Journal of Organometallic Chemistry, 347 (1988) 101-106 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Chemie der Isoblausäure

IV *. Additionen von CNH-Komplexen des Chroms, Wolframs und Eisens an Heteroallene **

Eberhard Bär und Wolf Peter Fehlhammer*

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstrasse 34-36, D-1000 Berlin 33 (B.R.D.)

Wolfgang Weigand und Wolfgang Beck*

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 München 2 (B.R.D.) (Eingegangen den 3. Dezember 1987)

Abstract

"In situ" generated hydrogen isocyanide complexes are treated with cyclohexyl isocyanate and carbodiimides (PhNCNPh, CyNCNCy) to give metal-stabilized isocyano carboxamides ([M(CO) $_5$ {CNC(=O)NHCy}] (M = Cr, W), [Fe(Cp)(diphos){CNC(=O)NHCy}]BF $_4$) and isocyano carboxamidines ([Fe(CN)(Cp)(CO){CNC(=NPh)NHPh}], [Fe(Cp)(CO){CNC(=NCy)NHCy} $_2$]BF $_4$, [Fe{CNC(=NCy)NHCy} $_2$ (ophen) $_2$](BF $_4$) $_2$), respectively.

Zusammenfassung

"In situ" erzeugte Isoblausäurekomplexe reagieren mit Cyclohexylisocyanat und Carbodiimiden (PhNCNPh, CyNCNCy) zu metallstabilisierten Isocyancarboxamiden ([M(CO)₅{CNC(=O)NHCy}] (M = Cr, W), [Fe(Cp)(diphos){CNC(=O)NHCy}]BF₄) bzw. Isocyancarboxamidinen ([Fe(CN)(Cp)(CO){CNC(=NPh)NHPh}], [Fe(Cp)(CO){CNC(=NCy)NHCy}₂]BF₄, [Fe{CNC(=NCy)NHCy}₂(ophen)₂]-(BF₄)₂).

^{*} III. Mitteilung siehe Ref. 2; gleichzeitig Teil LXIX der Reihe "Pseudohalogenometallverbindungen" (LXVIII. Mitteilung: W. Weigand, U. Nagel und W. Beck, Z. Naturforsch., im Druck).

^{**} Herrn Prof. Dr. H. Nöth zum 60. Geburtstag gewidmet.

Wir haben gezeigt, dass sich die metallstabilisierte Isoblausäure bzw. der ihr zugrunde liegende Cyanokomplex und H^+ an ungesättigte organische Verbindungen wie Enone, Epoxide und Aziridine addieren lässt [1–5]. Für die resultierenden funktionellen Isocyanid- und cyclischen Carbenliganden 2-Hydroxyalkylisocyanid, Oxazolin-, Oxazolidin-, Dihydrooxazin- und Imidazolidin-2-yliden ist dieser Syntheseweg zweifellos die Methode der Wahl, für γ -Oxoalkylisocyanide stellt er sogar den einzigen Zugang dar.

Im Zuge der weiteren Entwicklung einer Chemie der Isoblausäure setzten wir nun diverse Cyanokomplexe mit Isocyanaten und Carbodiimiden in Gegenwart von HBF₄ um. Isocyankohlensäurederivate, auf die wir mit diesen Reaktionen abzielten, waren mit Ausnahme von CNCOY (Y = OEt, NMe₂, SEt) [6] und CNC(O)NC [7,8] bisher unbekannt.

Ergebnisse und Diskussion

1. Umsetzungen von Isoblausäurekomplexen mit Cyclohexylisocyanat

Die aus den Cyanokomplexen $NEt_4[M(CN)(CO)_5]$ (M = Cr, W) und [Fe(CN)(Cp)diphos] mit etherischer HBF_4 in situ gebildeten Isoblausäurekomplexe $M(CO)_5CNH$ (M = Cr, W) und $[Fe(Cp)(diphos)CNH]BF_4$ reagieren mit überschüssigem Cyclohexylisocyanat zu den Verbindungen 1–3. Zu 1 analoge

$$M(CO)_{5}CN-C \bigvee_{NHC_{6}H_{11}}^{O} \left[Fe(Cp)(diphos)CN-C \bigvee_{NHC_{6}H_{11}}^{O} \right] BF_{4}$$

