Die Konkurrenz elektronischer und sterischer Substituenteneinflüsse in metallacyclischen Pentamethylcyclopentadienyl-Alkenylketon-Komplexen des Chroms, Molydäns und Wolframs. Molekülstruktur von $C_5 Me_5(CO)_2 Cr[HC=CPhC(O)Me]$

Helmut G. Alt*, Georg S. Herrmann, Heidi E. Engelhardt

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstr. 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

und Robin D. Rogers*

Department of Chemistry, Northern Illinois University, DeKalb, Illinois (U.S.A.) (Eingegangen den 16. Februar 1987)

Abstract

The photoinduced reaction of the methyl complexes $C_5Me_5M(CO)_3Me$ (M = Cr, Mo, W) with phenylacetylene, PhC₂H, yields metallacyclic alkenylketone complexes $C_5Me_5(CO)_2M[HC=CPhC(O)Me]$ (M = Cr, Mo) and the isomeric derivatives $C_5Me_5(CO)_2M[PhC=CHC(O)Me]$ (M = Mo, W). The bulky C_5Me_5 ligand and the metal atom radius determine whether the phenyl substituent favours the electronically attractive but sterically unattractive α -position or the electronically less favourable but sterically unhindered β -position of the metallacycle. The molecular structure of $C_5Me_5(CO)_2Cr[HC=CPhC(O)Me]$ is presented and compared with that of $C_5Me_5(CO)_2W[MeC=CMeC(O)Me]$.

Zusammenfassung

Bei der photoinduzierten Umsetzung der Methylkomplexe $C_5Me_5M(CO)_3Me$ (M = Cr, Mo, W) mit Phenylacetylen, PhC₂H, entstehen die metallacyclischen Alkenylketonverbindungen $C_5Me_5(CO)_2M[HC=CPhC(O)Me]$ (M = Cr, Mo) bzw. die isomeren Derivate $C_5Me_5(CO)_2M[PhC=CHC(O)Me]$ (M = Mo, W). Der sperrige C_5Me_5 -Ligand und die Grösse des Metalls bestimmen, ob der Phenylsubstituent an der elektronisch günstigen, aber sterisch gehinderten α -Position des Metallacyclus oder an der elektronisch weniger günstigen, aber sterisch ungehinderten β -Position des Metallacyclus eingebaut wird. Die Molekülstruktur von $C_5Me_5(CO)_2Cr[HC=C-PhC(O)Me]$ wird vorgestellt und mit der von $C_5Me_5(CO)_2W[MeC=CMeC(O)Me]$ verglichen.

Einleitung

Wir haben kürzlich die Darstellung der metallacyclischen Alkenylketonkomplexe $C_5Me_5(CO)_2Cr[R^1C=CR^2C(O)Me]$ (R^1 , $R^2 = H$, Alkyl, Phenyl) beschrieben [1] und bei einem Vergleich dieser Verbindungen mit den analogen Wolframderivaten herausgefunden, dass sterisch anspruchsvollere Substituenten je nach Metall die α -oder β -Position im Metallacyclus bevorzugen. Um den Einfluss des Metalls und des vollständig methylierten Cyclopentadienylrings auf das Bildungsverhältnis dieser Stellungsisomere besser studieren zu können, haben wir phenylsubstituierte metallacyclische Alkenylketonkomplexe des Chroms, Molybdäns und Wolframs dargestellt und als einzigen Parameter nur das Metall variiert.

Ergebnisse und Diskussion

Synthese der Komplexe $C_5 Me_5(CO)_2 \overline{M[HC=CPhC(O)Me]}$ (M = Cr. Mo) und $C_5 Me_5(CO)_2 \overline{M[PhC=CHC(O)Me]}$ (M = Mo, W)

Die photoinduzierte Umsetzung der Komplexe $C_5Me_5M(CO)_3Me$ (M = Cr, Mo, W) mit Phenylacetylen in Pentanlösung führt zu den 1:1-Addukten $C_5Me_5(CO)_2M[HC=CPhC(O)Me]$ (M = Cr, Mo) und $C_5Me_5(CO)_2M[PhC=CHC-(O)Me]$ (M = Mo, W).

