DARSTELLUNG UND KRISTALLSTRUKTUR VON μ_3 -ALLYL- μ_1 -CHLORO-BIS(TRIPHENYLPHOSPHIN)DIPALLADIUM(I)

J. SIELER*,

Sektion Chemie, Karl-Marx-Universität, 7010 Leipzig (D.D.R.)

M. HELMS, W. GAUBE,

Sektion Chemie, Ernst-Moritz-Arndt-Universität, 2200 Greifswald (D.D.R.)

A. SVENSSON und O. LINDQVIST

Institut für Anorganische Chemie, Chalmers Universität für Technologie und Universität Göteborg (Schweden)

(Eingegangen den 14. August 1986)

Summary

 μ_3 -Allyl- μ_1 -chloro-bis(triphenylphosphine)dipalladium(I) was obtained by the reaction of $(\pi$ -C₃H₅PdCl)₂ with P(C₆H₅)₃ and NaOCH₃. The X-ray structure analysis of the yellow air-stable crystals confirms the presence of a Pd-Pd bond (2.623 Å) and a bridging μ_3 -allyl group. The Pd-C distances to the terminal carbon atoms of the allyl group are 2.07(1) Å. The distances of the Pd atoms to the bridging chloride ion are 2.433(3) and 2.438(3) Å.

Zusammenfassung

Die Darstellung von μ_3 -Allyl- μ_1 -chloro-bis(triphenylphosphin)dipalladium(I) gelang durch Umsetzung von $(\pi$ -C₃H₅PdCl)₂, P(C₆H₅)₃ und NaOCH₃. Die Strukturanalyse der gelben, luftstabilen Kristalle bestätigt das Vorliegen einer Pd-Pd-Bindung (2.623 Å) und einer μ_3 -Allylbrücke. Die Pd-C-Abstände zu den terminalen Kohlenstoffatomen der Allylgruppe betragen 2.07(1) Å. Die Abstände der Pd-Atome zu den verbrückenden Chloridion sind 2.433(3) bzw. 2.438(3) Å.

Einleitung

Yamazaki [1] erhielt durch Umsetzung von $(\pi - C_3H_5PdI)_2$ mit einem Überschuss an Triphenylphosphin in Benzen bei Raumtemperatur den μ_3 -Allyl- μ_1 -iodo-bis(triphenylphosphin)dipalladium(I)-Komplex als Benzensolvat. Diese Präparationsmethode wurde schutzrechtlich auch auf die analogen Bromo- und Chlorokomplexe

erweitert. Bei unseren Untersuchungen zeigte sich jedoch, dass der Palladium(I)-chlorokomplex nicht über diesen Weg darstellbar ist, da bereits kurze Zeit nach der Vereinigung aller Reaktionskomponenten eine Zersetzung unter Schwarzfärbung und Metallabscheidung stattfindet. Da die Strukturanalyse des Iodokomplexes [2] durch eine Fehlordnung der Allylanordnung nur begrenzte Aussagen zur Bindung der Allylgruppe zuliess, wird im folgenden über die Synthese und Struktur des Chlorokomplexes berichtet.

Synthese

Für die Darstellung von μ_3 -Allyl- μ_1 -chloro-bis(triphenylphosphin)dipalladium(I) wurde eine Methode von Uchida [3] verwendet. Entsprechend Gl. 1 nahm der Autor bei der Umsetzung äquimolarer Mengen von $(\pi$ - C_3H_5 PdCl)₃, $P(C_6H_5)_3$ und NaOCH₃ die Bildung eines Alkoxokomplexes des Palladiums an:

$$(\pi - C_3H_5PdCl)_2 + 2PPh_3 + 2NaOCH_3 \xrightarrow{CH_3OH} 2\pi - C_3H_5Pd(PPh_3)OCH_3 + 2NaCl$$
(1)

Dieser Alkoxokomplex wurde für die palladiumkatalysierte Bildung von Dimethyloctadienylalkylethern aus Isopren und Alkanolen eingesetzt, die in den siebziger Jahren von verschiedenen Arbeitsgruppen untersucht worden sind [4,5].