$$(\underline{1} M = Cr; \underline{2} M = W)$$

N-dialkylierte Isocyancarboxamid-Komplexe Cr(CO)₅CNC(=O)NR₂ erhielten wir kürzlich auch aus der Reaktion von Cr(CO)₅CNCCl₃ mit sekundären Aminen und nachfolgender Hydrolyse [9]. Dagegen gelingt die direkte Carbamoylierung von [Cr(CN)(CO)₅]⁻ mit R₂NCOCl nicht [10]. Die neuen Chrom- und Wolframverbindungen sind orangegelbe (1) bzw. grünlich-weisse Feststoffe (2), die sich in Dichlormethan und auch in Ether gut lösen. Mit Protonen- und Lewissäuren reagieren sie zu tiefgefärbten Produkten, die wir gegenwärtig untersuchen [10].

Ihre Formulierung als 1 bzw. 2 wird bereits durch die IR-Spektren nahegelegt, die neben dem Pentacarbonylmuster weitere Banden aufweisen, die den Isocyanund Carbamoylfunktionen zugeordnet werden können. Bei genauerem Hinsehen stellt man jedoch Abweichungen von den üblicherweise an Pentacarbonyl(isocyanid)metall-6-Komplexen gemessenen Frequenzen fest, die mit den besonderen elektronischen Eigenschaften des Carbamoylisocyanid-Liganden zusammenhängen dürften.

So ist die Bande bei 2115 (2121) cm⁻¹ für eine CN-Valenzschwingung ungewöhnlich niedrig, für die totalsymmetrische Valenzschwingung der äquatorialen CO-Liganden dagegen ausnehmend hoch. Relativ hoch liegt auch die ν (CO)-E-Bande (1969 (1960) cm⁻¹), die i.a. ein verlässlicher Indikator für die Elektronendichte am Metall und damit die π -Acceptoreigenschaften des 6. Liganden ist. Alkoxycarbonyl-(Cr(CO)₅{CNCOOCy} (4): 1975 cm⁻¹ (ν (CO)-E)) [11] und Benzoylisocyanid

 $(Cr(CO)_5\{CNCOPh\}\ (5): 1975\ cm^{-1}\ (\nu(CO)-E))\ [11,12]\ sind\ demnach noch stärkere Acceptoren, und interessanterweise setzt sind bei ihren Pentacarbonylchromverbindungen der Trend zu ungewöhnlichen Bandenlagen (4: 2114, 2017; 5: 2108, 2008 cm⁻¹) auch verstärkt fort.$

Weder hier noch dort können wir aufgrund des bisher vorliegenden Materials eine Zuordnung der verschiedenen A_1 -Spezies $[\nu(CO)_{eq}, \nu(CO)_{ax}, \nu(CN)]$ wagen. Es sei jedoch darauf hingewiesen, dass die $\nu(CN)$ -Absorption des carbonylfreien Eisenkomplexes 3 im Vergleich zum Cyano-Ausgangskomplex [Fe(CN)(Cp)diphos] um 44 cm⁻¹ (!) abgesenkt wurde, ein Befund, der übertragen auf 1 und 2 $\nu(CN)$ -Bandenlagen deutlich unterhalb 2100 cm⁻¹ erwarten lassen würde.

Die ¹H-NMR-Spektren (Exp. Teil) bestätigen die Anwesenheit von NH-Protonen in den Reaktionsprodukten 1-3 sowie des Restsolvats in 3, das ³¹P-NMR-Spektrum von 3 die Äquivalenz der Phosphoratome des Chelatliganden. In den 13 C-NMR-Spektren treten sämtliche Isocvanidkohlenstoff-Resonanzen bei vergleichsweise tiefem Feld auf, und die von Komplex 3 hat Triplett-Struktur. Die Kopplungskonstante von 29 Hz korrespondiert hervorragend mit den in [Fe(Cp)(diphos)- ${CNCMe_2CH_2C(=0)Me}$ BF₄ [2] (J 30 Hz) und [Fe(Cp)(diphos)- ${CNCMe_2-1}$ CMe₂H} BF₄ [13] (J 27 Hz) gefundenen Werten. Dass es sich dabei um ³¹P-¹³Cund nicht um (Isocyanid)¹⁴N-¹³C-Kopplungen handelt (wie sie inzwischen vielfach nachgewiesen worden sind) machen die sehr ähnlichen ²J(PC)-Werte (28 [PFeC(Aryl)], 38 Hz [PFeC(O)]) in (Cp)(CO)FeC_xH₄-o-OP(OPh)₂ wahrscheinlich [14]. In den Massenspektren von 1 und 2 fehlen die sonst üblichen fünf CO-Abspaltungen vom Molekülion, das selbst mit mittlerer (1) bzw. nur geringer Intensität (2) auftritt. Hohe und höchste Intensitäten haben dagegen die Linien der Fragmente M(CO)_cCNH, aus denen nunmehr auch die CO-Liganden schrittweise eliminiert werden. In beiden Spektren taucht dazu die Masse des intakten Cyclohexylisocyanats auf, d.h. im Massenspektrometer findet hauptsächlich eine Rückspaltung der Carbamoylisocyanide (Isocyancarboxamide) in die Ausgangskomponenten statt.

