c-\bar{N} \\ oc & co \end{bmatrix} \qquad \begin{bmatrix} x & co \\ oc-w\equiv c-\bar{N} \\ oc & x \end{bmatrix}$$

$$\begin{bmatrix} x & co \\ oc-w\equiv c-\bar{N} \\ oc & x \end{bmatrix}$$

$$\begin{bmatrix} x & co \\ oc-w\equiv c-\bar{N} \\ oc & x \end{bmatrix}$$

$$\begin{bmatrix} x & co \\ oc-w\equiv c-\bar{N} \\ oc & x \end{bmatrix}$$

So beobachtet man in den IR-Spektren der anionischen Carbin-Komplexe zwei ν (CO)-Absorptionsbanden, die sowohl für eine meridionale (wenn $A_1^{(1)}$ - und B_1 -Bande zusammenfallen) als auch für eine faciale Anordnung der drei CO-Liganden sprechen. Ein Vergleich der Intensitäten der beiden Banden spricht jedoch für eine meridionale Anordnung der CO-Liganden und schliesst somit das Isomere **B** aus.

Die als Edukte eingesetzten, neutralen Dialkylaminocarbin-Komplexe zeigen im ¹³C-NMR-Spektrum eine chemische Verschiebung für die Carbin-C-Atome, die der chemischen Verschiebung der Carbin-C-Atome in den anionischen Dialkylaminocarbin-Komplexen (Reaktionsprodukte) nahezu gleich ist. Dieser Befund legt die Vermutung nahe, dass bei den anionischen Carbin-Komplexen, ähnlich ihren neutralen Ausgangsverbindungen, ein Halogeno-Ligand in *trans*-Stellung zum Carbin-Liganden am Metall koordiniert ist und dass somit die anionischen Carbin-Komplexe Struktur A haben. Darüber hinaus beobachtet man im ¹³C-NMR-Spektrum beim Übergang von IIa zu IIb bzw. IIc eine grössere Änderung der chemischen Verschiebung vom entschirmteren, schwächeren CO-Signal (ein CO) als vom abgeschirmteren, intensiveren CO-Signal (zwei CO). Dies spricht für eine Variation des *trans*-ständig zum einen CO-Liganden gebundenen Liganden L beim Übergang von IIa zu IIb bzw. IIc, wie sie beim Vorliegen des Isomeren A zu erwarten ist (IIa: L = Br; IIb, IIc: L = Cl).

Bei dissoziativ ablaufenden Substitutionsreaktionen vermögen Halogenogruppen im Vergleich zu anderen Liganden wie z.B. CO, durch besonders gute Stabilisierung des durch CO-Abspaltung erhaltenen Metallcarbonvlfragmentes, den Übergangszustand energetisch stark abzusenken. Aufgrund dieser cis-labilisierenden Wirkung von Halogenogruppen [20-22] beginnen die anionischen Carbin-Komplexe sich in Lösung beim gelinden Erwärmen über Raumtemperatur hinaus unter CO-Abspaltung zu zersetzen. Dagegen gelingt es nicht, ausgehend von neutralen Dialkylaminocarbin-Komplexen, mit einem grossen Überschuss an Halogenid dianionische Trihalogeno-Dicarbonyl-Carbin-Komplexe unter Abspaltung zweier CO-Liganden zu synthetisieren. Die Reaktion bleibt bei R.T. auf der Stufe der monoanionischen Carbin-Komplexe stehen. Darüber hinaus entsteht bei der Umsetzung von PPN⁺ mer-[(Cl)₂(CO)₃WCN^chex₂]⁻ mit PPh₃ unter Substitution des cis-ständig zum Carbin-Liganden koordinierten Chloro-Liganden ein neutraler Carbin-Komplex (Schema 1, Reaktionsweg (a)). Der Austausch eines CO-Liganden, der zur Bildung eines neuen anionischen Carbin-Komplexes führen würde (Schema 1, Reaktionsweg (b)), bleibt somit aus.

