Darstellung und Struktur von Pentamethylcyclopentadienyloxo-pentasulfido-vanadium, $Cp^*VO(S_5)$

Max Herberhold*, Markus Kuhnlein,

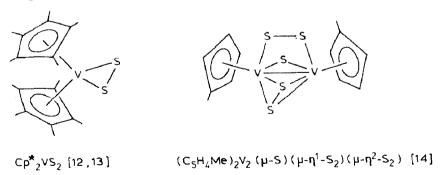
Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth (Bundesrepublik Deutschland)

Manfred L. Ziegler * und Bernhard Nuber

Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg (Bundesrepublik Deutschland)
(Eingegangen den 28. Januar 1988)

Abstract

The reaction of the half-sandwich compound Cp^*VOCl_2 ($Cp^* = \eta^5$ -pentamethylcyclopentadienyl) with THF solutions of potassium polysulfide, $K_2S_x(x>6)$, inTHF leads to the pentasulfido-vanadium complex $Cp^*VO(S_5)$ (1), one which is also found among the soluble side-products of the reaction of $Cp^*V(CO)_4$ with excess sulfur, S_8 . Complex 1 contains a six-membered metallacycle in chair conformation, similar to that observed in $Cp_2Ti(S_5)$ and $Cp_2V(S_5)$, although the V-S bond distances (average 228.4(2) pm) are shorter and the SVS angles (106.8(1) and 106.1(1)° in the two crystallographically different molecules of 1) are larger than the corresponding parameters in the metallocene derivatives. The vanadium-oxygen bond lengths (159.0(3) and 158.5(4) pm, respectively) are typical of a V=O double bond.


Zusammenfassung

Die Reaktion der Halbsandwich-Verbindung Cp^*VOCl_2 ($Cp^* = \eta^5$ -Pentamethylcyclopentadienyl) mit THF-Lösungen von Kaliumpolysulfid, K_2S_x (x > 6), führt zum Pentasulfido-vanadium-Komplex $Cp^*VO(S_5)$ (1), der sich auch unter den löslichen Nebenprodukten der Umsetzung von $Cp^*V(CO)_4$ mit überschüssigem Schwefel, S_8 , findet. Komplex 1 enthält einen sechsgliedrigen Metallacyclus in Sesselkonformation, wie er in ähnlicher Weise in $Cp_2Ti(S_5)$ und $Cp_2V(S_5)$ beobachtet wird; allerdings sind die V-S Bindungsabstände (Mittelwert 228.4(2) pm) kürzer und die SVS Winkel (106.8(1) und 106.1(1)° in den beiden kristallographisch unterschiedlichen Molekülen von 1) grösser als die entsprechenden Parameter in den Metallocenderivaten. Die Vanadium-Sauerstoff Bindungslängen (159.0(3) und 158.5(4) pm) sind für eine V=O Doppelbindung typisch.

Einleitung

Unter den zahlreichen Übergangsmetallverbindungen, die Polysulfido-Chelatliganden enthalten [1], beanspruchen die einkernigen Komplexe mit η^5 -gebundenen Cyclopentadienyl- oder Pentamethylcyclopentadienyl-Ringen besonderes Interesse. Da ein grosser Teil der Koordinationssphäre durch die Cyclopentadienyl-Ringe abgeschirmt ist, können sterische Einflüsse auf die Grösse des Polysulfido-Chelatliganden erwartet werden (vgl. [1]). So bilden sich in der Reihe der Metallocenderivate der 4. Nebengruppe in Kombination mit zwei η^5 -Cyclopentadienyl-Liganden selektiv die Pentasulfido-Komplexe $Cp_2M(S_5)$ (M=Ti [2–9], Zr [9], Hf [9]), in Kombination mit zwei η^5 -Pentamethylcyclopentadienyl-Liganden sind jedoch auch bei Schwefelüberschuss ausschliesslich Trisulfido-Komplexe $Cp_2^*M(S_3)$ (M=Ti, Zr [10]) erhalten worden.