2. Umsetzungen mit Carbodiimiden

Der Isoblausäurekomplex [Fe(CN)(Cp)(CO)CNH] setzt sich mit äquimolaren Mengen Diphenylcarbodiimid zu Verbindung 6 um, die den bisher unbekannten Isocyancarboxamidin-Liganden an ein chirales Eisenzentrum gebunden enthält.

6 zeigt im IR-Spektrum drei intensive Banden bei 2115, 2038 und 1968 cm⁻¹, wobei wir aufgrund des Vergleichs mit 3 versuchsweise die mittlere Bande der CNR-Schwingung zuordnen. Komplexe des Typs [Fe(CN)Cp(CO)CNR] mit nichtfunktionellen Isocyaniden wurden bereits beschrieben [15]; sie weisen allerdings CN(R)-Valenzschwingungen bei wesentlich höheren Frequenzen auf. Im ¹H-NMR-Spektrum von 6 findet man die NH-Absorption bei 8.7 und die Phenylsignale zwischen 7.0 und 7.5 ppm. Das Auftreten zweier Singuletts (4.7, 4.8 ppm) für den

Fe(CN)(Cp)(CO)CN-C NPh [Fe(ophen)₂(CN-C NC₆H₁₁)₂](BF₄)₂
(
$$\underline{6}$$
)
($\underline{6}$)
($\underline{7}$)

Cp-Liganden dürfte mit E/Z-Isomeren bzgl. der CN-Doppelbindung zu erklären

sein. Analoge Komplexverbindungen (7,8), die jedoch nicht analysenrein gefasst werden konnten, resultieren aus den Reaktionen von cis-[Fe(CN)₂(ophen)₂] und K[Fe(CN)₂(Cp)CO] mit Dicyclohexylcarbodiimid (Gl. 1). Umsetzungen von diesen

$$K[Fe(CN)_{2}(Cp)CO] + 2 CyNCNCy \xrightarrow{HBF_{4}} Fe(Cp)(CO)(CN-C)_{2}BF_{4}$$

$$(1)$$

<u>(B</u>)

und weiteren Cyanokomplexen ($[Ru(CN)(Cp)(PPh_3)_2]$, trans- $[Pt(CN)_2(PR_3)_2]$) mit Diphenylcarbodiimid und $HBF_4 \cdot Et_2O$ führten dagegen lediglich zum N-Hexaphenylisomelamin [16], d.h. die Heteroallentrimerisierung läuft der Bildung des Isocyanidliganden am Metall den Rang ab.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Argon und in getrockneten, Argon-gesättigten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen NEt₄[M(CN)(CO)₅] (M = Cr, W) [17], [Fe(CN)(Cp)diphos] [18], [Fe(CN)(Cp)(CO)CNH], K[Fe(CN)₂(Cp)-CO] [15], cis-[Fe(CN)₂(ophen)₂]·2H₂O [19] und PhNCNPh [20] wurden nach Literaturvorschriften hergestellt bzw. im Handel bezogen (CyNCO, CyNCNCy).

Verwendete Messgeräte: IR: Beckman Spectrophotometer IR 4240 und Perkin-Elmer Spectrophotometer IR 983, NMR: Bruker 250, JEOL FX 90Q, MS: Varian MAT 711 (Anregungsenergie 80 eV). Elementaranalysen (C,H,N): Heraeus, CHN-Rapid. In die Analysen einberechnete Lösungsmittelgehalte (CH₂Cl₂) sind ¹H-NMR-spektroskopisch bestimmt. Die Schmelzpunkte (Gallenkamp Melting Point Apparatus) sind unkorrigiert.

