Journal of Organometallic Chemistry, 315 (1986) C61-C63 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

DARSTELLUNG UND LANTHAN-139-NMR-SPEKTROSKOPISCHE CHARAKTERISIERUNG VON TRIS(CYCLOPENTADIENYL)BIS(CYCLOHEXYLISONITRIL)LANTHAN(III)

STEFAN H. EGGERS und R. DIETER FISCHER*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 26. August 1986)

Summary

¹³⁹La NMR spectroscopy turns out to be a useful technique for distinguishing complexes of the type $(C_5H_5)_3$ La · L_n (L = nitrile; n = 1 or 2) in solution. Guided by this finding, the first bis-isocyanide adduct (n = 2) of a $(C_5H_5)_3$ Ln complex could be prepared (Ln = La).

Nach unseren bisherigen Beobachtungen entziehen sich die elementar- und röntgenstrukturanalytisch eindeutig belegten, doch koordinativ bereits leicht "überfrachteten" Komplexe des Typs $Cp_3Ln(NCCH_3)_2$ mit Ln = La-Pr ($Cp = \eta^5-C_5H_5$) [1] auf Grund des Dissoziationsgleichgewichts (1) allgemein der Untersuchung in Lösung. Auch unter Ausnutzung des unterschiedlich starken Paramagnetismus des Komplexpaares mit Ln = Pr und Anwendung von Nitril im Überschuss gelang es uns bislang nicht, das Vorliegen beider Gleichgewichtskomponenten nebeneinander 1H -NMR-spektroskopisch schlüssig nachzuweisen [1].

$$Cp_3Ln(NCCH_3)_2 \stackrel{Lsgsm.}{\rightleftharpoons} Cp_3Ln \cdot NCCH_3 + NCCH_3$$
 (1)

Der Einsatz der von uns erstmals 1984 auf La-Organyle angewandten [1,2] 139 La-NMR-Spektroskopie [3] macht nunmehr im Fall der Systeme $Cp_3La \cdot L_n$ die Unterscheidung reiner 1:1-Addukte (n=1) von 1:1/1:2-Adduktgemischen auch in Lösung möglich: Während die chemischen Verschiebungen δ und die Halbwertsbreiten $W_{1/2}$ der eindeutig charakterisierten 1:1-Addukte z. B. mit Tetrahydrofuran, Pyridin und Diethylamin [3] in Ab- und Anwesenheit beträchtlicher Überschüsse an freier Lewis-Base praktisch unverändert bleiben, erweisen sich δ und $W_{1/2}$ des Systems $Cp_3La/NCCH_3$ als signifikant abhängig vom relativen Mengenverhältnis der zwei Komponenten (Tab. 1).

TABELLE 1

LANTHAN-139-NMR PARAMETER VERSCHIEDENER Cp3 Ln·L,-SYSTEME

Probe	δ (ppm) "	$W_{1/2}$ (Hz)
Cp ₃ La·NCCH ₃ ^b	-578	1200
Cp ₃ La(NCCH ₃) ₂ ^h	- 577	900
Cp ₃ La(NCCH ₃) ₂ /NCCH ₃ b,c	- 596	500
Cp ₃ La(NCCH ₃) ₂ /NCCH ₃ ^d	-606	600
Cp ₃ LaNCC(CH ₃) ₃ ^b	- 575	1000
$Cp_3La(CN-c-C_6H_{11})_2^b$	- 581	900
$Cp_3La(CN-c-C_6H_{11})_2/CN-c-C_6H_{11}^{b,c}$	-614	550

^a (Externer) Standard jeweils La(NO₃)₃·6H₂O (0.0025 M) gelöst in H₂O/D₂O (1:1). ^b Lösungsmittel CH₂Cl₂/CD₂Cl₂ (ca. 2:1). ^c Molarer Überschuss der freien Base ca. 10³. ^d Lösungsmittel CH₃CN/CD₃CN (2:1).

Während das Ausmass der Hochfeldverschiebung offenbar mit der Koordinationszahl des zentralen La^{III}-Ions anwächst [3,4], spiegelt die Abnahme der Linienbreite zugleich den Übergang vom stark tetraedrisch-deformierten (C_{3v}) zum symmetrischeren trigonal bipyramidalen $(\psi-D_{3h})$ 1:1-Addukt wider. Noch negativere $\delta(^{139}\text{La})$ -Werte als -578 ppm $(L = \text{NCC}_2\text{H}_5)$ sind bislang für kein 1:1-Addukt gefunden worden [3].