Bei der Umsetzung von 1 mmol (π -C₃H₅PdCl)₂ und 1 mmol P(C₆H₅)₃ in 100 ml Methanol fällt nach Zugabe von 1–2 mmol NaOCH₃ ein gelbgrüner feinkristalliner Niederschlag aus. Die Ausbeute beträgt 97%, bezogen auf eingesetzte Palladiumverbindung. Die potentiometrische Chloridbestimmung in der nahezu farblosen Mutterlauge ergab nur etwa 50% der für die Bildung eines Methoxids entsprechend Gl. 1 erwarteten Chloridmenge. Aus den analytischen Befunden und in Anlehnung an bekannte Ergebnisse [1.6–8] wurde entsprechend Gl. 2 auf die Bildung von μ_3 -Allyl- μ_1 -chloro-bis(triphenylphosphin)dipalladium(1) geschlossen.

$$(\pi - C_3H_5PdCl)_2 + 2PPh_3 \xrightarrow{\text{NaOCH}_3} C_3H_5PdClPd(PPh_3)_2 + \text{NaCl} + C_3H_6 + CH_2O$$
(2)

Die Röntgenstrukturanalyse bestätigt diese analytischen Ergebnisse. Bei der von Uchida [3] und Sawati [5] eingesetzten Verbindung handelt es sich offensichtlich nicht um einen Pd-Alkoxokomplex, sondern um die von uns präparierte μ_3 -Allyl-Palladium(I)-Verbindung, die möglicherweise bei der Formierung des Katalysatorsystems eine entscheidende Rolle spielen kann.

Beschreibung und Diskussion der Struktur

In der vorliegenden Struktur (Atombezeichnung Fig. 1, Molekülstruktur Fig. 2, Atomkoordinaten Tab. 1) verbrückt die Allylgruppe zwei Pd-Atome. Die Pd-C-Abstände (Tab. 2) von 2.07(1) Å zu den terminalen C-Atomen der Allylgruppe können interpretiert werden als dative σ-Bindungen des Allylanions zu den Palladiumatomen. Die Pd-C(2) Abstände von 2.45(1) und 2.46(1) Å zeigen, dass nur sehr schwache π-Wechselwirkungen vorhanden sind. Der Pd-Pd-Abstand ist mit 2.623(1)

Fig. 1. Strukturprinzip und Numerierung der Atome von Pd₂ClP₂C₃₉H₃₅.

Å der bisher kürzeste, der in allyl-verbrückten Pd-Komplexen gefunden wurde (Tab. 3). Die C-C-Abstände sind mit 1.37(1) und 1.40(1) Å innerhalb der Standardabweichungen als gleich anzusehen. Der Bindungswinkel C(1)-C(2)-C(3) ist mit 133.7° aufgeweitet. Diese Aufweitung ermöglicht offenbar eine maximale Überlappung der π-Elektronen des Allylanions mit den dsp^2 -Hybridorbitalen des Palladiums. Die Palladiumumgebung weicht von der planaren Koordination beträchtlich ab; die Abweichung von der Ebene mit den Atomen Pd(1), Pd(2) und Cl betragen für P(1) 0.27, für P(2) 0.52 Å und für die terminalen C-Atome C(1) – 0.59 Å und für C(2) – 1.11 Å. Der Winkel zwischen den Ebenen mit den Atomen Pd(1), P(1), Cl und Pd(2), P(2), Cl beträgt 20.0°. Die Allylgruppe steht nicht senkrecht zur Ebene Pd(1), Pd(2), Cl; der Winkel beträgt 64.8°. Die Pd-Cl-Abstände sind mit 2.433 bzw. 2.438 Å gegenüber den symmetrischen Chloridbrücken in PdCl₂ (2.31 Å) [11] merklich grösser. Die Bindungswinkel Pd(1)-Cl-Pd(2) von 65.2° macht deutlich, dass die Bindung der Chlorobrücke keine maximale Überlappung mit Pd-Orbitalen zulässt.