Dem 17-Elektronen Vanadium(IV)-Komplex $Cp_2V(S_5)$ [5,11] steht der ebenfalls einkernige Komplex $Cp_2^*V(S_2)$ [12,13] gegenüber; beide Verbindungen werden beim Erhitzen in Lösung in die zweikernigen Produkte $Cp_2V_2S_5$ [5,14] bzw. $Cp_2^*V_2S_5$ [13] umgewandelt.

Die Bildung von Pentasulfido-Komplexen in Kombination mit zwei Cp*-Ringliganden erfordert offenbar ein grösseres Zentralmetall, wie aus der Existenz von $Cp_2^*Th(S_5)$ [15] geschlossen werden kann. Während in $Cp_2Ti(S_5)$ [4,5] und $Cp_2V(S_5)$ [5] der sechsgliedrige Metallacyclus in der Sesselform vorliegt, wird in $Cp_2^*Th(S_5)$ [15] eine "twist-boat"-Konformation beobachtet, bei der sowohl die α - als auch die

 β -ständigen Schwefelatome an das Metall gebunden sind. Alle drei Pentasulfido-Metallkomplexe sind nicht-starre Moleküle.

In der Reihe der Halbsandwich-Verbindungen (mit nur einem Fünfring-Liganden) sind die 18-Elektronen (d^6) Pentasulfido-Komplexe CpCo(PMe₃)(S₅) [16] und CpRh(PPh₃)(S₅) [17] beschrieben worden. Einkernige Halbsandwich-Komplexe mit S₄- oder S₃-Chelatliganden sind bisher nicht bekannt; auch S₂-Komplexe sind selten, da die Bildung mehrkerniger Spezies mit Schwefel-Brücken bevorzugt zu sein scheint (vgl. [18,19]). Am Beispiel der analog gebauten 18-Elektronen Rhenium-komplexe CpRe(CO)₂(S₂) [20,21] und Cp*Re(CO)₂(S₂) [19,22] lässt sich jedoch erkennen, dass ein einzelner η^5 -Ringligand keinen determinierenden Einfluss auf die Ringgrösse des schwefelhaltigen Metallacyclus mehr ausübt.

Im folgenden wird die Synthese und Struktur des d^0 -Vanadium-oxo-Komplexes $\operatorname{Cp}^*VO(S_5)$ (1) beschrieben, der einen Pentasulfido-Chelatliganden neben einem η^5 -Pentamethylcyclopentadienyl-Ring enthält.

Ergebnisse und Diskussion

Präparative Untersuchungen

Bei der Umsetzung von Pentamethylcyclopentadienyl-oxo-dichlorovanadium(V), Cp^*VOCl_2 , mit Kaliumpolysulfid entsteht der dunkelrote Komplex $Cp^*VO(S_5)$ (1).

$$Cp^*VOCl_2 + K_2S_x \xrightarrow{(THF)} Cp^*VO(S_5) + 2 KCl + (x-5)/8 S_8$$
(1) (x > 6)

Als Nebenprodukte wurden bei der Chromatographie an Kieselgel Zweikernkomplexe der Zusammensetzung Cp₂*V₂S₅ (schwarz) [13] und Cp₂*V₂OS₃ (orange) isoliert.

Der Pentasulfido-vanadium-Komplex $Cp^*VO(S_5)$ (1) findet sich (ebenso wie die orange Verbindung $Cp_2^*V_2OS_3$) auch unter den löslichen Nebenprodukten der Umsetzung von $Cp^*V(CO)_4$ mit cyclo-Oktaschwefel in siedendem THF oder Toluol [23], bei der als Hauptprodukt der bekannte [13] schwarze Zweikernkomplex $Cp_2^*V_2S_5$ entsteht. Beim Einleiten von H_2S in eine Lösung von 1 bildet sich ebenfalls der Zweikernkomplex $Cp_2^*V_2S_5$ neben elementarem Schwefel:

2
$$Cp^{\star}VO(S_5) + 2 H_2S \xrightarrow{(THF)} Cp_2^{\star}V_2S_5 + 2 H_2O + 7/8 S_8$$

Bei der Reaktion von Cp*VO(S₅) (1) mit SCl₂ wird die Ausgangsverbindung

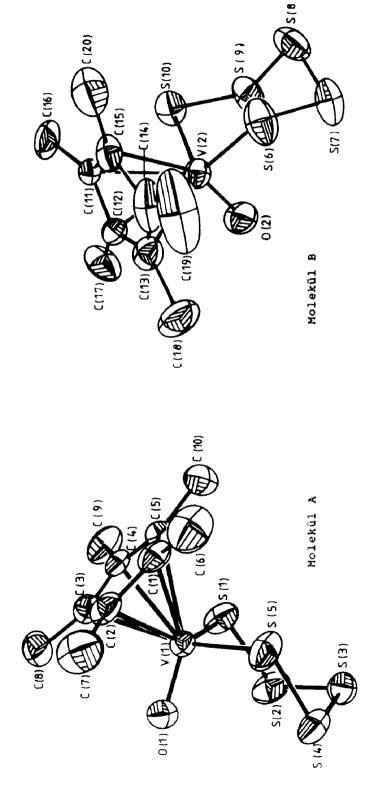


Fig. 1. Molekülstruktur von Cp*VO(S₅) (1).

Cp*VOCl₂ zurückerhalten. Die Identifizierung der Vanadiumkomplexe ist anhand der ⁵¹V-NMR-Spektren rasch und eindeutig möglich.

Der zu Cp*VO(S₅) (1) analoge Halbsandwich-Komplex mit unsubstituiertem Cyclopentadienylring, CpVO(S₅), trat gelegentlich auf, wenn CpVOBr₂ mit Polysulfiden umgesetzt wurde. Er liess sich, im Gegensatz zu 1, durch sein EI-Massenspektrum identifizieren. Die Bildung von CpVO(S₅) war jedoch nicht reproduzierbar; als Hauptprodukt wird stets das schwarze, schwefel-verbrückte Produkt Cp₂V₂S₅ erhalten, das auch bei der direkten Reaktion von CpV(CO)₄ mit Schwefel gebildet wird [24].

Im Gegensatz zu den paramagnetischen (d^1) Vanadocenderivaten $Cp_2V(S_5)$ und $Cp_2^*V(S_2)$, die formal Vanadium(IV) enthalten, leiten sich die Oxokomplexe $Cp^*VO(S_5)$ (1) und $CpVO(S_5)$ ebenso wie die Zweikernkomplexe des Typs $Cp_2^*V_2S_5$ und $Cp_2^*V_2OS_3$ von Vanadium(V) (d^0) ab und sind diamagnetisch.

Kristall- und Molekülstruktur von $Cp^*VO(S_5)$ (1)

Die Halbsandwich-Verbindung $\operatorname{Cp^*VO}(S_5)$ (1) kristallisiert in der monoklinen Raumgruppe $P2_1/a$ mit zwei kristallographisch unabhängigen Molekülen (Z=8) (Fig. 1). In beiden Molekülen (A und B) liegt der sechsgliedrige Metallacyclus in der Sesselkonformation vor (Fig. 2), wobei der Oxoligand "axial" und der Pentamethylcyclopentadienylring "equatorial" am VS_5 -Sechsring stehen; (in $\operatorname{CpCo}(\operatorname{PMe}_3)(S_5)$ [16] nimmt umgekehrt der $\operatorname{Cp-Ring}$ die axiale, der dickere PMe_3 -Ligand die equatoriale Position ein). Die Bindungslängen und Bindungswinkel der beiden Moleküle von $\operatorname{Cp^*VO}(S_5)$ (1) sind in Tabelle 1 angegeben; Tabelle 2 enthält die Lageparameter in Bruchteilen der Elementarzelle.

