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Abstract 

Irradiation of the 30-electron Mo,(n5-C,Me,),(CO), and Re,(CO),, in toluene 
solution (containing H,O) afforded (in l-2% yields) a novel triangular metal 
cluster, ($-C,Me,),Mo,(CO),(I*.,-H)&-0) (l), which was characterized by a 
single-crystal X-ray diffraction study. Compound 1, of pseudo C,-m symmetry, has 
a triangulo-Mo,(p,-0) core with composite MO-H-MO and MO-MO electron-pair 
bonds along one unusually short edge (2.660(l) A) and MO-MO electron-pair bonds 
along the other two edges (2.916(l) and 2.917(l) A). The edge-bridged hydride 
ligand, which displays a characteristic high-field proton NMR resonance at 6 
- 17.79 ppm, was not found from the crystallographic determination but was 
located via a quantitative potential-energy-minimization method. This procedure 
unambiguously established that the optimized hydrogen position, which corresponds 
to a distinct coordination site with identical MO-H distances of 1.85 A, is the only 
one that can be sterically occupied by a metal-bound hydride ligand. This 46-elec- 
tron species is the first electron-deficient trimolybdenum cluster containing a 
monoprotonated MO-MO double bond; its existence is attributed to ligand over- 
crowding due to the bulky pentamethylcyclopentadienyl rings. Black ($- 
C,Me,),Mo,(CO),(pI.,-H)(k,-0) . l/ZTHF crystallizes with two formula species in 
a triclinic unit cell of Pi symmetry with a 8.603(4), b 11.115(4), c 19.412(11) A, (Y 

80.69(4)“, p 101.10(4)“, and y 98.88(3)” at - 40 o C. Least-squares refinement 
(RAELS with 221 variables) of one independent MO, molecule and a centrosymmet- 
&ally-disordered THF molecule converged at R,(F) 5.62%, R,(F) 6.88% for 8460 
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independent diffractometry data ( I,, > 3a( I,,)) collected at --~ 40” i’ with MO-K,, 
radiation. 

Mixed-metal clusters containing molybdenum are of particular interest due to the 
extensive use of molybdenum-based heterogeneoux catalyst<. Our in\ estigationx 
[l -61 of the photochemical reactions of the 3Gelectron acetylene-like Mo,( $- 
C,Me,),(CO), (2) [7.X] with various monomeric metallic carhonvl or nitrosyl 
species have led to the synthesis of a wide variety of unusual ~n~~l~hctenun~-hilxed 
mixed-metal clusters. ‘4s an extension of this work, tve have studied the photochcm- 
ical reactions of 2 with several different dimeric organometailic species ]I]. Herein 
WC report the isolation and structural-bonding analysis of an unprecedented 46~lcc- 

tron triangular metal cluster containing :I localized Jn”?il~~pr(‘ti’Ii;itili~ metal 11kXil 
double bond. 

In a typical experiment, 180 ml of ‘* wet” toluene containing a mixture of 0.52 g 
(0.90 mmol) of 2 and 0.33 g (0.51 mmol) of Re,(CO),!, (3) were placed in a 
water-cooled Pyrex photolysir unit (equipped with a stir bar) and irradiated for 2 li h 
with a Hanovia 450 W, medium-pressure Hg vapor lamp. A slow btre‘im c,f N1 \\‘a> 

bubbled through the solution during the photolysis to facilitate the removal of 
evolved CO; an infrared spectral monitoring showed the gradu~rl drsappearance of 
the carbonyl absorption bands due to 3 together with the appearance 01’ :I number of 

new carbonyl bands between 1725 and 1950 cm ‘, Separation of the products via 

column chromatography (alumina) yielded a large amount o f unreacted 2 aiang with 

minor products including the black (q’-C’,Me,) Mo,((‘(_)),(~~~-~-l)iii~ ,-(._I) (I) which 3 
was isolated several times in 1 2% yields by elution with a ‘THF, toiuenc mixture. 

Recent attempts to obtain ‘i by the photolysis of solurtons of 2 per w (including 

pretreatments with Hz0 and/or (I2 [9*,10]) h ave (as yet) been unsuccessful, 
An X-ray diffraction study [ 11* 131 was carried out on a crystal obtained by the 

slow evaporation of a THF solution of 1: the asymmetrical part \$I the crntrosym- 
metric triclinic unit cell was found to contain one molecule of 1 and a ccntro>vm- 
metrically disordered THF molecule, for which atomic coordinates are presented in 
Table 1. The molecular structure of 1 was found to possess a pseudo C ‘\+r geometry 
(Fig. 1) consisting of one (<‘,Me,)AMo(CO), fragment and tno mirror-related 
(C, Me,)Mo(CO) fragments linked together by tnetal- metal bond\. b! a tr-imetal- 
capped oxide atom [9*,10]. and by semibridging carbony] interactions ji4*.15] 
involving both carhonpl ligsncls of the (C,MeS)Mo(CO) - fragment. The ‘tlo,( ~L:-O) 
core possesses one unusually short MO-Mo distance of 2.660( 1) R hetv4cccn the two 
(C,Me,)Mo(CO) fragments and two electron-pair bonding hlo\lo distances of 
2.916(l) and 2.917(l) A between the (C’,M~,)MO(CO)~ fragment and the two 
(C,Me,)Mo(CO) fragments. These molecular parameters are completcb consistent 
with the short MO-Mo bond having localized multiple-bond charac.tcr 