(Fortsetzung s. S. 135)

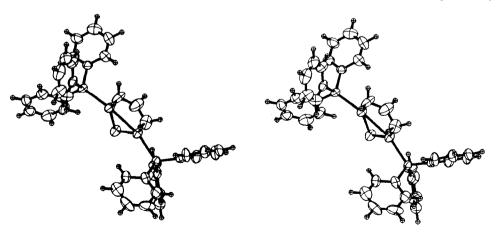


Fig. 2. Molekülstruktur von Pd₂ClP₂C₃₉H₃₅; Stereopaar.

TABELLE 1
ATOMKOORDINATEN MIT STANDARDABWEICHUNGEN

Atom	X	<i>y</i>	-
Pd(1)	0.26055(9)	- 0.09975(7)	0.73710(4)
Pd(2)	0.06140(9)	0.06661(7)	().74996(4)
CI	0.1893(3)	0.0249(3)	0.6344(1)
P(1)	0.4512(3)	-0.2246(2)	0.7225(1)
P(2)	-0.0715(3)	0.2439(2)	0.7568(1)
C(1)	0.228(1)	-0.137(1)	0.8480(7)
C(2)	0.095(2)	0.094(1)	0.8365(8)
C(3)	0.031(1)	0.021(1)	0.8590(6)
C(4)	0.548(1)	-0.245(1)	0.8166(6)
C(5)	0.561(1)	0.360(1)	0.8442(7)
C(6)	0.627(1)	-0.369(1)	0.9168(1)
C(7)	0.686(1)	-0.266(1)	0.9617(7)
C(8)	0.677(2)	-0.148(1)	0.9372(6)
C(9)	0.606(1)	-0.140(1)	0.8642(6)
C(10)	0.408(1)	-0.3866(8)	0.6732(6)
C(11)	0.494(1)	- 0.455(1)	0.6249(8)
C(12)	0.463(1)	-0.579(1)	0.5895(8)
C(13)	0.341(2)	~ 0.635(1)	0,6058(7)
C(14)	0.252(1)	~ 0.566(1)	0.6539(7)
C(15)	0.285(1)	-0.443(1)	0.6881(7)
C(16)	0.588(1)	-0.1743(9)	0,6665(6)
C(17)	0.730(1)	- 0.193(1)	0,6847(7)
C(18)	0.831(1)	-0.161(1)	0.6368(7)
C(19)	0.786(1)	- 0.110(1)	0.5704(7)
C(20)	0.645(2)	-0.089(1)	0.5519(7)
C(21)	0.550(1)	- 0.121(1)	0.6009(?)
C(22)	0.019(1)	0.374(1)	0.8247(5)
C(23)	-0.050(1)	0.477(1)	0.8618(8)
C(24)	0.029(2)	0.574(1)	0.9114(8)
C(25)	0.172(2)	0.567(1)	0.9222(7)
C(26)	0.236(1)	0.466(1)	0.8865(7)
C(27)	0.162(1)	0.371(1)	0.8361(6)
C(28)	-0.241(1)	0.2334(8)	0.7914(6)
C(29)	- 0.366(1)	0.208(1)	0.7408(7)
C(30)	-0.494(1)	0.190(1)	0.7666(8)
C(31)	- 0.502(1)	0.191(1)	0.8463(8)
C(32)	-0.383(1)	0.215(1)	0.8997(6)
C(33)	0.256(1)	0.231(1)	0.8717(6)
C(34)	-0.107(1)	0.3081(9)	0.6643(6)
C(35)	-0.127(1)	0.436(1)	0.6603(6)
C(36)	-0.148(1)	0.477(1)	0.5880(8)
C(37)	- 0.151(1)	0.393(1)	0.5188(7)
C(38)	-0.132(1)	0.269(1)	0.5225(7)
C(39)	-0.108(1)	0.2254(9)	0.5949(6)
H(1.1)	0.278	-0.081	0.896
H(1.2)	0.229	- 0.225	0.859
H(2)	0.029	-0.160	0.803
H(3.1)	0.086	0.065	0.907
H(3.2)	0.066	0.004	0.873
H(5)	0.520	-0.441	0.811
H(6)	0.632	-0.454	0.937
H(7)	0.734	-0.279	1,014
H(8)	0.724	0.069	0.972
H(9)	0.595	~ 0.054	0.843