IR-, ¹H-NMR- und ¹³C-NMR-Daten sprechen für das Vorliegen des Isomeren A beim neutralen, PPh₃-substituierten Carbin-Komplex:

So kann das Isomere **B** aufgrund der beobachteten zwei Signale für die drei CO-Liganden im ¹³C-NMR-Spektrum ausgeschlossen werden. Aufgrund der Kopplung des ¹³C-Kerns mit dem ³¹P-Kern sind im ¹³C-NMR-Spektrum von IVb beide CO-Signale aufgespalten. Jedoch ist das entschirmtere, schwächere CO-Signal (ein CO) wesentlich stärker aufgespalten (grössere Kopplungskonstante) als das abgeschirmtere, intensivere CO-Signal (zwei CO). Da nun in den Isomeren C und **D**

$$\begin{bmatrix}
CI & CO \\
CI - W = C - \bar{N} \\
OC & CO
\end{bmatrix} + PPh_3$$

$$\begin{bmatrix}
CI & PPh_3 & CO \\
CI - W = C - \bar{N} \\
OC & CO
\end{bmatrix} + CO$$

SCHEMA 1

alle drei CO-Liganden cis-ständig zum PPh₃-Liganden am Metall koordiniert sind, und die Kopplungskonstanten vergleichbar gross sein sollten, scheinen die Isomeren C und D wenig wahrscheinlich zu sein.

Experimenteller Teil

IR-Spektren: Perkin-Elmer-Modell 283 B und Nicolet 5-DX FT-IR-Spektrometer; ¹H-NMR- und ¹³C-NMR-Spektren: JEOL FT-NMR-Spektrometer FX 90Q. Alle Arbeiten wurden unter Ausschluss von Luft und Feuchtigkeit in N₂-Atmosphäre durchgeführt. Sämtliche Lösungsmittel waren sorgfältig getrocknet (Pentan über CaH₂; Et₂O, THF über Na; CH₂Cl₂ über P₂O₅ und Na/Pb-Legierung) und mit Stickstoff gesättigt. Das zur Chromatographie verwendete Kieselgel (Fa. Merck, Darmstadt, Korngrösse 0.063–0.2 mm) wurde bei R.T. im Hochvakuum getrocknet, von Sauerstoff befreit und unter Stickstoff aufbewahrt.

$NEt_4^+ mer-[(Br)_2(CO)_3WCN^c hex_2]^-$ (IIa)

1.96 g (3.45 mmol) Ia werden bei -40° C in 100 ml CH₂Cl₂ suspendiert und mit 780 mg (3.71 mmol) NEt₄⁺Br⁻ versetzt. Die orangegelbe Suspension wird auf R.T. gebracht. Unter CO-Entwicklung wandelt sich die Suspension in eine intensiv gelbe Lösung um. Nach 2 h Reaktionszeit zieht man das Lösungsmittel im HV ab, kühlt auf -20° C ab, nimmt den Rückstand mit 120 ml vorgekühltem (-20° C) THF auf, filtriert die Lösung vom unlöslichen NEt₄⁺Br⁻ ab, engt das gelbe Filtrat bei tiefer Temperatur ein und fällt mit 175 ml einer Et₂O/Pentan-Mischung (4/3) einen gelben Niederschlag aus. Er wird mit 100 ml Et₂O ausgewaschen und bei -20° C im HV 5 h lang getrocknet. Gelbes Pulver, Ausbeute 2.2 g (85% bez. auf Ia).

Gef.: C, 37.93; H, 5.44; Br, 20.88; N, 3.44; O, 6.82; W, 25.10. C₂₄H₄₂Br₂N₂O₃W (750.25) ber.: C, 38.42; H, 5.64; Br, 21.30; N, 3.73; O, 6.39; W, 24.51%.