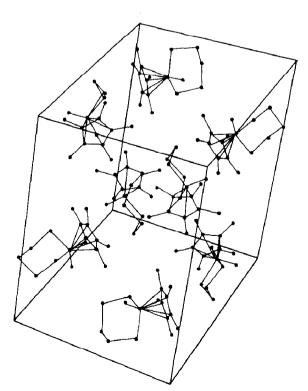


Fig. 2. Elementarzelle von $Cp^*VO(S_5)$ (1).

Tabelle 1

Durch Nichtwasserstoffatome definierte Bindungslängen (pm), Bindungswinkel und Torsionswinkel (°) in Cp*VO(S₅) (1)

Molekül A	Molekül B				
Abstände (pm)					
V(1)-O(1) 159.0(3)	V(2)-O(2) 158.5(4)				
V(1)-S(1) 228.4(2)	V(2)-S(6) 228.4(2)				
V(1)-S(5) 228.8(1)	V(2)-S(10) 228.8(2)				
V(1)-C(1) 238.1(5)	V(2)-C(11) 239.0(4)				
V(1)-C(2) 224.5(6)	V(2)-C(12) 224.6(4)				
V(1)-C(3) 222.6(4)	V(2)-C(13) 223.1(6)				
V(1)-C(4) 234.0(4)	V(2)-C(14) 234.0(6)				
V(1)-C(5) 244.4(4)	V(2)-C(15) 245.2(6)				
S(1)-S(2) = 204.7(2)	S(6)-S(7) 204.8(3)				
S(2)-S(3) 204.3(2)	S(7)-S(8) 203.8(2)				
S(3)-S(4) = 204.5(3)	S(8)-S(9) 203.8(2)				
S(4)-S(5) = 205.5(2)	S(9)-S(10) 205.1(2)				
Bindungswinkel (°)					
S(1)-V(1)-S(5) 106.8(1)	S(6)-V(2)-S(10) 106.1(1)				
S(1)-V(1)-O(1) 104.2(2)	S(6)-V(2)-O(2) 104.2(1)				
S(5)-V(1)-O(1) 103.9(1)	S(10)-V(2)-O(2) 103.9(2)				
S(1)-S(2)-S(3) 105.7(1)	S(6)-S(7)-S(8) 105.6(1)				
S(2)-S(3)-S(4) 106.0(1)	S(7)-S(8)-S(9) 105.1(1)				
S(3)-S(4)-S(5) 104.3(1)	S(8)-S(9)-S(10) 104.6(1)				
Torsionswinkel (°) im VS5-Ring (vgl. [35])					
V(1)-S(1)-S(2)-S(3) -67.9	V(2)-S(6)-S(7)-S(8) 69.3				
S(1)-S(2)-S(3)-S(4) 78.6	S(6)-S(7)-S(8)-S(9) -79.4				
S(2)-S(3)-S(4)-S(5) - 79.9	S(7)-S(8)-S(9)-S(10) 80.1				
S(3)-S(4)-S(5)-V(1) 70.3	S(8)-S(9)-S(10)-V(2) -70.8				
S(4)-S(5)-V(1)-S(1) -64.9	S(9)-S(10)-V(2)-S(6) 65.1				
S(5)-V(1)-S(1)-S(2) 63.5	S(10)-V(2)-S(6)-S(7) -64.1				
Winkel (°) zwischen den Ebenen					
V(1), S(1), S(5)/S(1), S(2), S(4), S(5) 62.6	V(2), S(6), S(10)/S(6), S(7), S(9), S(10) 63.1				
S(2), S(3), S(4)/S(1), S(2), S(4), S(5) 72.5	S(7), $S(8)$, $S(9)/S(6)$, $S(7)$, $S(9)$, $S(10)$ 72.8				
V(1), $S(1)$, $S(5)/S(2)$, $S(3)$, $S(4)$ 9.9	V(2), $S(6)$, $S(10)/S(7)$, $S(8)$, $S(9)$ 9.7				
$S(1), V(1), S(5)/Cp^*(C(1) \cdots C(5)) 38.4$	$S(6)$, $V(2)$, $S(10)/Cp^*(C(11)\cdots C(15))$ 38.5				
$S(1)$, $S(5)$, $O(1)/Cp^*(C(1)\cdots C(5))$ 2.5	$S(6)$, $S(10)$, $O(2)/Cp^*(C(11)\cdots C(15)) = 2.7$				

