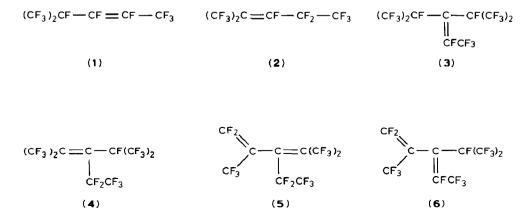
Journal of Organometallic Chemistry, 348 (1988) 235-239 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Reductive defluorination of perfluoropropylene trimer and perfluoro- $\Delta^{9(10)}$ -octalin by "Cr-H"


Yao-Zeng Huang * and Jian-Qiang Zhou

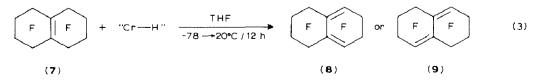
Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai (China) (Received December 12th, 1987)

Abstract

Defluorotrimers of perfluoropropene ((CF₃)CF₂=)CC(CF₂CF₃)=C(CF₃)₂ (5) and (CF₃)CF₂=CC(=CFCF₃)CF(CF₃)₂) (6)) were formed by reduction of trimer (CF₃)₃C=C(CF₂CF₃)CF(CF₃)₂) (4) with "Cr-H" species derived from *p*-CH₃C₆H₄-CrCl₂(THF)₃/NaH, C₆H₅CrCl₂(THF)₃, n-Bu₃Cr, i-Bu₃Cr and CrCl₃/LiAlH₄. The hydrogen source for the formation of 5 and 6 in the oligomerization of perfluoropropene catalyzed by bis(η^6 -benzene)chromium(0) was from the ligand benzene through η^6 - η^1 rearrangement. Perfluoro- $\Delta^{9(10)}$ -octalin (7) was reduced by "Cr-H" species to form the corresponding dienes.

In previous papers [1,2], we have reported that $bis(\eta^6$ -arene)chromium(0) could oligomerize perfluoropropene catalytically at room temperature to give two dimers 1, 2, two trimers 3, 4 and two defluorotrimers 5, 6.

We have suggested that the formation of 5 and 6 was attributable to the hydrogenation of 4 followed by spontaneous elimination of two molecules of HF which then added to perfluoropropene to form 2-hydroheptafluoropropane [2]. Here we find that the hydrogen source of this reduction was the ligand of the catalyst instead of the solvent. When $bis(\eta^6$ -benzene)chromium(0) catalyzed oligomerization of perfluoropropene was carried out in benzene- d_6 solution, GC-MS of the low-boiling point product showed the formation of only 2-hydroheptafluoropropane (m/e 151 ($M^+ - 19$), 101, 82, 69, 51) and no 2-deuteroheptafluoropropane was present. By contrast, when the oligomerization of perfluoropropene was catalyzed by bis(η^6 -deuterobenzene)chromium(0) in benzene solution, GC-MS of the low-boiling point product showed markedly the presence of 2-deuteroheptafluoropropane (m/e 152 ($M^+ - 19$), 102, 83, 69, 52). These results strongly suggest that the hydrogen source for reductive defluorination of **4** is to be sought in the ligand of catalyst, presumably through η^6 - η^1 rearrangement (eq. 1).



Sneeden and Zeise have reported that alkylchromium compounds react in the absence of added hydrogen with olefins to give hydrogenation products [3]. The results implied a direct transfer of hydrogen from a metal-bonded alkyl group to olefin, while Ashby and Lin reported that alkenes were reduced with $LiAlH_4$ in admixture with $CrCl_3$ to corresponding alkanes and they proposed that the active species was "Cr-H" [4].

In order to confirm our speculation that the reductive defluorination of 4 may be due to a "Cr-H" species, we carried out a number of reactions. The substrate used was a mixture of 3 and 4 in a proportion of 52/48 and the hydrogenation reagents were p-CH₃C₆H₄CrCl₂(THF)₃/NaH, C₆H₅CrCl₂(THF)₃/NaH, n-Bu₃Cr, i-Bu₃Cr and CrCl₃/LiAlH₄. All the reactions were carried out between -78 and $20 \degree C$ for 12 h (eq. 2). Compound 3 remained intact in these reactions. As a blank test, LiAlH₄ or NaH alone did not convert 4 into 5 and 6. The results of these reactions are shown in Table 1.

$$\text{``Cr-H''+4} \xrightarrow{\text{THF}} 5+6$$
(2)

Perfluoro- $\Delta^{9(10)}$ -octalin (7) was also reduced with "Cr-H" species derived from n-Bu₃Cr, i-Bu₃Cr, or CrCl₃/LiAlH₄ to form a sole product perfluoro- $\Delta^{1(9)}$ - $\Delta^{4(10)}$ -hexalin (8) or perfluoro- $\Delta^{1(9)}$ - $\Delta^{5(10)}$ -hexalin (9). The physical properties of our products were consistent with those reported in the literature [5] (eq. 3).

