Journal of Organometallic Chemistry, 322 (1987) 185-192 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER DIE KRISTALLSTRUKTUREN VON Me₃SnO₂PCl₂UND Me₃SnO₂PMe₂ UND DAS SCHWINGUNGSSPEKTRUM VON Me₃SnO₂PMe₃

FRANK WELLER*

Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, Lahnberge, 3550 Marburg/Lahn (Deutschland)

und ABDEL-FATTAH SHIHADA

College of Science, U.A.E. University, Al-Ain, P.O. Box 15551 (United Arab Emirates) (Eingegangen den 10. Oktober 1986)

Summary

 $Me_3SnO_2PMe_2$ is prepared by treatment of Me_3SnNEt_2 with Me_2PO_2H in methylene chloride. The vibrational spectrum is discussed. Crystal structure determinations from X-ray diffraction data have been carried out with single crystals of $Me_3SnO_2PMe_2$ (R 0.076, 819 observed independent reflexions), and $Me_3SnO_2PCl_2$ (R 0.051, 1127 observed independent reflexions), showing polymer chains of SnMe₃ groups and O_2PX_2 (X = Cl, Me) units in both cases. The phosphinate chains form vast helices whereas the dichlorophosphate forms almost planar chains.

Zusammenfassung

Trimethylzinndimethylphosphinat wird durch Umsetzung von Me₃SnNEt₂ mit Me₂PO₂H in CH₂Cl₂ dargestellt und das Schwingungsspektrum wird diskutiert. Kristallstrukturbestimmungen mit Röntgenbeugungsdaten wurden an Einkristallen von Me₃SnO₂PMe₂ (*R* 7.6%, 819 beobachtete unabhängige Reflexe) und Me₃SnO₂PCl₂ (*R* 5.1%, 1127 beobachtete unabhängige Reflexe) durchgeführt; sie ergaben in beiden Fällen polymere Ketten aus SnMe₃- und O₂PX₂-Bausteinen (X = Me, Cl). Im ersten Fall liegt eine ausgeprägte Helixstruktur vor, während beim Dichlorphosphat das Kettengerüst annähernd planar ist.

Einleitung

In den meisten anorganischen und metallorganischen Derivaten der Dichlorphosphorsäure und der Dimethylphosphinsäure fungieren die Cl_2PO_2 - und Me_2PO_2 -Gruppen durch die Sauerstoffatome als Brückenliganden. Als Folge solcher

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

Brücken ergeben sich dimere bzw. polymere Strukturen [1–3]. Einzähnige Cl_2PO_2 und Me_2PO_2 -Liganden mit terminalen Sauerstoffatomen findet man z.B beim $[Mo(NO)Cl_4(O_2PCl_2)]^{2-}$ [4] und in den monomeren Trimethylsilylverbindungen [5,6]; jedoch deuten die spektroskopischen Untersuchungen von $Me_3SnO_2PCl_2$ [7] und $Me_3SnO_2PMe_2$ [8] auf polymere Strukturen mit fünffach koordinierten Zinnatomen hin, wobei eine planare Anordnung des SnC_3 -Gerüstes angenommen wird.

Im Zusammenhang mit unseren Untersuchungen an Verbindungen des Typs $Me_3SnOSPRR'$ ($RR' = Me_2$, MePh, Ph_2) [9] erschien es lohnenswert, die Kristallstrukturen von $Me_3SnO_2PCl_2$ und von $Me_3SnO_2PMe_2$ aufzuklären, zumal da an metallorganischen Dihalogenophosphaten bisher keine kristallographischen Strukturuntersuchungen durchgeführt worden sind. Darüber hinaus bietet diese Studie die Möglichkeit, die bei der Interpretation vieler fünffach koordinierter Trimethylzinnverbindungen beobachtete lokale D_{3h} -Symmetrie des SnC_3 -Gerüstes zu überprüfen.