Im Gegensatz zu den Umsetzungen der Cyclopentadienylverbindungen $C_5H_5M(CO)_3Me$ (M = Mo, W) mit Phenylacetylen, bei denen nur Isomere vom Typ **B** entstehen (vgl. [1] und darin enthaltene Zitate), gelingt es mit den Pentamethylcyclopentadienylkomplexen $C_5Me_5M(CO)_3Me$ (M = Cr, Mo) auch Isomere vom Typ **A** darzustellen. Offenbar wird die elektronisch günstigere α -Position im Metallacyclus vom C_5Me_5 -Liganden blockiert, wenn das Metall zu klein wird.

Während beim Chromkomplex die α -Position für den Phenylsubstituenten offenbar überhaupt nicht zugänglich ist, erlaubt das grössere Metall Wolfram die 100%ige Bildung des Isomeren **B**. Das Molybdän nimmt eine Mittelstellung ein und lässt die Ausbildung der beiden Isomeren **A** und **B** zu, wobei allerdings dem Isomeren **B** der Vorzug (66%) gegeben wird.

Spektroskopische Charakterisierung

Die Entscheidung, ob in den Produkten das Isomere A oder B vorliegt, gelingt eindeutig durch die ¹H-NMR-Spektren. Wie bereits früher ausführlich dargelegt

$$(M = Cr, Mo, W)$$

(vgl. [1] und darin enthaltene Zitate), gibt sich ein Wasserstoffsubstituent in der α -Position zum Metall durch ein Signal bei tiefem Feld zwischen δ 11–12 ppm zu erkennen; in der β -Position hingegen liefert er ein Singulettsignal bei viel höherem Feld ($\delta \approx 6.80$ ppm).

Die Komponenten von Isomerengemischen, wie im Fall der Mo-Komplexe, unterscheiden sich auch signifikant in den IR- und ¹³C-NMR-Spektren (vgl. Tabellen 1 und 2). Noch nicht eindeutig geklärt ist die Tatsache, dass die phenylsubstituierten Isomeren vom Typ **B** im IR-Spektrum für die beiden terminalen CO-Liganden drei ν (CO)-Banden zeigen. Dies weist auf zwei verschiedene Spezies hin, die sich aber im ¹H-NMR-Spektrum nicht zu erkennen geben. Es wäre denkbar, dass in Lösung neben der geschlossenen Form **C** eine offene Form **F** existiert.

Tabelle 1

IR, ¹H-NMR- und MS-Daten der Komplexe $C_5Me_5(CO)_2M[HC=CPhC(O)Me]$ (M = Cr, Mo) und $C_5Me_5(CO)_2M[PhC=CHC(O)Me]$ (M = Mo, W)

Komplex	IR ^{<i>a</i>} ν (C=O)	¹ H-NMR	b		MS ^c
	bzw. v(C=O)	$\overline{\delta(C_5Me_5)}$	$\delta(-HC=CPh-)$ bzw. $\delta(-PhC=CH-)$	δ(Me)	m/z
$\overline{C_5 Me_5(CO)_2 Cr[HC=CPhC(O)Me]}$	1960, 1890, 1480	1.73	H 11.27; Ph 7.38(m)	2.49	388
$C_5 Me_5(CO)_2 Mo[HC=CPhC(O)Me]$	1968, 1913, 1475	1.82	H 11.20; Ph 7.29(m)	2.46	432
$C_5Me_5(CO)_2Mo[PhC=CHC(O)Me]$	1962, 1897/1875, 1475	1.69	H 6.77; Ph 7.38(m)	2.42	432
$C_5Me_5(CO)_2W[PhC=CHC(O)Me]$	1955, 1888/1866, 1481	1.82	H 6.80; Ph 7.35 (m)	2.46	520

^{*a*} In Pentan (cm⁻¹). ^{*b*} In Aceton-*d*₆, bei -20° C, ppm rel. δ 2.04. ^{*c*} Bez. auf ⁵² Cr, bzw. ⁹⁶ Mo, bzw. ¹⁸⁴ W. m = Multiplett.