Of prime interest is the indirect but convincmg evidence that the short hlo Mo 
edge In 1 is spanned by a symmetrically bridging hydrogen atom; thus. the multiple 
metalLmeta1 bond corresponds 10 a comptlsitc (three-i~rtterj-(tlsI)-electron! 
Moth--Mo bond and an electron-pair MO- Mo bond (alternativ~lv viewed as a 
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monoprotonated metal-metal double bond) [16]. Although the hydrogen atom was 
not unambiguously located from difference Fourier maps calculated after the X-ray 
structural refinement of 1, the existence of a metal-bound hydrogen atom is clearly 
indicated by the characteristic high-field proton NMR resonance [17 *]_ A detailed 
ligand-packing analysis showed that the hydride ligand could only occupy one 
unfilled coordination site on the pseudo mirror plane bisecting the short MO-MO 
edge (Fig. 2). A placement of the hydrogen atom at this coordination site at a 
distance of 1.86 A from each of the two mirror-related MO atoms (as was previously 
ascertained [18*-20*] for the symmetrical, bent MO-H-MO bond in Mo,($- 

C,H,),(CO),(p,-H)(p,-PMe,)) gives rise to reasonable intramolecular Van der 
Waals contacts. Corroboration of the existence of a symmetrical, bent MO-H-MO 
bond was obtained by the use of a potential-energy-minimization procedure which 
was developed and shown by Orpen [21] to be highly successful for locating hydride 
ligands in a large number of transition metal clusters. Application of the quantita- 
tive Orpen Program XHYDEX [22] to locate the hydride ligand in 1 resulted in an 
optimized, lowest-energy hydrogen site which was virtually identical with that 
initially deduced from packing considerations. Since the metal-metal separation is 
normally longer in a metal-H-metal bond than in a deprotonated metal-metal 
bond [16,18*,23,24], it is apparent that substantial metal-metal bonding must exist 
between MO(~) and MO(~) as the MO(~)-MO(~) distance is 0.26 A shorter than the 
two electron-pair MO-MO bonds. 

h 

Fig. 1. Molecular configuration of the oxo-capped ( qS-C,Me,),Mo,(CO),( pz-H)(ps-0) (1) which 
closely conforms to C,-m symmetry with normal single-bond MO(~)-MO(~) and MO(~)-MO(~) edges and 

an abnormally short MO(~)-MO(~) edge. The 0.26 A shorter MO(~)-Mo(3) edge in this 46-electron 

triangular metal cluster is ascribed to composite MO-H-MO and MO-MO bonds which may be 

conceptually considered as a monoprotonated MO-MO double bond. The hydride atom was unambigu- 

ously located via a quantitative potential-energy-minimization procedure [21,22] at a symmetrical 

edge-bridged MO(~)-MO(~) site (on the pseudo mirror plane) with equivalent MO(~)-H and MO(~)-H 

distances of 1.85 A. 



Atom ‘( I - 

Mo( 1 ) 

MO(2) 

MO(3) 

0 

C‘( 1) 

(X1) 

<‘(2) 

O(2) 

C(3) 
O(i) 

04) 

O(4) 

(‘P(l) 
Cp(2) 

(‘P(3) 

(‘p(4) 

<‘P( 5) 
Me( 1) 

W(2) 

Mel 3) 

Me(4) 

Me(j) 

<‘p(6) 
CF(7) 
CP(X) 

Cp(Yi 
Cp( 1Oj 

Me(h) 

Me( 7) 

Me(X) 

Me(g) 

Me(l0) 

Cp(l1 j 

c‘p(l2) 

C‘p( 13) 

CP(14) 

CpC15) 
Me(l1) 
Me(12) 

Me(13) 

Me(14) 

Me(l5) 

Il(1A) 

Wt B) 
H(lC‘) 

WA1 
H(2B) 

H(2C) 

H(3A) 

HOR) 

H(3C) 

H(4Aj 

H(4Bj 

H(4C) 

0.4777(7) 

0.62?9(71 

O.613Y(7) 

1).4521(5) 

0.6490(Y) 

0.74X(6) 

0.6?48(8) 

0,72h)c(h) 
0.787X(X) 

0.X%2(6) 

0.X222(8) 

O.Y593(6) 

0.3725(6, 

0.326665) 

0.2270(6, 

0.2113(6) 

0.304!(h) 

0.4691(Y) 

0.37(!3(8) 

0.1439(Y) 

O.lO.iS~X) 

O.?OO6(1U! 