TABELLE 1 (Fortsetzung)

Atom	x	y	z	
H(11)	0.585	-0.413	0.615	
H(12)	0.529	-0.628	0.554	
H(13)	0.318	-0.725	0.583	
H(14)	0.162	-0.606	0.664	
H(15)	0.221	-0.394	0.725	
H(17)	0.761	-0.232	0.734	
H(18)	0.934	-0.173	0.652	
H(19)	0.852	-0.088	0.534	
H(20)	0.611	-0.051	0.504	
H(21)	0.447	-0.104	0.587	
H(23)	-0.157	0.484	0.854	
H(24)	-0.024	0.649	0.938	
H(25)	0.232	0.635	0.958	
H(26)	0.343	0.461	0.897	
H(27)	0.209	0.295	0.807	
H(29)	0.359	0.203	0.682	
H(30)	-0.581	0.175	0.729	
H(31)	-0.594	0.178	0.869	
H(32)	-0.391	0.218	0.958	
H(33)	-0.169	0.243	0.911	
H(35)	-0.125	0.498	0.711	
H(36)	-0.163	0.570	0.585	
H(37)	-0.165	0.422	0.466	
H(38)	-0.137	0.208	0.472	
H(39)	-0.086	0.134	0.599	

TABELLE 2 $\mbox{AUSGEW\"{a}HLTE BINDUNGSABST\"{a}NDE (\r{a}) UND BINDUNGSWINKEL (\r{o}) MIT STANDARD-ABWEICHUNGEN$

Pd(1)-Pd(2)	2.623(1)		
Pd(1)-P(1)	2.285(3)		
Pd(1)-C1	2.433(3)		
Pd(1)-C(1)	2.07(1)		
Pd(1)-C(2)	2.45(1)		
Pd(2)-P(2)	2.287(3)		
Pd(2)-C1	2.438(3)		
Pd(2)-C(2)	2.46(1)		
Pd(2)-C(3)	2.07(1)		
P(1)-C(4)	1.84(1)		
P(1)-C(10)	1.85(1)		
P(1)-C(16)	1.84(1)		
P(2)-C(22)	1.85(1)		
P(2)-C(28)	1.80(1)		
P(2)-C(34)	1.84(1)		
C(1)-C(2)	1.37(2)		
C(2)-C(3)	1.40(2)		
Pd(1)-C(1)-C(2)	88.4(8)	Pd(2)-C(3)-C(2)	87.7(8)
Cl-Pd(1)-C(1)	145.7(4)	C1-Pd(2)-C(3)	147.0(4)
C1-Pd(1)-P(1)	118.0(1)	Cl-Pd(2)-P(2)	114.9(1)
P(1)-Pd(1)-C(1)	96.0(4)	P(2)-Pd(2)-C(3)	97.6(4)
P(1)-Pd(1)-Pd(2)	173.0(1)	P(2)-Pd(2)-Pd(1)	166.5(1)
C1-Pd(1)-Pd(2)	57.5(1)	Cl-Pd(2)-Pd(1)	57.3(1)
C(1)-Pd(1)-Pd(2)	88.3(2)	C(3)-Pd(2)-Pd(1)	89.8(3)
C(1)-C(2)-C(3)	133.7(9)	Pd(1)-Cl-Pd(2)	65.2(1)

VERGLEICH VON BINDUNGSPARAMETERN DER ANORDNUNG Pd-C, H., Pd (Bindungslängen in Å; Bindungswinkel in °) TABELLE 3