				4				
Komplex	δ(C ₅ Me ₅) [¹ J(C,H)]	δ(M-CO)	δ(C _a) [¹ J(C,H)]	$\delta(C_{\beta}) \\ [^{1}J(C,H)]$	δ(C,)	ð(Ph)	δ(Me) [¹ J(C,H)]	1 1
C ₅ Me ₅ (CO) ₂ Cr[HC=CPhC(O)Me]	102.6, 9.7 [127.0]	257.2	262.5 [142.6]	141.3	0.991	143.1/127.3/ 128.6/126.5	25.8 [127.0]	
C ₅ Me ₅ (CO) ₂ Mo[HC=CPhC(O)Me]	105.4, 10.1	248.8	251.5	143.5	195.9	151.4/129.3/ 128.8/127.5	25.5	
C ₅ Me ₅ (CO) ₂ Mo <u>[PhC=CHC(O</u>)Me]	106.1, 10.2	254.3	265.1	127.9	6.661	152.9/129.4/ 128.4/126.7	24.9	
C ₅ Me ₅ (CO) ₂ W[PhC=CHC(O)Me]	104.8, 10.3	245.4	256.8	127.7 [156.3]	1.7.1	155.1/130. 4 128.5/127.2	23.9	
	A Comparison of the second s	 In particular de l'information de la participation de	and the second	And the property of the second se	- Martin Communication and the state of the	And	and the second	1

¹³C-NMR-Daten ^a der Komplexe C, $Me_s(CO)_2 M[HC=CPhC(O)Me]$ (M = Cr. Mo) und C, $Me_s(CO)_2 M[PhC=CHC(O)Me]$ (M = Mo, W)

Tabelle 2

^{*a*} In Aceton- d_6 , bei -20 °C. 8 in ppm; J in Hz.

Fig. 1. Molekülstruktur von C₅Me₅(CO)₂Cr[HC=CPhC(O)Me].

Die Umwandlung $C \rightleftharpoons F$ könnte so rasch verlaufen, dass sie ¹H-NMRspektroskopisch nicht registriert werden kann. Gestützt wird diese Interpretation <u>durch die</u> temperaturabhängigen ¹³C-NMR-Spektren von C₅H₄Me(CO)₂ \overline{W} -[PhC=CHC(O)Me], die nur bei tiefen Temperaturen für die beiden terminalen CO-Liganden unterschiedliche Signale aufweisen ($\Delta G^{\ddagger} = 35.3$ kJ mol⁻¹) [2] sowie die Festkörper-IR-Spektren dieser phenylsubstituierten Metallacyclen, die für die beiden CO-Liganden jeweils nur zwei Banden zeigen.

Festkörperstruktur von $C_5 Me_5(CO)_2 Cr[HC=CPhC(O)Me]$ und Vergleich mit der Molekülstruktur von $C_5 Me_5(CO)_2 W[MeC=CMeC(O)Me]$

Die Röntgenstrukturanalyse der in Pentan gewachsenen plättchenförmigen roten Kristalle zeigt ähnliche Verhältnisse, wie sie von dem dimethylsubstituierten Wolframderivat $C_5Me_5(CO)_2W[MeC=CMeC(O)Me]$ bekannt sind [2]. Der Chrom-komplex besitzt ebenfalls die Struktur einer verzerrten tetragonalen Pyramide, auf deren Spitze der Pentamethylcyclopentadienylring zu liegen kommt (vgl. Fig. 1).

Bindungsabstände und -winkel sind in Tabelle 3 aufgeführt. Ein Vergleich mit charakteristischen Atomabständen des Moleküls $C_5Me_5(CO)_2W[MeC=CMeC-(O)Me]$ (vgl. Tabelle 4) zeigt, dass im Chromkomplex eine gleichmässige Verkürzung der Bindungsabstände vom Metall zu den Ligandatomen zu beobachten ist, die offenbar durch das im Vergleich zum Wolfram wesentlich kleinere Chrom hervorgerufen wird.

Der Abstand Cr-C(3) ist mit 2.013(2) Å beachtlich kürzer, als man dies von einer Chrom-Kohlenstoff-Einfachbindung (≈ 2.25 Å) erwarten würde [3]. Typische Chrom-Kohlenstoff-Einfachbindungsabstände, wie z.B. von den Organochrom-Verbindungen Li₄Cr₂(CH₃)₈ · 4C₄H₈O (2.20(1) Å) [4] und Li₃Cr₂(CH₃)₆ · 3C₄H₈O₂