In Tabelle 3 sind die Strukturdaten der bisher röntgenographisch untersuchten Pentasulfido-Chelatkomplexe zusammengestellt, die zusätzlich Cyclopentadienylbzw. Pentamethylcyclopentadienyl-Liganden enthalten. Es fällt auf, dass die Metall-Schwefel Bindungsabstände bei den Halbsandwich-Komplexen CpCo-(PMe₃)(S₅) (ca. 225 pm) und Cp*VO(S₅) (Mittelwert 228.6 pm) deutlich kürzer sind als in den Metallocenderivaten Cp₂Ti(S₅) (Bereich 240-245 pm) und Cp₂V(S₅) (Mittelwert 245.7 pm). Andererseits sind die Schwefel-Metall-Schwefel Winkel in den Halbsandwich-Verbindungen CpCo(PMe₃)(S₅) (98.8(1)°) und Cp*VO(S₅) (106.8(1) bzw. 106.1(1)°) signifikant grösser als bei den Metallocenderivaten. Die in Tabelle 3 angegebenen Strukturparameter können mit sterischen Gegebenheiten, insbesondere mit dem in der Reihe O, PMe₃, Cp, Cp* zunehmenden Raumanspruch der Nachbarliganden, erklärt werden. Ähnlich wie bei CpCo(PMe₃)(S₅) [16] ist auch

Tabelle 2
Lageparameter in Einheiten der Elementarzelle von Cp*VO(S₅) (1)

Atom	x	У	z
V(1)	-0.2306(5)	0.6535(5)	0.1099(5)
O(1)	-0.2654(22)	0.5456(21)	0.0871(21)
V(2)	0.3935(5)	0.2636(6)	0.3634(5)
O(2)	0.4687(24)	0.1955(23)	0.3453(25)
S(1)	-0.1633(10)	0.6907(10)	0.0112(9)
S(2)	0.9235(11)	0.5735(11)	0.0218(10)
S(3)	0.0349(10)	0.5791(10)	0.1479(11)
S(4)	0.9749(10)	0.5301(10)	0.2322(10)
S(5)	-0.1020(10)	0.6451(10)	0.2489(8)
S(6)	0.4904(11)	0.3445(12)	0.4908(9)
S(7)	0.6085(11)	0.3812(13)	0.4630(11)
S(8)	0.5554(11)	0.4804(11)	0.3632(11)
S(9)	0.4828(11)	0.4037(11)	0.2488(10)
S(10)	0.3477(10)	0.3726(10)	0.2492(9)
C(1)	-0.2701(34)	0.7818(35)	0.1848(29)
C(2)	- 0.3 448(35)	0.7096(33)	0.1545(32)
C(3)	-0.3854(32)	0.7077(32)	0.0600(31)
C(4)	-0.3361(31)	0.7784(32)	0.0319(28)
C(5)	-0.2652(31)	0.8243(29)	0.1088(30)
C(6)	- 0.2164(42)	0.8170(43)	0.2803(30)
C(7)	-0.3802(45)	0.6509(43)	0.2133(39)
C(8)	-0.4708(35)	0.6464(39)	-0.0013(38)
C(9)	- 0.3652(39)	0.8096(39)	-0.0646(29)
C(10)	-0.1985(38)	0.9053(34)	0.1092(37)
C(11)	0.2175(29)	0.2652(32)	0.3149(28)
C(12)	0.2553(32)	0.1741(32)	0.3086(30)
C(13)	0.3153(34)	0.1438(38)	0.3967(37)
C(14)	0.3165(36)	0.2180(49)	0.4564(31)
C(15)	0.2549(35)	0.2926(38)	0.4051(35)
C(16)	0.1404(34)	0.3175(39)	0.2372(36)
C(17)	0.2303(42)	0.1165(38)	0.2245(36)
C(18)	0.3648(47)	0.0474(43)	0.4218(53)
C(19)	0.3626(46)	0.2131(67)	0.5577(31)
C(20)	0.2273(47)	0.3821(47)	0.4383(49)