Verbindung	Pd-Pd	Pd-C(1)	Pd(1) - C(2)	C(1) - C(2)	C(2)- C(3)	C(1) - C(2) - C(3)
μ_3 -C ₃ H _S [μ_1 -IPdP(C ₈ H _S) ₃] ₂ [2]	2.686(7)	2.19(3)	2.48(9)	1.48(14)	1.34(9)	123(1)
$C_sH_sPd_z(C_1H_4CH_3)(P(C_kH_3)_3)_2$ [9]	2.679(1)	2.11	2.50	į	1	ŧ
$[\mu_{\rm A}, C_3H_3 PdP(C_6H_5)_3]_2$ [10]	2.720(1)	2.163(3)	2.130(3)	1.426(9)	1.395(9)	125 3(1)
$C_5H_3Pd_2(C_3H_4CH_3)(P(OC_6H_4ro-CH_3)_3)_2~[9]$	2.689(1)	2.20	2.52		!	
$\mu_{\mathfrak{t}}^{-}\mathrm{C}_{\mathfrak{t}}\mathrm{H}_{\mathfrak{t}}[\mu_{\mathfrak{t}}^{-}\mathrm{CIPdP}(\mathrm{C}_{\mathfrak{b}}\mathrm{H}_{\mathfrak{t}})_{\mathfrak{t}}]_{\mathfrak{t}}$ (diese Arbeit)	2.623(1)	2.07(1)	2.45(1)	1.37(1)	1.40(1)	133 7(3)

Die Pd-P-Abstände stimmen mit 2.287 und 2.285 Å recht gut mit Literaturwerten überein [2,10]. Die Bindungswinkel um die Phosphoratome weichen beträchtlich von einem perfekten Tetraeder ab: C(4)-P(1)-C(10), C(4)-P(1)-C(16), C(10)-P(1)-C(16), C(1)-P(1)-C(4) sind mit 104.6(4), 103.0(4), 103.2(4) und $96.0(3)^\circ$ kleiner als der gewöhnliche Tetraederwinkel. Demgegenüber sind die Winkel Pd(1)-P(1)-C(4), Pd(1)-P(1)-C(10) und Pd-P(1)-C(16) mit 113.1(4) und $118.0(3)^\circ$ sehr viel grösser als der Tetraederwinkel.

Experimenteller Teil

Züchtung der Einkristalle

Geeignete Kristalle erhält man nach folgender Methode: Äquimolare Mengen von (π-C₃H₅PdCl)₂, Triphenylphosphin und Allylnatriumcarbonat in Methanol werden nacheinander bei Raumtemperatur gelöst. Das Reaktionsgemisch wird auf 0°C abgekühlt. In Methanol zersetzt sich Allylnatriumcarbonat [12] langsam unter Bildung von Allylalkohol, Natriummethanolat und CO₂, entsprechend Gl. 3

$$C_3H_5OCOONa + CH_3OH \rightarrow C_3H_5OH + CH_3ONa + CO_2$$
 (3)

Im Verlaufe von fünf bis sieben Tagen erhält man gut ausgebildete gelbe Kristalle, die die gleiche Zusammensetzung wie der feinkristalline Komplex besitzen. Der Komplex ist an der Luft stabil. Er zersetzt sich erst bei 145°C. Analyse: Gef.: Pd, 25.85; P, 7.46; C, 57.4; H, 4.43. Pd₂ClP₂C₃₉H₃₅ ber.: Pd, 26.15; P, 7.61; C, 57.55; H, 4.33; Cl, 4.36%.

Röntgenstrukturanalyse

Die kristallographischen Parameter (Tab. 4) und Intensitätsdaten wurden mit einem Syntex P2₁-Diffraktometer ermittelt (Mo- K_{α} -Strahlung, Raumtemperatur, $\omega/2\theta$ scan, $2\theta_{\text{max}}$ 55°). Insgesamt wurden 4900 Reflexe vermessen, von denen 3322 mit $I \geqslant 3\sigma(I)$ (68%) als beobachtet und für die folgenden Rechnungen verwendet werden. Die gemessenen Intensitäten werden einer Profilanalyse nach Lehmann und Larsen [13] unterzogen. Die Daten werden mit Lorentz- und Polarisationsfaktor korrigiert. Die Koordinaten der Pd-, P- und Cl-Atome konnten einer Pattersonsynthese entnommen werden. Die Bestimmung der übrigen Nichtwasserstoffatome erfolgte durch Anwendung direkter Methoden mittels des Programmsystems DIR-DIF-81 [14]. Ein Lauf ergab sofort alle 39 C-Atome. Die least-squares Verfeinerung führte mit isotropen Temperaturfaktoren zu einem R-Wert von R = 0.086. Mit drei