$PPN^{+}mer-[(Cl)_{2}(CO)_{3}WCN^{c}hex_{2}]^{-}$ (IIb)

Analog zur Darstellung von IIa werden 660 mg (1.26 mmol) Ib mit 980 mg (1.71 mmol) PPN⁺Cl⁻ in 50 ml CH₂Cl₂ bei R.T. umgesetzt. Unter CO-Entwicklung wandelt sich die anfangs orange Lösung in eine intensiv gelbe Lösung um. Nach 2 h

Reaktionszeit zieht man das Lösungsmittel im HV ab, nimmt den Rückstand bei -20° C mit 80 ml einer auf -20° C vorgekühlten THF/Et₂O-Mischung (5/3) auf, fültriert vom unlöslichen PPN⁺Cl⁻ ab, engt das Filtrat ein, fällt mit Et₂O aus, wäscht den Niederschlag mit 100 ml Et₂O aus und trocknet das Produkt bei -20° C im HV 5 h. Gelbes Pulver, Ausbeute 1.0 g (74% bez. auf Ib).

Gef.: C, 57.82; H, 5.15; Cl, 6.66; N, 2.58; O, 4.99; P, 5.49; W, 17.33. $C_{52}H_{52}Cl_2N_2O_3P_2W$ (1069.66) ber.: C, 58.39; H, 4.90; Cl, 6.63; N, 2.62; O, 4.48; P, 5.79; W, 17.19%.

$PPN^{+}mer-[(Cl)_{2}(CO)_{3}WCN^{i}pr_{2}]^{-}(IIc)$

3.74 g (8.43 mmol) Ic werden bei -30° C in 150 ml CH₂Cl₂ aufgenommen und mit 5.78 g (10,07 mmol) PPN⁺Cl⁻ versetzt. Dann wird die Suspension auf R.T. gebracht. Unter CO-Entwicklung wandelt sich die orangegelbe Suspension in eine intensivgelbe Lösung um. Nach 2.5 h Reaktionszeit zieht man das Lösungsmittel im HV ab, nimmt bei -20° C mit 190 ml einer auf -20° C vorgekühlten THF/Et₂O-Mischung (12/7) auf, filtriert vom unlöslichen PPN⁺Cl⁻ ab, engt das gelbe Filtrat bei tiefer Temperatur ein, fällt das Produkt mit Et₂O/Pentan (1/1) aus, wäscht den Niederschlag mit Et₂O und trocknet ihn bei O°C im HV 8 h. Gelbes Pulver, Ausbeute 6.9 g (83% bez. auf Ic).

Gef.: C, 55.50; H, 4.72; Cl, 7.69; N, 2.59; O, 4.82; P, 5.82; W, 18.05. $C_{46}H_{44}Cl_2N_2O_3P_2W$ (989.54) ber.: C, 55.83; H, 4.48; Cl, 7.17; N, 2.83; O, 4.85; P, 6.26; W, 18.58%.

mer-[Cl(CO)₃(PPh₃)WCN^chex₂] (IVb)

330 mg (0.31 mmol) IIb werden bei 0°C in 70 ml CH₂Cl₂ gelöst, mit 110 mg (0.42 mmol) PPh₃ versetzt, und die gelbe Lösung auf R.T. gebracht. Nach 1.5 h Reaktionszeit zieht man das Lösungsmittel im HV ab, nimmt den Rückstand mit 80 ml einer THF/Et₂O-Mischung (5/3) auf, filtriert vom unlöslichen PPN⁺Cl⁻ ab, engt das gelbe Filtrat zur Trockne ein, nimmt das erhaltene intensivgelbe Öl in 15 ml CH₂Cl₂ auf und chromatographiert anschliessend bei 0°C über eine mit Kieselgel gefüllte Säule mit CH₂Cl₂/Pentan (1/1). Das im Überschuss eingesetzte Triphenylphosphan lässt sich im Vorlauf abtrennen. Nachdem die den gewünschten Komplex enthaltende gelbe Zone in die Säule weitgehend eingelaufen ist, wird mit CH₂Cl₂/Et₂O (1/1) eluiert. Nach Entfernen des Lösungsmittels, fällt man IVb aus wenig Et₂O mit viel Pentan als intensiv gelbes Pulver aus, das im HV bei R.T. 5 h getrocknet wird. Ausbeute, 170 mg (72% bez. auf IIb).