0.5680(6i 
O.4907( 7) 

O.hZJLtS) 

0.77X(7) 

0.7363(7) 

tJ.47'77iY) 

0.32AR7.t 

0.6147(71 

O.W38(7, 

O.X674(10) 

0.6315~6) 

0.4X05(?) 

0.5070~6) 

O.h746(6, 

0.7536171 

0.6593(R) 
0.3176(7j 

0.3X04(7) 

0.7620(8, 

0.9297(?) 

0.5374(52) 

0.39S5(13) 

0.5385(52j 

0.3926(48) 

0.3519(64) 

(X4854(26) 

0.1756(62) 

0.2118(34) 

0.0390(31) 

0.0256(483 

0.04X6(56) 

o.l720(lh) 

I!.31 lY(ii 

ii.2371(5) 

U.4X%(i) 

0.3412(4) 

0.3?Xi(~~i 

0.3463( i 1 
%1683(b) 

il. 100’7( 4) 

(i 527?(b, 

(!.5585(5) 

0.3525(61 

0.3927i ‘) 

0.!696(5) 

0.2X47(4) 
i~,?203~~) 

0 7234r 5) 

0.1301(5) 

O.OYOY(7) 

OiOl lt7, 

II 4.33316) 

0,2IH5(‘:, 

0.0123(hj 

0.!?15(1) 

(J.0’752(4) 

0_028Y(5) 

0 WX4( i J 
0. I Xhh( 5) 
&23X7(7) 

0.0302(6) 

(3.0X5?(6) 

O.O726( 7) 

0.2601( 7) 

O.hYYO(4) 

0.6503( 3) 

0 59001’) 

0 599X(4) 

0.6671(i) 

0.7865r6) 
0.664?( ‘5) 

0.5312!6) 

0.5596(k) 

0.7047( ‘r ) 

0.0473(42) 

(i.02Y1~36) 

0.1437c1.31 

0.3277(?2) 

11.44X0( i 2) 

(1.3sX7(47r 

0.4544( 3 1) 

O.5033( 14) 
11.41 i4(2O) 

0.2776(41 i 
(I 13?3( 16) 

O.?412(lht 
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Table 1 (continued) 

Atom x Y z 

H(W 
H(5B) 
WW 
W6A) 
W6B) 
W6C) 
WA) 
W’W 
H(7C) 

H(8A) 

H(8B) 

H(8C) 

H(9A) 

H(9B) 

H(9C) 
H(lOA) 

H(lOB) 

H(1OC) 

H(1lA) 

H(11B) 

H(11C) 

H(12A) 

H(12B) 

H(12C) 

H(13A) 

H(13B) 

H(13C) 

H(14A) 

H(14B) 

H(14C) 

H(15A) 

H(15B) 

H(15C) 

THF(l) 

THF(2) 

THF(3) 

THF(4) 

THF(5) 

THFH(0) 

THFH(l) 

THFH(2) 

THFH(3) 

THFH(4) 

THFH(5) 

THFH(6) 

THFH(7) 

THFH(8) 

THFH(9) 

0.2890(75) 

0.4023(35) 

0.2082(46) 

0.3766(37) 

0.4515(67) 

0.5445(31) 

0.2643(9) 

0.3038(15) 

0.2880(18) 

0.5002(8) 

0.6646(63) 

0.6729(59) 

0.9272(18) 

1.0122(18) 

0.9696(34) 

0.9439(41) 

0.8208(17) 

0.9251(48) 

0.7607(34) 

0.5681(32) 

0.6676(64) 

0.2451(18) 

0.2753(27) 

0.3232(15) 

0.4306(10) 

0.3035(38) 

0.3222(45) 

0.8633(32) 

0.7877(56) 

0.6937(27) 

0.9860(7) 

0.9619(13) 

0.9590(12) 

0.0510(17) 

0.1034(14) 

0.1126(19) 

0.0352(18) 

0.0195(13) 

- 0.0340(23) 

0.1261(23) 

0.0528(25) 

0.2129(15) 

0.0557(29) 

0.2158(21) 

- 0.0600(22) 

O.lOOl(28) 

-0.0931(14) 

0.0670(24) 

0.0131(25) 

- 0.0586(6) 

0.0039(28) 

0.2587(51) 

0.1859(25) 

0.3166(29) 

0.0947(23) 

- 0.0466(31) 

0.0125(50) 

- 0.1200(30) 

- 0.0650(14) 

- 0.1472(20) 

0.0467(53) 

0.1486(19) 