Tabelle 3

Bindungslängen (Å) und -winkel (°) für $C_5Me_5(CO)_2Cr[HC=CPhC(O)Me]$

Cr-O(3)	2.034(2)	Cr-C(1)	1.880(3)
Cr-C(2)	1.835(3)	Cr-C(3)	2.013(2)
Cr-C(13)	2.221(2)	Cr-C(14)	2.190(2)
Cr-C(15)	2.191(2)	CrC(16)	2.223(2)
Cr-C(17)	2.243(2)	O(1)-C(1)	1.147(3)
O(2)-C(2)	1.156(3)	O(3)–C(5)	1.275(3)
C(3)-C(4)	1.371(3)	C(4)C(5)	1.428(3)
C(4) - C(6)	1.485(3)	C(5)-C(12)	L498(3)
C(6)~C(7)	1.399(3)	C(6)-C(11)	1.399(3)
C(7) - C(8)	1.387(3)	C(8)-C(9)	1.390(3)
C(9)-C(10)	1.385(4)	C(10) - C(11)	1.391(3)
C(13)-C(14)	1.432(3)	C(13)C(17)	1.415(3)
C(13)-C(18)	1.499(3)	C(14)C(15)	1.427(3)
C(14)-C(19)	1.496(3)	C(15)-C(16)	1.419(3)
C(15)-C(20)	1.503(3)	C(16)~C(17)	1.415(3)
C(16)-C(21)	1.512(3)	C(17)-C(22)	1.507(3)
Cent-Cr ^a	1.85		
O(3)-Cr-C(1)	82.29(8)	O(3) - Cr - C(2)	129.37(9)
C(1)CrC(2)	81.4(1)	O(3)-Cr-C(3)	75.80(8)
C(1)Cr-C(3)	125.3(1)	C(2)CrC(3)	75.6(1)
Cr - O(3) - C(5)	118.3(1)	Cr - C(1) - O(1)	176.2(2)
Cr - C(2) - O(2)	178.4(2)	Cr-C(3)-C(4)	118.2(2)
C(3)-C(4)-C(5)	110.9(2)	C(3)-C(4)-C(6)	124.6(2)
C(5)-C(4)-C(6)	124.2(2)	O(3)C(5)C(4)	116.2(2)
O(3)-C(5)-C(12)	117.2(2)	C(4)~C(5)~C(12)	126.5(2)
C(4)-C(6)-C(7)	119.9(2)	C(4)-C(6)-C(11)	122.0(2)
C(7)-C(6)-C(11)	118.1(2)	C(6) - C(7) - C(8)	121.1(2)
C(7)-C(8)-C(9)	120.1(2)	C(8)-C(9)-C(10)	119.5(2)
C(9)-C(10)-C(11)	120.4(2)	C(6)-C(11)-C(10)	120.7(2)
C(14)-C(13)-C(17)	108.2(2)	C(14)-C(13)-C(18)	125.3(2)
C(17)-C(13)-C(18)	126.5(2)	C(13)-C(14)-C(15)	107.2(2)
C(13)-C(14)-C(19)	125.3(2)	C(15)-C(14)-C(19)	127.3(2)
C(14)-C(15)-C(16)	108.1(2)	C(14)-C(15)-C(20)	125.3(2)
C(16)-C(15)-C(20)	126.5(2)	C(15)-C(16)-C(17)	108.2(2)
C(15)-C(16)-C(21)	125.8(2)	C(17)-C(16)-C(21)	125.7(2)
C(13)-C(17)-C(16)	108.2(2)	C(13)-C(17)-C(22)	125.4(2)
C(16)-C(17)-C(22)	126.1(2)	Cent-Cr- $O(3)^{a}$	113.2
Cent-Cr-C(1) ^a	117.0	$Cent-Cr-C(2)^{-a}$	116.9
Cent-Cr-C(3) a	117.7		

^{*a*} Cen₄ = Zentrum des C_5 Me₅-Ringes.

(2.30(2) Å) [5], sind wesentlich grösser. Selbst in $[(Me_3SiCH_2)_2Cr(bipy)_2]l$ ist der Cr-C-Abstand mit 2.107(9) Å [6] noch beträchtlich länger als im Chromacyclus. Sehr gut vergleichbar ist die Cr-C-Bindungslänge des Alkenylketonkomplexes hingegen mit Cr-C-Abständen von Chrom-Carben- bzw. Alkenylketonkomplexen, die partiellen Cr-C-Doppelbindungsanteil besitzen und in einem Bereich von 2.00 bis 2.16 Å beobachtet werden, wie z.B. in den Fischer'schen Carbenkomplexen des Chroms [7] und dem Chrom-Allenyliden-Komplex (OC)₅Cr=C=C=C(NMe₂)Ph (Cr-C: 2.015 Å) [8]. Auch wenn allgemein für π -gebundene Arensysteme im Vergleich zu den Pentacarbonyl-Carbenkomplexen ein noch etwas kürzerer Cr-C-