Schwingungsspektren

Während das gesamte Schwingungsspektrum von $Me_3SnO_2PCl_2$ bereits diskutiert wurde [7], ist vom $Me_3SnO_2PMe_2$ nur ein Teil des IR-Spektrums publiziert

IR	Raman	Zuordnung	
2982m	2985w)		
2916w	2918m /	V(CH ₃)	
1420w	1415w	$\delta_{as}(CH_3)$	
1299s)		
1294s	}	$o_s(CH_3)(P-Me_3)$	
	1193m		
1185m	1183m >	$\delta_{s}(CH_{3})$ (Sn-Me ₃)	
1160s	1150w)		
1132vs		$\nu_{as}(\mathrm{PO}_2)$	
1062vs	1058w-m	$\nu_s(\mathrm{PO}_2)$	
918vw	915vw)		
863s	864vw >	$\rho(CH_3)$	
856m	855vw)		
770s		$\rho(\text{SnCH}_3)$	
738m	735w	$\nu_{as}(\mathrm{PC}_2)$	
698vw	697m	$\nu_{\rm s}({\rm PC}_2)$	
547s	547m-s \		
543s	540m ∫	$\nu_{as}(\operatorname{Sinc}_3)$	
	512vs	$\nu_s(SnC_3)$	
452w-m	445vw	$\delta(PO_2)$	
422m	425vw	$\delta(OPC)$	
368vw			
300vw	305vw		
275vw	275vw		
	170sh		
	148s		

TABELLE 1

SCHWINGUNGSSPEKTRUM (v(cm⁻¹)) VON Me₃SnO₂PMe₂

TABELLE 2

	Me ₃ SnO ₂ PMe ₂	Me ₃ SnO ₂ PCl ₂
Kristalldaten		
Raumgruppe	Pnna, Z = 4	Pbcm, $Z = 4$
Zellparameter: a	1176.4(2) pm	665.8(1) pm
ь	1070.4(9) pm	1126.3(2) pm
с	833.0(2) pm	1301.1(9) pm
Kristallgrösse	0.14×0.19×0.39 mm	0.11×0.24×0.48 mm
Intensitätsmessung		
Gerät	CAD4 (Enraf-Nonius)	
Strahlenquelle	$Mo-K_{\alpha}$ -Strahlung	
Messbereich	2° < 0 < 33°	2° < θ < 33°
Messzeit	variabel, max. 90 s	
Reflexzahl : gem.	2341	2981
unabh.	1980	1767
in d. Verf. verw.	$819 (F > 2\sigma_F)$	1127 ($F > 2\sigma_F$)
Auswertung		
Rechner	Sperry-Univac 1100	
Programme	STRUX [11], SHELX [12],	ORTEP [13]
Atomformfaktoren	für Neutralatome [14], unte	er
	Berücksichtigung der anon	nalen Disp. [15]
Starre Gruppen	CH ₃ -Gruppen tetraedrisch	, mit r(C-H) 108 pm
$R = \sum F_0 - F_c / \sum F_0 $	0.076	0.051

MESSPARAMETER UND ANGABEN ZUR STRUKTURVERFEINERUNG

TABELLE 3

BINDUNGSLÄNGEN (pm) UND -WINKEL (Grad) VON Me₃SnO₂PMe₂ UND Me₃SnO₂PCl₂ (Standardabweichungen bezogen auf die letzte Stelle)

	Me ₃ SnO ₂ PMe ₂	$Me_3SnO_2PCl_2$	
Sn-O	220(1)	226.5(5)	
Sn-C(1)	212(2)	212.1(8)	
Sn-C(2)	210(1)	210.8(6)	
P-O	145(1)	145.1(5)	
P-C(3)	177(2)		
P-Cl(1)		199.6(4)	
P-Cl(2)		198.6(4)	
O-Sn-O	174.4(5)	176.6(1)	
C(1)-Sn-C(2)	119.4(6)	119.5(2)	
C(2)-Sn-C(2')	121.2(6)	121.0(2)	
C(1)-Sn-O	92.8(7)	88.0(1)	
C(2)-Sn-O	89.0(7)	92.1(3)	
Sn-O-P	152.0(4)	154.0(1)	
O-P-C(3)	110.0(8)		
O-P-C(3')	106.7(8)		
C(3) - P - C(3')	105.0(8)		
0-P-0	115.4(7)	117.9(5)	
O-P-Cl(1)		109.8(2)	
O-P-Cl(2)		108.1(3)	
Cl(1)-P-Cl(2)		102.0(2)	