Gef.: C, 54.18; H, 4.98; Cl, 4.45; N, 1.82; O, 6.19; P, 4.21; W, 24.03. C₃₄H₃₇ClNO₃PW (757.91) ber.: C, 53.88; H, 4.92; Cl, 4.68; N, 1.85; O, 6.33; P, 4.09; W, 24.26%.

Dank

Wir danken Herrn Prof. W.A. Herrmann für die Unterstützung dieser Arbeit mit Institutsmitteln und der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg für die Förderung dieser Untersuchungen. Frl. U. Graf und Herrn M. Barth sind wir für die Durchführung der Elementaranalysen sehr verbunden.

Literatur

- 1 A.C. Filippou, E.O. Fischer und H.G. Alt, J. Organomet. Chem., 303 (1986) C13.
- 2 E.O. Fischer, A.C. Filippou, H.G. Alt und U. Thewalt, Angew. Chem., 97 (1985) 215; Angew. Chem. Int. Ed. Engl., 24 (1985) 203.
- 3 E.O. Fischer, A.C. Filippou und H.G. Alt, J. Organomet. Chem., 296 (1985) 69.
- 4 E.O. Fischer, G. Kreis, C.G. Kreiter, J. Müller, G. Huttner and H. Lorenz, Angew. Chem., 85 (1973) 618; Angew. Chem. Int. Ed. Engl., 12 (1973) 564.
- 5 E.O. Fischer, G. Kreis, F.R. Kreissl, W. Kalbfus und E. Winkler, J. Organomet. Chem., 65 (1974) C53.
- 6 E.O. Fischer, A. Ruhs und F.R. Kreissl, Chem. Ber., 110 (1977) 805.
- 7 A.C. Filippou und E.O. Fischer, Z. Naturforsch. B, 38 (1983) 587.
- 8 E.O. Fischer, D. Wittmann, D. Himmelreich, U. Schubert und K. Ackermann, Chem. Ber., 115 (1982) 3141.
- 9 E.O. Fischer und D. Wittmann, J. Organomet. Chem., 292 (1985) 245.
- 10 R. Reitmeier, Dissertation, Techn. Univ. München 1985.
- 11 H. Fischer und F. Seitz, J. Organomet. Chem., 268 (1984) 247.
- 12 R. Appel und A. Hauss, Z. Anorg. Allgem. Chem., 311 (1961) 290.
- 13 K. Mathiak und P. Stingl, Gruppentheorie, Vieweg Akademische Verlagsgesellschaft, Braunschweig-Frankfurt 1969.
- 14 F.A. Cotton, Chemical Applications of Group Theory, 2nd Edition J. Wiley-Interscience, New York, 1971.
- 15 R. Poilblanc und M. Bigorgne, Bull. Soc. Chim. France, (1962) 1301.
- 16 F.A. Cotton, Inorg. Chem., 3 (1964) 702.
- 17 L.J. Todd und J.R. Wilkinson, J. Organomet. Chem., 77 (1974) 1.
- 18 P.S. Braterman, D.W. Milne, E.W. Randall und E. Rosenberg, J. Chem. Soc., Dalton Trans., (1973) 1027.
- 19 G.M. Bodner, Inorg. Chem., 14 (1975) 2694.
- 20 J.D. Atwood und T.L. Brown, J. Amer. Chem. Soc., 98 (1976) 3160.
- 21 G.R. Dobson, Acc. Chem. Res., 9 (1976) 300.
- 22 D.L. Lichtenberger und T.L. Brown, J. Amer. Chem. Soc., 100 (1978) 366.