334

	C(1) = C(2) + C(2) + C(3) +	C(1) = C(2) =
Abstände	M = Cr	M = W
M-C(3)	2.013(2)	2.145(14)
C(3)-C(4)	1.371(3)	1.360(18)
C(4) - C(5)	1.428(3)	1.389(20)
C(5)-O(3)	1.275(3)	1.294(17)
M-O(3)	2.034(2)	2.104(9)
M-C(1)	1.880(3)	1.967(14)
M-C(2)	1.835(3)	1.918(16)
M-Cent ^a	1.85	1.995(16)

Ein Vergleich charakteristischer Atomabstände (Å) in den Molekülen $C_5Me_5(CO)_2Cr[HC=CPhC(O)Me]$ und $C_5Me_5(CO)_2W[MeC=CMeC(O)Me]$ [2]

^{*a*} Cent = Zentrum des C_5Me_5 -Ringes

Doppelbindungsabstand, wie z.B. in $(\eta^6-C_6H_6)(CO)_2Cr=C(OMe)Ph$ (1.935(12) Å) [9], erwartet wird, müssen für $C_5Me_5(CO)_2Cr[HC=CPhC(O)Me]$ – wie beim Wolframacyclus – für die Bindungsbeschreibung die beiden mesomeren Grenzstrukturen C und E berücksichtigt werden.

Die Abstände C(3)–C(4) (1.371(3) Å) und C(4)–C(5) (1.428(3) Å) liegen ebenfalls zwischen denen einer Kohlenstoff-Einfach- und -Doppelbindung, jedoch zeichnet sich hier im Gegensatz zum Wolframkomplex, bei dem sich die analogen Kohlenstoffabstände nur geringfügig unterscheiden, eine wesentlich stärkere Lokalisierung der Einfach- und Doppelbindungen ab. Deshalb dürfte der Grenzstruktur C im Falle des Chromacyclus die grössere Bedeutung zukommen. Ähnliche Bindungsverhältnisse wurden auch in den folgenden metallacyclischen Alkenylketonkomplexen [10,11] beobachtet:

 $C_{\alpha} - C_{\beta} : 1.358(9) \text{\AA}$

CB-Cy: 1.459(10)Å

Noch stärker separierte Einfach- (1.51(3) Å) und Doppelbindungen (1.31(2) Å) zeigen die Molekülstrukturen des Anions cis-(CO)Cl₂Pt[EtO₂CC=C(Cl)C(O)O¹Pr]⁻ [12] und die von ähnlichen Derivaten [13].

Möglicherweise spielt der Phenylsubstituent an C_{β} eine wichtige Rolle für die Bindungsverhältnisse im Chromacyclus, denn im Gegensatz zum Methylsubstituenten in der Wolfram-Verbindung ist eine beträchtliche Verkürzung der Bindungslänge zwischen C_{β} und dem ersten Kohlenstoffatom des Phenylsubstituenten feststellbar. Sie deutet auf eine Einbeziehung des Phenylrings in die mesomeren Effekte hin.

Der Abstand C(5)–O(3) (1.275(3) Å) ist im Vergleich zu einer nichtkoordinierten Acetylfunktion wie z.B. in $C_5H_5(CO)_2W[H(PMe_3)C-CH(COMe)]$ (1.217 Å) [14] beträchtlich aufgeweitet und macht die niedrige $\nu(CO)$ -Frequenz um 1450 cm⁻¹ im IR-Spektrum verständlich.

Während im Wolframkomplex der W–C(3)-Abstand (2.145(14) Å) länger ist als der W–O(3)-Abstand (2.104(9) Å), beobachtet man in der Chromverbindung ein umgekehrtes Verhalten: Cr-C(3): 2.013(2): Cr-O(3): 2.034(2).

Beschreibung der Versuche

Alle Operationen wurden unter Schutzgas-Atmosphäre und mit wasserfreien Lösungsmitteln durchgeführt. Für die Photolysereaktionen wurde ein Quecksilber-Mitteldruckbrenner Hanovia L450W verwendet. Die IR-Spektren wurden mit einem Spektrometer Perkin-Elmer 983 G, die NMR-Spektren mit einem FT-Multikern-NMR-Spektrometer JEOL FX 90Q und die Massenspektren mit einem Varian MAT CH7-Gerät (Elektronenstoss-Ionenquelle IXB) aufgenommen.