TABELLE 4

	$Me_3SnO_2PMe_2$	$Me_3SnO_2PCl_2$	Me ₃ SnOSPMe ₂ [9]
Zellparameter in			
Kettenrichtung			
(pm)	1070	1301	1011
Zellvolumen			
$(\times 10^{6} \text{ pm}^{3})$	1048	975	1062
Kettenkonfiguration	Helix	gestreckt	flache Helix
Sn-O (pm)	220	227	227
Sn-S (pm)			274
$O-Sn-O(^{\circ})$	174	171	
O-Sn-S(°)			172
Sn-O-P(°)	152	154	145
Sn-S-P(°)			104
P-O (pm)	145	145	150
Sn-C (pm)	210-212	211-212	212-214
C-Sn-C (°)	119–121	119–121	118-121

VERGLEICH EINIGER CHARAKTERISTISCHER GRÖSSEN UND EIGENSCHAFTEN VON DREI POLYMEREN TRIMETHYLZINNVERBINDUNGEN

[8]. In Tab. 1 werden IR- und Raman-Spektrum des Dimethylphosphinates mit Zuordnungsvorschlägen angegeben. Die nach der Interpretation dieser Spektren vorgeschlagenen polymeren Strukturen mit $O_2 PCl_2$ -bzw. $O_2 PMe_2$ -Brückenliganden und planaren SnC₃-Gerüsten werden durch diese Arbeit erhärtet (s.u.). Hingegen zeigt es sich, dass die Symmetrien der Gerüste leicht von D_{3h} abweichen, weil die Sn-C-Abstände geringfügig differieren und die Anordnung der Atome O-Sn-O nicht exakt linear ist (s. Tab. 3 und 4).

Im Schwingungsspektrum erwartet man im SnC_3 -Valenzschwingungsbereich für D_{3h} -Symmetrie eine Bande im IR-Spektrum ($\nu_{as}(\text{SnC}_3)$ der Rasse E') und zwei Banden im Raman-Spektrum (zuzüglich $\nu_s(\text{SnC}_3)$ der Rasse A₁') [10]. Die von uns gemessenen IR-bzw. Raman-Spektren von Me₃SnO₂PMe₂ zeigen im Bereich der SnC₃-Valenzschwingungen zwei Banden im IR (547 und 543 cm⁻¹) und drei Banden im Raman-Spektrum (547, 540 und 512 cm⁻¹), was auf eine geringfügige Abweichung von der D_{3h} -Symmetrie hinweist und mit der durch die Strukturbestimmung gefundenen Punktgruppe C_{2v} besser übereinstimmt. Die kleinen Differenzen von 4 cm⁻¹ zwischen den beiden Banden im IR-Spektrum und von 7 cm⁻¹ zwischen den entsprechenden Banden im Raman-Spektrum (547 und 540 cm⁻¹) zeigen, dass die Abweichung gering ist.

Experimentelles zur Strukturbestimmung

Aus Weissenberg- und Präzessionsfilmaufnahmen wurde für $Me_3SnO_2PMe_2$ die Raumgruppe *Pnna* bestimmt: für $Me_3SnO_2PCl_2$ bestätigte sich im Verlauf der Rechnung *Pbcm*. Die wichtigsten Messdaten der Intensitätsmessungen sind in Tab. 2 zusammengefasst. In beiden Fällen war es möglich, ein verfeinerbares Modell aus dreidimensionalen Patterson-Synthesen zu gewinnen. Nachfolgende Differenz-Fourier-Synthesen ergaben die Lagen der Leichtatome mit Ausnahme der Wasserstoffe. Diese wurden als Glieder starrer Gruppen behandelt und sind in der Tabelle der Ortsparameter (Tab. 5) nicht enthalten.