1. Pentacarbonyl(N-cyclohexylisocyancarboxamid)chrom (1)

Eine Mischung aus 1.0 g (2.9 mmol) NEt₄[Cr(CN)(CO)₅], 1 ml (7.9 mmol) CyNCO und 0.5 ml 54%iger etherischer HBF₄ in 20 ml CH₂Cl₂ lässt man bei Raumtemperatur über Nacht rühren. Anschliessend zieht man die flüchtigen Bestandteile im Ölpumpenvakuum ab, nimmt den öligen Rückstand in 5 ml Ether auf und chromatographiert an Florisil (Fa. Merck, 100-200 mesh, 1×17-cm-Säule; Petrolether $(40-60^{\circ}\text{C})$ /Diethylether $\approx 9/1$, 750 ml). Das Eluat wird stark eingeengt und auf -20°C abgekühlt. Der daraufhin erhaltene orangefarbene Feststoff wird im Hochvakuum getrocknet. Fp. 105°C, Zers.; Ausbeute: 0.25 g (25%). Analyse: Gef.: C, 45.25; H, 3.52; N, 8.05. C₁₃H₁₂CrN₂O₆ (344.24) ber.: C, 45.36; H, 3.51; N, 8.14%. IR (CH₂Cl₂): 2115m, 2028st, 1969sst (ν (CO)-E); (KBr): 3243m (ν (NH)), 2112m, 2022st, 1939sst, br (ν (CO)-E), 1694st (ν (C=O)) cm⁻¹. MS: m/z = $344(25, M^+)$, $219(100, [Cr(CO)_5CNH]^+)$, $204(68, [CrCNCONHCy]^+)$, 191(63), 163(36), 135(13), 107(19), 79(44) $[Cr(CO),CNH]^+$ (n = 4-0), 125 (12, $[CyNCO]^+$). ¹H-NMR (CDCl₃): δ 0.94–2.13 (c,10H,C₆H₁₀); 3.56 (m,1H,(N)CH); 5.57 (br,1H,NH). 13 C{ 1 H}-NMR (CDCl $_{3}$): δ 24.3, 24.9, 32.3, 51.1 (Cy); 138.0 (C(=O)); 183.2 (CN); 213.3 (s,CO(cis)); 215.0 (s,CO(trans)).

2. Pentacarbonyl(N-cyclohexylisocyancarboxamid)wolfram (2)
Umsetzung und Aufarbeitung erfolgen analog Vorschrift 1. Ansatz: 1.0 g (2.1)

mmol) NEt₄[W(CN)(CO)₅], 0.8 ml (6.3 mmol) CyNCO und 0.6 ml HBF₄ · Et₂O in 20 ml Dichlormethan. Nach Umkristallisation aus Petrolether/Ether resultieren 0.23 g (23%) farblose bis schwach grünstichige Kristalle (Fp. 100 °C, Zers.). Analyse: Gef.: C, 32.73; H, 2.53; N, 5.81. C₁₃H₁₂N₂O₆W (475.99) ber.: C, 32.77; H, 2.52; N, 5.89%. IR (CH₂Cl₂): 2121m, 2026st, 1960sst (ν (CO)-E); (KBr): 3253m (ν (NH)), 2116m, 2020st, 1931sst,br (ν (CO)-E), 1693st (ν (C=O)) cm⁻¹. MS: $m/z = 476(3, M^+)$; 351(47), 323(12), 295(26), 267(35), 239(12), 211(12) [W(CO)_nCNH]⁺ (n = 5-0); 125 (47,[CyNCO]⁺), 97(100,[C₆H₁₁N]⁺). ¹H-NMR(CDCl₃): δ 1.05-2.17 (c,10H,C₆H₁₀); 3.60 (m,1H,(N)CH); 5.40 (br,1H,NH).