bei Cp*VO(S₅) (1) die Ebene, die durch die direkt an das Metall gebundenen Atome definiert ist (S(1), S(5), O(1) bzw. S(6), S(10), O(2)), nahezu parallel zur Ebene des Cp*-Liganden (Neigungswinkel 2.5 bzw. 2.7°).

Die S-S Bindungslängen, die SSS Bindungswinkel und die Torsionswinkel im VS_5 -Ring von $Cp^*VO(S_5)$ (1) lassen sich mit den entsprechenden Parametern des homocyclischen Sechsrings S_6 [25], der ebenfalls in der Sesselkonformation (Symmetrie D_{3d}) vorliegt, und mit denen des normalen kronenförmigen Achtrings α -S₈ [26] (Symmetrie C_2) vergleichen [27].

	Bindungslänge S-S (pm)	Bindungswinkel SSS (°)	Torsionswinkel
S ₆ (-90°C) Cp*VO(S ₅) (25°C)	206.8	102.6	73.8
(siehe Tabelle 1)	203.8-205.5	104.3-106.0	63.5-80.1
S ₈ (25 und -173°C)	204.6-205.2	107.3-109.0	98.5

Tabelle 3
Pentasulfido-Chelatkomplexe

Komplex ^a	(pm) S-	Winkel S-M-S (°)	Winkel der Flächennorma- len SMS/Cp ^(*) (°)	Winkel zwischen den beiden Nach- barliganden des S ₅ -Chelatrings ^h (°)		Ref.
Cp ₂ Ti(S ₅) ^c		94.6		ZTiZ	133.7	4
	244.8(1)		17.0			
	A 240.0(4)	95.4(1)	32.2	ZTiZ	132.7	5
	244.3(2)		16.9			
	B 241.9(4)	94.6(1)	31.8	ZTiZ	132.7	5
	243.8(3)		16.8			
$Cp_2V(S_5)\cdot 1/2H_2O$	245.0(2)	89.3(1)	27.7	ZVZ	134.1	5
	246.4(2)		16.8			
$CpCo(PMe_3)(S_5)$	224.8(2)	98.8(1)	58.6	ZCoP		16
	225.1	,				
$Cp^*VO(S_5)$	A 228.4(2)	106.8(1)	38.4	z*vo	124.1	d
	228.8(1)	. ,				
	B 228.4(2)	106.1(1)	38.5	z*vo	124.4	d
	228.8(2)	(-)			. =	
$Cp_2^*Th(S_5)^a$	276.8(4)	113.3(1)	_	Z*ThZ*	129.9	15

^a Alle hier aufgeführten Verbindungen ausser $Cp_2^*Th(S_5)$ enthalten den sechsgliedrigen MS_5 -Metallacyclus im Festkörper in der Sesselkonformation. ^b Mit Z bzw. Z^* werden die Zentren der Cyclopentadienyl-Ringliganden bezeichnet. ^c Die Röntgenstrukturanalysen von $Cp_2Ti(S_5)$ [4,5] wurden an (unterschiedlichen) monoklinen Phase durchgeführt; die von Dahl und Mitarbeitern [5] untersuchte Probe enthielt 2 unabhängige Moleküle A und B. ^d Diese Arbeit.

Die für $Cp^*VO(S_5)$ (1) beobachteten Vanadium-Sauerstoff-Abstände (159.0(3) bzw. 158.5(4) pm bei den beiden kristallographisch unterschiedlichen Molekülen) entsprechen der Erwartung für eine V=O-Doppelbindung; ganz ähnliche Abstände sind für die terminalen Oxoliganden in den Pentamethylcyclopentadienyl-Komplexen Cp^*VOCl_2 (157.6(8) pm [28]) und $[Cp^*VOCl]_2(\mu - O)$ (158.9(3) pm [29]) beobachtet worden.