The reaction was carried out at $-78 \rightarrow 20$ °C for 12 h. LiAlH₄ alone did not effect reduction. The results are shown in Table 2.

"Cr-H"	Product ^b	Yield ^a	
	5/6	(%)	
$\overline{p-CH_{3}C_{6}H_{4}CrCl_{2}(THF)_{3}/NaH}$	95/5	30	
$C_6H_4CrCl_2(THF)_3/NaH$		25	
n-Bu ₃ Cr	98/2	86	
i-Bu ₃ Cr	94/6	56	
CrCl ₃ /LiAlH ₄	91/9	55	
$(C_6H_6)_2Cr$	75/25		

Table 1 Reaction of "Cr-H" with 4

^a Checked both by gas chromatography and by ¹⁹F NMR spectroscopy. ^b Determined by ¹⁹F NMR spectroscopy.

Table 2

Reaction of "Cr-H" with 7

"Cr-H"	Yield ^a	
	(%)	
n-Bu ₃ Cr	83	
i-Bu ₃ Cr	45	
n-Bu ₃ Cr i-Bu ₃ Cr CrCl ₃ /LiAlH ₄	41	

^a Checked both by gas chromatography and by ¹⁹F NMR spectroscopy.

In view of the fact that octafluoro-1,3-hexadiene readily reacts with maleic anhydride [6], we attempted the Diels-Alder reaction of 8 or 9 with maleic anhydride in order to determine the structure of the product, but no reaction occurred.

When the co-oligomerization of perfluoropropene and perfluorobut-2-yne was carried out with bis(η^6 -benzene)chromium(0) catalyst, the HF that was evolved in this reaction was added to the oligomer [7].

It is noteworthy that to the best of our knowledge, the rearrangement of $bis(\eta^6$ -benzene)chromium to ["C₆H₅Cr-H"] has not been reported in the literature. Our studies thus provides the first example of η^6 - η^1 rearrangement of a carbon-bonded chromium, although a similar rearrangement of a carbon-bonded osmium has been reported [8].

Experimental

¹⁹F NMR spectra were obtained with an EM-360, XL-200 apparatus, using TFA as external standard (high field positive). GC-MS was taken with a Finnigan-4021 spectrometer. Gas chromatography was carried out with a G-102 instrument. Stationary phase: 16% perfluorotriazine on a 102 white support. For convenience the trimers were prepared from perfluoropropene using KF in DMF as catalyst by a published procedure [9]. The proportion of 3/4 in perfluoropropene trimers was 52/48. CrCl₃(THF)₃ was prepared by a literature method [10]. All experiments were performed under nitrogen. Reagents and solvents were dried before use.

The yields were estimated by both gas chromatography and ¹⁹F NMR: A mixture of 5 and 6 (unseparable) and compound 8 (or 9) were obtained at first by preparative gas chromatography. The GLC peak area was plotted against the amount of sample. The yields of products (Table 1 and Table 2) were found from the curve. The yields could also be estimated on the basis of the integrated ¹⁹F NMR spectra. The two methods gave similar results.

I. Oligomerization of perfluoropropene by $bis(\eta^6$ -benzene)chromium(0) in benzene- d_6

To a solution of benzene- d_6 (15 ml) and bis(η^6 -benzene)chromium(0) (0.5 g) was added perfluoropropene (17 g) and the mixture was allowed to stand at room temperature for 24 h. The oligomer (6.3 g) was obtained. The distillate that boiled below 60 ° C was subjected to GC-MS, which revealed perfluoropropene dimers and 2-hydroheptafluoropropane were the only products. No 2-deuteroheptafluoropropane was detected.

II. Oligomerization of perfluoropropene by $bis(\eta^6$ -benzene- $d_6)$ chromium(0) in benzene

Bis(η^6 -benzene- d_6)chromium(0) was prepared by a published procedure [11] for the preparation of bis(η^6 -benzene)chromium(0), but using benzene- d_6 instead of benzene.

To a solution of bis(η^6 -benzene- d_6)chromium(0) (0.5 g) in benzene (15 ml), was added perfluoropropene (14.4 g). The reaction yielded the oligomers perfluoropropene (2.7 g). The low-boiling point distillate ($< -20^{\circ}$ C) was determined by GC-MS to be mainly 2-deuteroheptafluoropropane.