Die Ausgangsverbindungen $C_5Me_5M(CO)_3Me$ (M = Cr, Mo, W) [15] und der Chromacyclus $C_5Me_5(CO)_2Cr[HC=CPhC(O)Me]$ [1] wurden nach bekannten Vorschriften dargestellt.

Darstellung der Komplexe $C_5 Me_5(CO)_2 Mo(HC=CPhC(O)Me]$ und $C_5 Me_5(CO)_2 M-(PhC=CHC(O)Me]$ ($M = M_0, W$)

Allgemeine Vorschrift: 0.45 g (1.36 mmol) $C_5Me_5Mo(CO)_3Me$ bzw. 0.52 g (1.24 mmol) $C_5Me_5W(CO)_3Me$ werden in etwa 200 ml Pentan gelöst, die Lösung wird mit 0.2 g (ca. 0.2 mmol) Phenylacetylen versetzt und 45 min bestrahlt. Die dunkelrote Reaktionslösung wird über eine mit Kieselgel/Pentan beschichtete Säule chromatographiert. Mit Pentan/Toluol (10/1) lässt sich unumgesetztes Ausgangsmaterial und wenig $[C_5Me_5M(CO)_3]_2$ (M = Mo, W) eluieren, mit Toluol der jeweilige metallacyclische Alkenylketonkomplex. Die beiden Isomeren des Mo-Komplexes A und B können säulenchromatographisch nicht getrennt werden, wohl aber durch fraktionierte Kristallisation (A kristallisiert besser). Das Lösungsmittel wird im Hochvakuum abgezogen und der Rückstand mit Pentan aufgenommen. Die auf ca. 50 ml eingeengte Pentanlösung liefert beim Stehenlassen auf Trockeneis ein kristallines Produkt.

Ausbeute: 0.29 g (49%); Fp. 115 °C (unter Stickstoff). Gef.: C, 59,79: H. 5.59. $C_{22}H_{24}O_3MO$ (432.37) ber.: C, 61.11; H, 5.60%.

Ausbeute: 0.36 g (56%); Fp.: 121°C (unter Stickstoff). Gef.: C, 50.14: H, 4.76; W, 34.61. $C_{22}H_{24}O_3W$ (520.28) ber.: C, 50.79; H, 4.65; W, 35.34%.

Tabelle 5

Lageparameter der Atome von C₅Me₅(CO)₂Cr[HC=CPhC(O)Me]

Atom	x/a	y/b		
Cr	0.79527(2)	0.70861(5)	0.51367(2)	
O(1)	0.8650(1)	0.4289(2)	0.6485(1)	
O(2)	0.8205(1)	0.4320(2)	0.3885(1)	
O(3)	0.70466(9)	0.7323(2)	0.5839(1)	
C(1)	0.8367(2)	0.5367(3)	0.5992(2)	
C(2)	0.8099(1)	0.5375(3)	0.4372(2)	
C(3)	0.6829(1)	0.7005(3)	0.4191(2)	
C(4)	0.6085(1)	0.7260(3)	0.4453(2)	
C(5)	0.6264(1)	0.7492(3)	0.5401(2)	
C(6)	0.5218(1)	0.7432(3)	0.3828(2)	
C(7)	0.5114(2)	0.8347(3)	0.3027(2)	
C(8)	0.4316(2)	0.8493(3)	0.2421(2)	
C(9)	0.3599(2)	0.7726(3)	0.2604(2)	
C(10)	0.3691(2)	0.6809(3)	0.3392(2)	
C(11)	0.4491(2)	0.6663(3)	0.4001(2)	
C(12)	0.5634(2)	0.8003(3)	0.5922(2)	
C(13)	0.8494(2)	0.9421(3)	0.5898(2)	
C(14)	0.7974(2)	0.9884(3)	0.5030(2)	
C(15)	0.8366(1)	0.9157(3)	0.4382(2)	
C(16)	0.9113(1)	0.8257(3)	0.4849(2)	
C(17)	0.9191(1)	0.8423(3)	0.5780(2)	
C(18)	0.8335(2)	0.9967(3)	0.6775(2)	
C(19)	0.7205(2)	1.1032(3)	0.4855(2)	
C(20)	0.8066(2)	0.9416(4)	0.3385(2)	
C(21)	0.9763(2)	0.7424(3)	0.4428(2)	
$\dot{C(22)}$	0.9925(2)	0.7780(4)	0.6524(2)	
H(1)(C(3))	0.680	0.688	0.356	
H(1)[C(7)]	0.561	0.891	0.283	
H(1)[C(8)]	0.422	0.915	0.181	
H(1)[C(9)]	0.304	0.780	0.218	
H(1)(C(10))	0.320	0.626	0.357	
H(1)(C(11))	0.455	0.599	0.459	
H(1)[C(12)]	0.517	0.866	0.557	
H(2)(C(12))	0.545	0.698	0.617	
H(3)(C(12))	0.591	0.869	0.643	
H(1)[C(18)]	0.856	1.103	0.699	
H(2)(C(18))	0.777	0.989	0.680	
H(3)[C(18)]	0.857	0.931	0.722	
H(1)(C(19))	0.681	1.075	0.520	
H(2)[C(19)]	0.738	1.219	0.499	
H(3)[C(19)]	0.684	1.099	0.423	
H(1)[C(20)]	0.747	0.952	0.317	
H(2)[C(20)]	0.824	0.853	0.303	
H(3)[C(20)]	0.824	1.044	0.320	
H(1)[C(21)]	0.947	0.695	0.378	
H(2)[C(21)]	1.018	0.818	0.438	
H(3)[C(21)]	1.006	0.646	0.477	
H(1)[C(22)]	1.025	0.677	0.639	
H(2)[C(22)]	0.970	0.733	0.702	
H(3)[C(22)]	1.028	0.869	0.675	
(-/(-(/)				