Strukturbeschreibung

Beide Verbindungen zeigen die charakteristische Bauweise der polymeren, kettenförmigen Trimethylzinnverbindungen (Fig. 1). Allerdings liegen unterschiedliche Konfigurationen vor. Während im Phosphinat, ähnlich wie im Thiophosphinat, bei abwechselnder *cis*- und *trans*-Stellung der jeweils nächsten Kettenatome an aufeinanderfolgenden P-O-Bindungen (P-O, P-S in der Thioverbindung) die Kette zur Helix gewunden ist, sind die nächsten Atome an den P-O-Bindungen des Dichlorphosphates ausschliesslich *trans*-ständig. Hierdurch kommen alle Kettenatome mit Ausnahme des Phosphors in eine Ebene parallel 100 zu liegen (max. Abweichung 4.5 pm). Aus dieser Ebene treten die P-Atome jeweils in der gleichen Richtung hervor (54.1 pm). Als Folge dieser Anordnung sind die Dichlorphosphat-Ketten stärker gestreckt, was in einer deutlichen Verlängerung der Identitätsperiode in Kettenrichtung zum Ausdruck kommt (s. Tab. 4 und Fig. 2). Zum Vergleich sind einige innere Koordinaten zusammen mit charakteristischen Eigenschaften den Daten des Thiophosphinats [8] in Tab. 4 gegenübergestellt. Die vollständigen Bindungslängen und -winkel sind Tab. 3 zu entnehmen.

Fig. 1. Schematische Darstellung des Kettenverlaufs bei drei polymeren Trimethylzinnverbindungen: (a) Me₃SnOSPMe₂ [9]; (b) Me₃SnO₂PMe₂; (c) Me₃SnO₂PCl₂.

Atom	×	x	2	v_{ii}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Me ₃ SnO	PMe2								
'n	0.2915(1)	0.25	0.25	0.0871(9)	0.0774(8)	0.0877(9)	- 0.0135(9)	0	0
•	0.25	0.5	0.5231(6)	0.106(4)	0.074(3)	0.069(3)	0	0	-0.002(3)
0	0.199(1)	0.599(1)	0.430(1)	0.14(1)	0.14(1)	0.17(1)	0.088(9)	- 0.018(8)	(2)=0.008(8)
(1)	0.112(2)	0.25	0.25	0.09(1)	0.12(2)	0.16(2)	- 0.02(2)	0	0
C(2)	0.379(2)	0.365(2)	0.087(2)	0.13(1)	0.12(1)	0.11(1)	0.02(1)	0.03(1)	-0.02(1)
C(3)	0.358(2)	0.560(2)	0.650(2)	0.15(2)	0.14(2)	0.11(1)	-0.02(1)	- 0.01(1)	- 0.02(1)
Ve ₃ SnO ₂	PCI								
ų	0.3777(1)	0.25	0	0.0463(3)	0.0390(2)	0.0512(3)	-0.0060(3)	0	0
(I)[0.0072(5)	0.3573(3)	0.25	0.070(2)	0.118(3)	0.095(2)	0	0	-0.006(2)
CI(2)	0.3186(7)	0.5613(2)	0.25	0.139(3)	0.054(1)	0.118(2)	0	0	0.001(2)
o .	0.3032(4)	0.3852(2)	0.25	0.069(1)	0.052(1)	0.036(1)	0	0	0.000(1)
~	0.3894(8)	0.3425(5)	0.1545(4)	0.102(4)	0.114(5)	0.057(5)	- 0.007(6)	0.000(4)	0.016(3)
(1)	0.696(1)	0.25	0	0.045(4)	0.073(5)	0.093(5)	0.010(4)	0	0
C(2)	0.222(1)	0.1038(6)	0.0621(6)	0.068(4)	0.055(4)	0.073(3)	-0.049(3)	0.025(3)	- 0.016(4)

ORTSPARAMETER UND TEMPERATURFAKTOREN (Die Standardabweichungen beziehen sich auf die letzte Stelle. Die Temperaturfaktoren sind definiert durch exp $-2\pi^2(U_1,h^2a^*2+...,2U_r,hka^*b^*)$))

TABELLE 5

Fig. 2. Stereoskopische Darstellungen der Elementarzellen von $Me_3SnO_2PMe_2$ (a) und von $Me_3SnO_2PCl_2$ (b).