111. Reaction of p-CH₃C₆H₄CrCl₂(THF)₃ / NaH and C₆H₅CrCl₂(THF) / NaH with 4

(a) A THF solution of $CrCl_3(THF)_3$ (10 ml, containing ca. 6 mmol of $CrCl_3$) was transferred into a vessel with an outlet. *p*-Tolylmagnesium bromide (8 ml, ca. 8 mmol) was slowly added dropwise at $-78^{\circ}C$ the mixture was stirred for 30 min, and then NaH (0.5 g) was added. After a few minutes the perfluoropropene trimer (6 g) was introduced, the mixture was stirred at room temperature for a further 12 h, and then hydrolyzed with 0.5 N HCl. The mixture was washed with water three times and dried over CaCl₂. The products were separated by preparative chromatography.

5: $M^+ = 412$; m/e 393, 343, 293, 205, 93, 69. ¹⁹F NMR: -7.5, -5.8(2F), -18.0, -17.6(6F), -16.3(3F), 33.3(2F), 5.2(3F) ppm.

6: $M^+ = 412$; m/e 393. 343, 293, 205, 93, 69. ¹⁹F NMR: 16.7(3F), -9.1, -7.1(2F), -7.5(3F), -1.9(3F), 0.6(3F), 22.0(1F), 100.3(1F) ppm.

(b) The reaction of $C_6H_5CrCl_2(THF)_3/NaH$ with 4 was carried out similarly but phenylmagnesium bromide was used instead of *p*-tolylmagnesium bromide.

IV. Reaction of n-Bu₃Cr with 4 and 7

(a) A suspension of CrCl_3 (0.5 g, 3 mmol) and a trace of Zn dust in THF (15 ml) was refluxed for 4 h and then cooled to -78° C, and n-butylmagnesium bromide (10 ml, 0.012 mol) was added dropwise. After stirring for 1 h, the perfluoropropene trimer (2.8 g) was added. The reaction mixture was then agitated at room temperature for another 12 h. The product was worked up in a manner similar to that of III.

(b) Compound 7 (1.3 g) was treated with $n-Bu_3Cr$ in the same manner as described in (a).

8 or **9**: $M^+ = 386$; m/e 367, 317, 267, 248, 217, 198, 179, 167, 148, 117, 93, 69. ¹⁹F NMR: 39.5(4F), 38.0(2F), 45.3(4F), 59.2(4F).

V. Reaction of n-Bu₃Cr with 4 and 7

All operations were similar to those in IV except i-butylmagnesium bromide was used instead of n-butylmagnesium bromide.

VI. Reaction of $CrCl_3/LiAlH_4$ with 4 and 7

(a) A mixture of $CrCl_3$, (3 mmol), a trace of Zn dust and THF (15 ml) was refluxed for 4 h, and cooled to $-78^{\circ}C$. LiAlH₄ (0.15 g) was added and the mixture was stirred for 1 h. Then the perfluoropropene trimer (2.8 g) was added. The reaction was carried out at room temperature for further 12 h and worked up in the usual way.

(b) Reaction of $CrCl_3/LiAlH_4$ with 7 was carried out in the same manner as described in (a).

Acknowledgement

We thank the National Natural Science Foundation of China for supporting this program.

References

- 1 Y.-Z. Huang, J. Li, J.-Q. Zhou and G. Hou, J. Organomet. Chem., 205 (1981) 185,
- 2 Y.-Z. Huang, J. Li, J.-Q. Zhou, Q. Wang and M. Gui, J. Organomet. Chem., 218 (1981) 169.
- 3 R.P.A. Sneeden and H.H. Zeiss, J. Organomet. Chem., 27 (1971) 89.
- 4 E.C. Ashby and J.J. Lin, J. Org. Chem., 43 (1985) 2567.
- 5 D. Qian, T. Shen, D. Cai, C. Hu and X. Hu, Huaxue Tongbao, No. 12 (1987) 26.
- 6 R.D. Chambers, W.K.R. Musgrave and D.A. Pyke, Chem. Ind. London, 13 (1965) 564.
- 7 Y.-Z. Huang, J.-Q. Zhou, J. Li and Z. Zhu, J. Fluorine Chem., 30 (1986) 455.
- 8 H. Werner and K. Zenkert, J. Chem. Soc., Chem. Commun., (1981) 1607.
- 9 Dupont U.S.P. 2918501 (1959).
- 10 W. Herwig and H.H. Zeiss, J. Org. Chem., 23 (1958) 1404.
- 11 E.O. Fischer and W. Hafner, Brit. Pat., 829574 (1960).