3. η -Cyclopentadienyl-[bis(diphenylphosphano)ethan](N-cyclohexylisocyancarboxa-mid)eisen(II)-tetrafluoroborat (3)

Zur Lösung von 0.22 g (0.4 mmol) [Fe(CN)(Cp)diphos] in 10 ml CH₂Cl₂ gibt man 0.3 ml (2.4 mmol) CyNCO und anschliessend 0.1 ml HBF₄/Ether (54%). Man rührt 18 h bei Raumtemperatur, zieht die flüchtigen Bestandteile im Ölpumpenvakuum ab und kristallisiert zweimal aus CH₂Cl₂/Ether bei -20° C um. Die dunkelgelben Kristalle (Fp. 159°C, Zers.) lassen sich trotz mehrtägigem Trocknen im Hochvakuum bei 60°C nicht völlig von Solvatresten (CH₂Cl₂) befreien. Ausbeute: 0.12 g (38%). Analyse: Gef.: C, 60.13; H, 5.85; N, 3.88. C₃₉H₄₁BF₄FeN₂OP₂ + 1/4 CH₂Cl₂ (779.20) ber: C, 60.50; H, 5.33; N, 3.60%. IR (CH₂Cl₂): 2012st,br (ν (CN)); (KBr): 3309m (ν (NH)), 2013sst (ν (CN)), 1698st (ν (C=O)), 1050sst,br (ν (BF₄)) cm⁻¹. ¹H-NMR (CDCl₃): δ 0.86–2.04 (c,10H,C₆H₁₀); 2.36–2.90 (c,4H,diphos); 3.11 (m,1H,(N)CH); 4.73 (s,5H,Cp); 5.27 (≈ 1/4H,CH₂Cl₂); 6.79 (br,1H,NH); 6.99–7.93 (m,20H,Ph). ¹³C{¹H}-NMR (CDCl₃): δ 24.7, 25.0, 31.5, 50.4 (Cy); 28.5 (t(virtuell),diphos); 83.7 (Cp); 128.9–132.3 (Ph); 139.4 (C(=O)); 187.5 (t,CN, J(PC) 29 Hz). ³¹P-NMR (CDCl₃): δ 97.3 (s,diphos).

4. Carbonyl(cyano)(η-cyclopentadienyl)(isocyan-N, N'-diphenylcarboxamidin)eisen (6) 0.21 g (1.03 mmol) [Fe(CN)(Cp)(CO)CNH] werden in 10 ml CH₂Cl₂ suspendiert und langsam bei Raumtemperatur mit 0.21 g (1.10 mmol) Diphenylcarbodiimid versetzt. Nach wenigen Minuten bildet sich ein voluminöser grünlich-weisser Niederschlag. Dieser wird 3 h später abgefrittet, zweimal mit CH₂Cl₂ und zweimal mit n-Pentan gewaschen und im Hochvakuum getrocknet. Der Komplex ist in den herkömmlichen organischen Lösungsmitteln mit Ausnahme von DMSO und DMF praktisch unlöslich. Ausbeute: 89%. Analyse: Gef.: C, 63.71; H, 4.50; N, 14.05. C₂₁H₁₆FeN₄O (396.2) ber.: C, 63.66; H, 4.08; N, 14.13%. IR (Nujol): 3220m, 3185m (ν(NH)); 2115st (ν(CN)), 2038st (ν(CNR)), 1968st,br (ν(CO)), 1665st (ν(C=N)) cm⁻¹. ¹H-NMR ((CD₃)₂SO): vgl. Text.

5. $Carbonyl(\eta-cyclopentadienyl)-bis(N,N'-dicyclohexylisocyancarboxamidin)eisen(II)-tetrafluoroborat (7)$

0.13 g (0.52 mmol) K[Fe(CN)₂(Cp)CO] werden in 7 ml CH₂Cl₂ suspendiert und anschliessend mit 0.14 ml (1.10 mmol) 54%iger HBF₄·Et₂O bei Raumtemperatur versetzt. Zu dieser orangefarbenen Suspension werden langsam 0.23 g (1.10 mmol) Dicyclohexylcarbodiimid in 1 ml CH₂Cl₂ getropft. In wenigen Minuten entsteht eine klare orange Lösung, aus der sich ein orangebraunes Öl absetzt. Nach 24 h wird ein farbloser Niederschlag (KBF₄) abgetrennt und aus der braunen Lösung mit Ether ein fast farbloses Produkt gefällt, welches zweimal mit Ether gewaschen wird.

Trocknen am Hochvakuum liefert 7 in 29% Ausbeute. IR(KBr): 3250m (ν (NH)), 2142s, 2120s, 2067st (ν (CNR)?), 1998m,br (ν (CO)), 1660st,br (ν (C=N)), 1072st,br (ν (BF₄)) cm⁻¹.