0.0053(40) 

0.3067(45) 

0.3192(40) 

0.2037(12) 

0.7737(34) 

0.7717(34) 

0.8728(5) 

0.5860(18) 

0.7328(33) 

0.6834(49) 

0.5066(46) 

0.5908(20) 

0.4567(30) 

0.5297(46) 

0.6306(15) 

0.4917(34) 

0.6331(15) 

0.7329(46) 

0.7733(33) 

0.0199(14) 

-0.0911(15) 

- 0.1950(11) 

-0.1543(12) 

- 0.0470(9) 

0.0326(19) 

0.0921(15) 

- 0.1240(21) 

- 0.0645(22) 

- 0.2692(11) 

- 0.2097(17) 

-0.2084(17) 

- 0.1488(18) 

-0.0473(15) 

0.0122(12) 

0.2411(21) 

0.2315(24) 

0.1788(5) 

0.4451(13) 

0.5214(16) 

0.4899(30) 

0.3585(26) 

0.3669(28) 

0.4366(7) 

0.3314(28) 

0.3007(18) 

0.3788(13) 

0.3489(13) 

0.4010(32) 

0.4343(20) 

0.4568(S) 

0.5090(26) 

0.5259(21) 

0.1605(17) 

0.1351(9) 

0.1849(10) 

0.2275(23) 

0.2340(21) 

0.1671(4) 

0.4227(7) 

0.3710(24) 

0.3517(18) 

0.4234(4) 

0.4553(10) 

0.4522(11) 

0.3330(26) 

0.2614(6) 

0.3383(24) 

- 0.0578(6) 

- 0.0411(8) 

0.0070(13) 

0.0480(g) 

0.0034(5) 

- 0.0964(7) 

- 0.0565(9) 

- 0.0832(9) 

-0.0434(12) 

- 0.0081(17) 

0.0318(17) 

0.0533(12) 

0.0932(S) 

- 0.0058(9) 

0.0340(6) 

u Although the hydrogen atoms were placed in idealized positions. RAELS [12] provides both positional 

and thermal esd’s for these atoms. The positional esd’s reflect the errors associated with the orientations 

of the local axial systems (which are calculated from the crystallographic coordinates of the ring carbon 

atoms) and do not reflect actual esd’s of the fractional coordinates of these atoms. In light of the oxygen 

atom of the centrosymmetrically disordered THF molecules not being unambiguously discriminated from 

the other four ring carbon atoms in difference Fourier syntheses, the THF molecule was approximated in 

the final refinement as an idealized cyclopentane species. 



The molecular geometry of 1 is virtually identical I o that of the corresponding 
4%electron ( $-CsMe5) iMo,(C’O),(t”~-C_))(~~2-1\:Ct>) [lc.h] which possesses if nitw- 
gen-c(~ordii~~ted isocyanate iigand (instead of the edge-bridged itvdrido tigand in 1) 

symmetrically attached alon g the Mo(l )---Mot.?) edge to the triangulo-.%lo,( p, &I) 
core. Upon a formal replawment of the three-electron (pseudo-halide) L(~-NC‘O 
donor by the one-electron pz-H donor. the only m+jor geometrical variation i\ ;I 
0.09 A decrease in the Mo( I I---Mo(3) l-mxI. This change is in harmony with the 
metal--metal b~~l~d-orb~tal character for the ~~~~~~~-M(~(~~ bttnd bring markedly 
larger in the 46electron I than in the 4X-electron ist,cyan3te-hridger ;m~logue. 

A symmetrical linkage of the bridging hydride atom to both MO :~toms results In 

the wGgnment of a formal oxidation state of -t 2 to each of the three i\-ftl atoms in 
1. The fact that the two longer MO-- Mo distances of Z.Ylh( I) and E.iti7{ 1 1 i?c in the 

Mo,( p &) core of 1 are within the single-bond range of 3.89 -2.99 .i found it -61 in 
other oxo-capped Mo” clusters containing Mo( q’-C,MeY 1 moieties provide,\ a 
self-consistent representation of the metal --metal bondin, a in thi5 46elei_\tron trian- 
gular metal cluster. Work is in progress to oht,tin ;I rational ihigh-yielc!) synthetic 
route to 1 in order to explol-e IIS chemical reactivity ]25 “:.X * ..li?.?~j. 

Suppletnenta~~ mntrrid muiluhl~. Tables presenting the iltomtc parwnetrrs and 
selected intramolecular distances and bond wqles !‘or ( rli-C’iMc, )-,~ZC~~(CO),( p:- 

H)(p,&) (1) and,/or (~‘-C’,I\~~~~)~MO~K~(CO)~(~~-H)(/E.,-~I (4) :ii tvell as tables 
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listing observed and calculated structure factor amplitudes are available upon 
request from L.F.D. 
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