TABELLE 4
KRISTALLDATEN VON Pd₂ClP₂C₃₉H₃₅

Summenformel (Molmasse)	Pd ₂ ClP ₂ C ₃₉ H ₃₅ (813.9)
Kristallsystem (Raumgruppe)	triklin, $(P\bar{1})$
Gitterkonstanten	a 9.635(1), b 10.722(1), c 17.353(3) Å
	α 98.71(6), β 95.55(7), γ 90.05(8)°
Zellvolumen	1763.5 Å ³
Dichte	$D_{\rm ber.} 1.53 \ D_{\rm gem.} 1.54 \ {\rm g \ cm^{-3}}$
Molekül/Zelle	2
Absorptionskoeffizient	$(\text{Mo-}K_{\alpha}) \ \mu \ 13.04 \ \text{cm}^{-1}$

Zyklen anisotroper Verfeinerung fiel der R-Wert auf R=0.056. Die Lagen der Wasserstoffatome wurden berechnet und liessen sich in der Differenzfourier-Synthese identifizieren. In der abschliessenden anisotropen Verfeinerung wurden die Lagen und Temperaturparameter der H-Atome festgehalten. Der abschliessende R-Wert beträgt R=0.048. Alle Rechnungen wurden mit dem SHELX-Programmsystem [15] durchgeführt. Thermische Parameter und F_c/F_c -Listen können von den Autoren angefordert werden.

Literatur

- 1 H. Yamazaki, Japan. Kokai, 72 31 933, CA, 78 (1973) 111517 d.
- 2 Y. Kobayashi, Y. Litaka und H. Yamazaki, Acta Cryst. B, 28 (1972) 899.
- 3 Y. Uchida, Asahi Garasu Kogyo Gijutsu Shorei Kai Ken Kyu Hokoku. 23 (1973) 103.
- 4 A. Behr, Aspects Homogeneous Catal. Vol. 5, Dordrecht E.A., 1984, S. 3-73.
- 5 K. Sawatari und E. Tanaka, Japan. Kokai, 74 125 313; CA, 82 (1975) 155323Z.
- 6 H. Werner und A. Kühn, Angew. Chem., 89 (1977) 427.
- 7 H. Werner und A. Kühn, J. Organomet. Chem., 179 (1979) 421
- 8 H. Felkin und G.U. Turner, J. Organomet. Chem., 129 (1977) 429.
- 9 H. Werner, A. Kühn und D.J. Tune. Chem. Ber., 110 (1977) 1763.
- 10 P.W. Jolly, C. Krüger, K.-P. Schick und G. Wilke, Z. Naturforsch. B, 35 (1980) 926.
- 11 A.F. Wells, Z. Krist., 100 (1938) 189.
- 12 V.J. Kurov und V.I. Danevich, Zh. Obsch. Khim., 37 (1967) 760.
- 13 M.S. Lehmann und F.K. Larsen, Acta Cryst. A, 30 (1974) 580.
- 14 P.T. Beurskens, W.P. Bosman, H.M. Doesburg, R.O. Gould, Th.E.M. van den Hark, P.A.J. Prick, J.N. Noordik, J.H. Beurskens und V. Parthasarathi, DIRDIF 81, Tech. Rep. 1981/82, Crystallography Laboratory, Toernooiveld 6525 ED Nijmegen, The Netberlands (1981).
- 15 G.M. Sheldrick, SHELX 76, Program for crystal structure determination. Univ of Cambridge, England, 1976.