6. cis-Bis(N,N'-dicyclohexylisocyancarboxamidin)-bis(1,10-phenanthrolin)eisen(2+)-tetrafluoroborat (8)

0.12 g (0.26 mmol) cis-[Fe(CN)₂(ophen)₂], das man durch 2-stündiges Trocknen im Hochvakuum bei $130\,^{\circ}$ C vom Kristallwasser befreit hat, werden in 8 ml CH₂Cl₂ suspendiert, mit 0.07 ml HBF₄ · Et₂O versetzt und 30 min gerührt. Zu der klaren roten Lösung tropft man 0.11 g (0.54 mmol) Dicyclohexylcarbodiimid in 1 ml CH₂Cl₂. Der gelbe Niederschlag wird nach 18 h abgefrittet und mit wenig CH₂Cl₂ sowie dreimal mit Et₂O gewaschen. Trocknen im Hochvakuum ergibt orangegelbes 8 (32%), das jedoch nicht analysenrein ist. IR (KBr): 3410m,br (ν (NH)), 2100s, 2030st (ν (CNR)), 1652st,br (ν (C=N)), 1055st,br (ν (BF₄)) cm⁻¹.

Dank

Wir danken dem Fonds der Chemischen Industrie für die grosszügige Förderung unserer Arbeiten.

Literatur

- 1 M. Schaal, W. Weigand, U. Nagel und W. Beck, Chem. Ber., 118 (1985) 2186.
- 2 E. Bär, F. Beck und W.P. Fehlhammer, Chem.-Ztg., 111 (1987) 331.
- 3 W. Beck, W. Weigand, U. Nagel und M. Schaal, Angew. Chem., 96 (1984) 377; Angew. Chem. Int. Ed. Engl., 23 (1984) 377.
- 4 E. Bär, A. Völkl, F. Beck, W.P. Fehlhammer und A. Robert, J. Chem. Soc., Dalton Trans., (1986) 863.
- 5 W.P. Fehlhammer, E. Bär und B. Boyadjiev, Z. Naturforsch. B, 41 (1986) 1023.
- 6 P. Le Maux, G. Simonneaux, P. Caillet und G. Jaouen, J. Organomet, Chem., 177 (1979) C1.
- 7 (a) W.P. Fehlhammer, Nachr. Chem. Tech. Lab., 30 (1982) 187; (b) W.P. Fehlhammer, F. Degel und G. Beck, Chem. Ber., 120 (1987) 461.
- 8 H. Behrens, G. Landgraf, P. Merbach, M. Moll und K.-H. Trummer, J. Organomet. Chem., 253 (1983) 217.
- 9 G. Beck, Dissertation, Freie Universität Berlin, 1987.
- 10 A. Schröder und W.P. Fehlhammer, unveröffentlichte Ergebnisse.
- 11 A. Mayr, Dissertation, Universität München, 1978.
- 12 W.P. Fehlhammer, A. Mayr und B. Olgemöller, Angew. Chem., 87 (1975) 290; Angew. Chem. Int. Ed. Engl., 14 (1975) 369.
 - Die in dieser Arbeit getroffene Zuordnung der 2108 cm $^{-1}$ -Bande zur ν (CN)-Valenzschwingung ist nach 13 C-Markierungsexperimenten wohl nicht aufrechtzuerhalten.
 - E. Bär, Diplomarbeit, Universität Erlangen-Nürnberg, 1982.
- 13 E. Bär und W.P. Fehlhammer, Publikation in Vorbereitung.
- 14 R.P. Stewart, Jr., L.R. Isbrandt, J.J. Benedict und J.G. Palmer, J. Am. Chem. Soc., 98 (1976) 3215.
- 15 C.E. Coffey, J. Inorg. Nucl. Chem., 25 (1963) 179.
- 16 G.R. Hansen und F.D. Blake, J. Heterocycl. Chem., 7 (1970) 997.
- 17 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, in G. Brauer (Hrsg.), Handbuch der Präparativen Anorg. Chemie, Bd. III, 3. Aufl., F. Enke Verlag, Stuttgart, 1981.
- 18 G.J. Baird und S.G. Davies, J. Organomet. Chem., 262 (1984) 215.
- 19 A.A. Schilt, J. Am. Chem. Soc., 79 (1957) 5421.
- 20 (a) S. Hünig, H. Lehmann und G. Grimmer, Liebigs Ann. Chem., 579 (1953) 77; (b) R. Appel, R. Kleinstück und K.-D. Ziehn, Chem. Ber., 104 (1971) 1335.