In Übereinstimmung mit dem Ausbleiben einer entsprechenden, weiteren $\delta(^{139}\text{La})$ -Hochfeldverschiebung im Fall des gegenüber NCCH₃ sterisch erheblich anspruchsvolleren Nitrils NCC(CH₃)₃ (auch im Überschuss, vgl. Tab. 1) gelang uns hier bislang nur die Darstellung des 1:1-Addukts. Überraschend angesichts der ebenfalls relativ hohen Raumbeanspruchung des Cyclohexylrestes [5a] ist andererseits der ¹³⁹La-NMR-spektroskopische Befund, dem zufolge das bereits beschriebene 1:1-Addukt Cp₃LaCN-c-C₆H₁₁ (1 [5a]) mit überschüssigem CN-c-C₆H₁₁ auch das entsprechende 1:2-Addukt (2) bildet [5b]. Tatsächlich gelang uns (trotz z. B. der Unzugänglichkeit von reinem Cp₃La(NCCH(CH₃)₂)₂ [1]) leicht die Darstellung von analysenreinem 2 aus Cp₃La und CN-c-C₆H₁₁ im Überschuss in Toluol (modifizierter Weg 4 von Ref. 1). Der $\delta(^{139}\text{La})$ -Wert von -614 ppm des hier vermutlich an 2 besonders reichen 1/2-Gemisches (Tab. 1) markiert unseres Wissens die grösste bislang beobachtete ¹³⁹La-Hochfeldverschiebung.

Das ${}^{1}H$ -NMR-Spektrum von 2 in CD₂Cl₂ ist angesichts des auf der NMR-Zeitskala raschen Ligandenaustausches gemäss (1) unverändert gegenüber dem von 1; lediglich das Integralverhältnis: Cp-Protonensingulett/Summe aller C_6H_{11} -Protonensignale zeigt den hier zu erwartenden Wert von 15: 22. Die ν (CN)-Frequenz von 2 liegt mit 2170 (KBr) bzw. 2172 cm⁻¹ (Nujol) noch unter dem für 1 berichteten Wert (2179.5 cm⁻¹ [5a]). Demgegenüber weisen sämtliche Homologen von 1 mit Ln = Ce-Lu sowie Y merklich höhere ν (CN)-Frequenzen auf (2203 \pm 7 cm⁻¹ [5-7]). Angesichts des strikten d^0 - und f^0 -Charakters des La^{III}-Ions muss die Frequenzerniedrigung beim Übergang von Cp₃LnCN-c-C₆H₁₁ (Ln \neq La) nach 1 und 2 andere Gründe als die Ausbildung von Ln \rightarrow C π -Rückbindungsanteilen haben. Unsere Ergebnisse schliessen nicht aus, dass mit koordinativ weniger anspruchsvollen Isonitrilen als CN-c-C₆H₁₁ auch zu 2 homologe 1: 2-Addukte mit Ln = Ce und Pr erhältlich sind. Über die ersten zu 2 homologen, kationischen Uran(IV)-Komplexe wird in der nachfolgenden Arbeit [8] berichtet.

Experimentelles

Spektroskopie. IR: Perkin-Elmer Modell 577; ¹H-NMR: Bruker WP 80; ¹³⁹La-NMR: Bruker AM 360, 50.871 MHz, Verwendung von Koaxial-Doppelraumprobenröhrchen von 10 mm Aussen- und 4 mm Innendurchmesser (innen: Standardlösung).

Dank. Diese Arbeit wurde durch Mittel des Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft nachhaltig unterstützt. Frau D. Bolze-Kuhrt und Herrn Dr. E. Haupt danken wir für die Ausführung von NMR-Messungen und wertvolle Diskussionen.

Literatur

- 1 X.-F. Li, S. Eggers, J. Kopf, W. Jahn, R.D. Fischer, C. Apostolidis, B. Kanellakopulos, F. Benetollo, A. Polo und G. Bombieri, Inorg. Chim. Acta, 100 (1985) 183.
- 2 R.D. Fischer, in T.J. Marks und I.L. Fragalà (Hrsg.), Fundamental and Technological Aspects of Organo-f-Element Chemistry, D. Reidel Publ. Comp., Dordrecht, 1985, S. 277.
- 3 $\delta(^{139}\text{La} 558, -540 \text{ und } -525 \text{ ppm})$. Eine systematische Übersicht über die $^{139}\text{La}-\text{NMR-Spektroskopie}$ zahlreicher $(C_5H_5)_3\text{La-Derivate}$ erscheint an anderer Stelle: S.H. Eggers und R.D. Fischer, in Vorbereitung.
- 4 D.F. Evans und P.H. Missen, J. Chem. Soc. Dalton Trans., (1982) 1929.
- 5 (a) R. v. Ammon und B. Kanellakopulos, Ber. Bunsenges. Phys. Chem., 76 (1972) 995; (b) Auf die Existenz dieses Produkts wurde bereits aus NMR-spektroskopischen Befunden geschlossen: B. Kanellakopulos, Sektionsvortrag, IREC 85, Zürich (Schweiz), 4–8. März 1985.
- 6 E.O. Fischer und H. Fischer, J. Organomet. Chem., 6 (1966) 141.
- 7 R. v. Ammon, R.D. Fischer und B. Kanellakopulos, Chem. Ber., 104 (1971) 1072.
- 8 H. Aslan und R.D. Fischer, J. Organomet, Chem., 315 (1986) C64.
- 9 C, H, N: Dornis und Kolbe, Mikroanalytisches Laboratorium, Mülheim/Ruhr.