Bei den in Tab. 4 verglichenen Verbindungen sind die Abstands- und Winkelverhältnisse innerhalb der SnMe₃-Gruppen nahezu identisch. Die O_2PX_2 -Kettenglieder jedoch unterscheiden sich deutlich. Beim Me₃SnO₂PMe₂ ist der Bindungswinkel Sn-O-P am kleinsten (145°). Dies befindet sich im Einklang mit der Tatsache, dass die P-O-Bindung und die Sn-O-Bindung länger sind, als beim Dimethylphosphinat (150 und 227 pm gegenüber 145 und 220 pm). Allerdings entspricht letztere dem Sn-O-Abstand im Trimethylzinndichlorphosphat. Möglicherweise ist dies Ausdruck des stärker ionischen Charakters dieser beiden Verbindungen.

Experimentelles

Die Versuche müssen unter Feuchtigkeitsausschluss ausgeführt werden. Die IR-Spektren wurden als Nujol- bzw. Hostaflon-Verreibungen zwischen CsI-Platten mit einem Gerät der Firma Perkin-Elmer, Typ 577 registriert. Für die Raman-Spektren stand ein Gerät Cary 83 mit Laser-Anregung zur Verfügung (λ 514.5 nm).

 $Me_3SnO_2PCl_2$ wurde aus $P_2O_3Cl_4$ und Me_3SnCl nach einer bekannten Vorschrift dargestellt [7]. Einkristalle entstehen direkt aus dem Reaktionsgemisch beim langsa-

men Auskristallisieren des Produktes oder beim Umkristallisieren der Verbindung aus CH_2Cl_2 . Die Darstellung von Me_2PO_2H erfolgte nach Literaturangaben [16].

Me₃SnO₂PMe₂

Zu einer Lösung von 1.85 g (7.8 mmol) Me_3SnNEt_2 in 20 ml CH_2Cl_2 werden unter Rühren 0.7 g (7.4 mmol) Me_2PO_2H in 10 ml CH_2Cl_2 zugegeben. Anschliessend wird das Reaktionsgemisch etwa 2.5 h unter Rückfluss gekocht. Nach dem Abziehen des Lösungsmittels im Vakuum bleiben 1.85 g $Me_3SnO_2PMe_2$ als gelbliches Rohprodukt zurück (97% d.Th.). Analysen: Gef.: C, 23.29; H, 5.95; Sn, 46.96. $C_5H_{15}O_2PSn$ (256.8) ber.: C, 23.58; H, 5.89; Sn, 46.21%.

Literatur

- 1 A.-F. Shihada und F. Weller, Z. Anorg. Allg. Chem., 472 (1981) 102.
- 2 K. Dehnicke und A.-F. Shihada, Structure and Bonding, 28 (1976) 51.
- 3 A.-F. Shihada und A.T. Mohammed, Z. Naturforsch. B, 35 (1980) 60.
- 4 A. Liebelt, F. Weller und K. Dehnicke, Z. Anorg. Allg. Chem., 480 (1981) 13.
- 5 A.-F. Shihada und Z.S. Salih, Z. Anorg. Allg. Chem., 469 (1980) 159.
- 6 W. Kuchen und H. Steinberger, Z. Anorg. Allg. Chem., 413 (1975) 266.
- 7 K. Dehnicke, R. Schmitt, A.-F. Shihada und J. Pebler, Z. Anorg. Allg. Chem., 404 (1974) 249.
- 8 R.E. Ridenour und E.E. Flagg, J. Organomet. Chem., 16 (1969) 393.
- 9 A.-F. Shihada, I.A.-A. Jassim und F. Weller, J. Organomet. Chem., 268 (1984) 125.
- J. Weidlein, U. Müller und K. Dehnicke, Schwingungsspektroskopie eine Einführung, Stuttgart 1982.
- 11 R. Schmidt, M. Birkhan und W. Massa, Programmsystem zur Verarbeitung von Röntgendaten, Marburg, 1980.
- 12 G.M. Sheldrick, Program for Crystal Structure Determination, Cambridge 1976.
- 13 C.K. Johnson, A. Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustration, ORNL 1965.
- 14 D.T. Cromer und J.D. Mann, Acta Crystallogr., A 24 (1968) 321.
- 15 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1981.
- 16 H. Reinhardt, D. Bianchi und D. Mölle, Chem. Ber., 90 (1957) 1656.