Tabelle	6

Temperaturparameter von C5Me5(CO)2Cr[HC=CPhC(O)Me] ^a

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U_{23}
Cr	0.0123(2)	0.0157(2)	0.0123(2)	-0.0013(2)	0.0031(2)	0.0000(2)
O(1)	0.035(1)	0.028(1)	0.025(1)	0.0047(9)	0.0058(9)	0.0099(9)
O(2)	0.022(1)	0.028(1)	0.027(1)	-0.0009(8)	0.0085(8)	-0.0106(9)
O(3)	0.0164(9)	0.0190(9)	0.0138(9)	~ 0.0015(7)	0.0045(7)	-0.0007(7)
C(1)	0.017(1)	0.023(1)	0.018(1)	-0.004(1)	0.006(1)	-0.003(1)
C(2)	0.013(1)	0.021(1)	0.018(1)	-0.002(1)	0.002(1)	0.004(1)
C(3)	0.017(1)	0.016(1)	0.014(1)	-0.001(1)	0.003(1)	0.001(1)
C(4)	0.016(1)	0.015(1)	0.016(1)	-0.002(1)	0.004(1)	0.000(1)
C(5)	0.019(1)	0.013(1)	0.019(1)	-0.003(1)	0.007(1)	~ 0.001(1)
C(6)	0.017(1)	0.013(1)	0.018(1)	0.002(1)	0.005(1)	-0.003(1)
C(7)	0.020(1)	0.018(1)	0.018(1)	0.002(1)	0.008(1)	~ 0.001(1)
C(8)	0.024(1)	0.021(1)	0.019(1)	0.005(1)	0.004(1)	-0.001(1)
C(9)	0.018(1)	0.026(2)	0.023(1)	0.005(1)	0.000(1)	-0.006(1)
C(10)	0.016(1)	0.026(1)	0.029(2)	-0.001(1)	0.006(1)	-0.002(1)
C(11)	0.017(1)	0.021(1)	0.022(1)	0.000(1)	0.006(1)	-0.001(1)
C(12)	0.023(1)	0.029(2)	0.023(1)	0.001(1)	0.012(1)	-0.004(1)
C(13)	0.018(1)	0.017(1)	0.019(1)	-0.007(1)	0.002(1)	-0.002(1)
C(14)	0.018(1)	0.014(1)	0.021(1)	-0.003(1)	0.004(1)	0.001(1)
C(15)	0.017(1)	0.016(1)	0.020(1)	-0.005(1)	0.007(1)	0.003(1)
C(16)	0.016(1)	0.016(1)	0.026(1)	-0.004(1)	0.008(1)	0.000(1)
C(17)	0.016(1)	0.017(1)	0.022(1)	-0.007(1)	0.001(1)	0.000(1)
C(18)	0.035(2)	0.026(2)	0.018(1)	-0.006(1)	0.007(1)	-0.006(1)
C(19)	0.022(1)	0.019(1)	0.029(1)	0.002(1)	0.009(1)	0.002(1)
C(20)	0.032(2)	0.029(2)	0.019(1)	0.001(1)	0.010(1)	0.006(1)
C(21)	0.019(1)	0.025(1)	0.044(2)	-0.001(1)	0.017(1)	0.000(1)
C(22)	0.020(1)	0.033(2)	0.038(2)	-0.004(1)	-0.008(1)	0.004(1)

^a Anisotrope thermische Parameter werden definiert durch $exp[-2\pi(\pi)(hha^*a^*U_{11} + kkb^*b^*U_{22} + llc^*c^*U_{33} + 2hka^*b^*U_{12} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13})]$. Wasserstoffatomen wurde ein fester isotroper thermischer Parameter mit $B = (Å^2)$ zugeordnet.

Röntgenkristallographie

Die Röntgenmessungen erfolgten an einem Kristall (Abmessungen: $0.20 \times 0.45 \times 0.45$ mm) mit Mo- K_{α} -Strahlung (λ 0.71069 Å) bei -150 °C auf einem Enraf-Nonius CAD-4-Diffraktometer. Kristalldaten von C₂₂H₂₄O₃Cr (388.4), Raumgruppe $P2_1/c$; *a* 16.090(2), *b* 7.804(1), *c* 15.413(2) Å, β 104.80(1) °. Für Z = 4 berechnete Dichte: 1.38 g cm⁻³, Zellvolumen 1871.1 Å³. Intensitätsdaten: $\theta/2\theta$ -Messbetrieb, θ_{max} 50 °, Lp- und Absorptionskorrekturen wurden angebracht (μ 5.77 cm⁻¹); 3667 unabhängige Reflexe. Im folgenden wurden 2919 Reflexe mit $F_0 \ge 5\sigma(F_0)$ benutzt. Strukturbestimmung mittels Fourier-Synthesen. Verfeinerung mit anisotropen Temperaturfaktoren für Neutralatome. Die Wasserstoffatome wurden durch Differenz-Fourier-Berechnungen lokalisiert und sind mit festen Beträgen (B 5.5 Å²) in der Verfeinerung enthalten. R = 0.033 und $R_w = 0.036$. Das benutzte Programmsystem war SHELX-76 [16]. Die Atomparameter sind in den Tabellen 5 und 6 angegeben.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit und dem U.S. National Science Foundation Chemical Instrumentation Program für die Bereitstellung des Diffraktometers (R.D.R).

Literatur

- 1 H.G. Alt und H.I. Hayen, J. Organomet. Chem., 315 (1986) 337.
- 2 H.G. Alt, H.E. Engelhardt, U. Thewalt und J. Riede, J. Organomet. Chem., 288 (1985) 165 und darin enthaltene Zitate.
- 3 F.A. Cotton und D.C. Richardson, Inorg. Chem., 5 (1966) 1851.
- 4 J. Krausse, G. Marx und G. Schödl, J. Organomet. Chem., 21 (1970) 159.
- 5 J. Krausse und G. Marx, J. Organomet. Chem., 65 (1974) 215.
- 6 J.J. Daly, F. Sanz, R.P.A. Sneeden und H.H. Zeiss, Helv. Chim. Acta, 56 (1973) 503.
- 7 K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert und K. Weiss, Transition Metal Carbene Complexes, Verlag Chemie, Weinheim 1983, S. 94.
- 8 E.O. Fischer, H.J. Kalder, A. Frank, F.H. Köhler und G. Huttner, Angew. Chem., 88 (1976) 683; Angew. Chem. Int. Ed. Engl., 15 (1976) 623.
- 9 U. Schubert, J. Organomet. Chem., 185 (1980) 373.
- 10 H. Werner, R. Weinand und H. Otto, J. Organomet. Chem., 307 (1986) 49.
- 11 L. Manojlović-Muir und K.W. Muir, J. Organomet. Chem., 168 (1979) 403.
- 12 F. Canziani, A. Albinati, L. Garlaschelli und M.C. Malatesta, J. Organomet. Chem., 146 (1978) 197.
- 13 F. Canziani, L. Garlaschelli, M.C. Malatesta und A. Albinati, J. Chem. Soc., Dalton Trans., (1981) 2395.
- 14 H.G. Alt und U. Thewalt, J. Organomet. Chem., 268 (1984) 235.
- 15 K.A. Mahmoud, A.J. Rest, H.G. Alt, M.E. Eichner und B.M. Jansen, J. Chem. Soc., Dalton Trans., (1984) 175.
- 16 SHELX-76 Programmsystem; G.M. Sheldrick, Göttingen, unveröffentlicht.