Beschreibung der Versuche

Alle Umsetzungen wurden unter Ar-Schutzgas in gut (über Na/K-Legierung) getrockneten und Ar-gesättigten Lösungsmitteln durchgeführt.

Der Ausgangskomplex Cp^*VOCl_2 wurde aus $Cp^*V(CO)_4$ durch Chlorierung in Gegenwart von Sauerstoff erhalten [29,30]; $CpVOBr_2$ wurde analog aus $CpV(CO)_4$ und Brom in Gegenwart von Sauerstoff dargestellt (vgl. [31]). Lösungen von Kaliumpolysulfid, K_2S_x , wurden durch Auflösen von " K_2S_5 " [32] und Schwefel in THF hergestellt und direkt eingesetzt.

Umsetzung von Cp*V(CO)₄ mit Kaliumpolysulfid-Lösung

Darstellung von $Cp^*VO(S_5)$ (I). Eine Lösung von 155 mg (0.57 mmol) Cp^*VOCl_2 in 30 ml Pentan/THF (2/1) wurde bei Raumtemperatur im Laufe von 10 min zu einer Kaliumpolysulfid-Lösung zugetropft, die durch Auflösen von 175 mg (0.73 mmol) K_2S_5 und 400 mg (12.5 mmol) Schwefel in 180 ml THF erhalten worden war

(Verhältnis V/S ~ 1/22). Die Reaktionslösung wurde zur Trockne gebracht und der Rückstand mit 20 ml Pentan/CH₂Cl₂ (1/1) extrahiert. Die schwarze Extraktionslösung wurde auf eine mit Silicagel (Merck Kieselgel 60 GF₂₅₄) in Pentan gefüllte Chromatographiersäule (30 × 1 cm) gegeben. Mit Pentan/CH₂Cl₂ (2/1) liessen sich Schwefel (S₈) und der schwarze Zweikernkomplex Cp^{*}₂V₂S₅ $(\delta(^{51}V) + 596 \text{ ppm})$ auswaschen. Anschliessend wurde mit Pentan/CH₂Cl₂ (1/4) eine rotviolette Zone eluiert, die im wesentlichen 1 enthielt. Diese Lösung wurde zur Trockne gebracht und das Rohprodukt 1 (wie zuvor) über Silicagel chromatographiert. Dabei konnte nach einem Vorlauf (Pentan/Toluol (1/1)) die rotviolette Hauptzone mit Pentan/Diethylether (2/1) so eluiert werden, dass das in geringen Mengen vorhandene Nebenprodukt $Cp_2^*V_2OS_3$ ($\delta(^{51}V) + 1266$ ppm) als orange Vorzone abgetrennt wurde. Der metallacyclische Komplex Cp*VO(S₅) (1) lässt sich aus Diethylether kristallisieren; er ist in Pentan mässig, aber in polaren organischen Lösungsmitteln sehr gut löslich. Ausbeute 85 mg (41%). Dunkelrote Kristalle, Schmp. 130°C. (Gef.: C, 33.83; H, 4.36; S, 43.9. C₁₀H₁₅OS₅V (362.50) ber.: C, 33.13; H, 4.17; S, 44.23%).

IR (KBr): 961 cm⁻¹(ν (V=O)). NMR (CDCl₃-Lösungen): δ (¹H) 2.18 ppm (Cp*) bei Raumtemp.; δ (¹³C) 12.3 und 124.1 ppm (Cp*) bei 0°C; δ (⁵¹V) +44 ppm ($\Delta \nu_{1,C}$ 140 Hz) bei 15°C.

Umsetzung von CpVOBr, mit Kaliumpolysulfid-Lösung

Bei den Reaktionen zwischen $CpVOX_2$ (X = Cl, Br) und Polysulfiden wie " K_2S_5 " in THF-Lösung entsteht hauptsächlich schwarzes $Cp_2V_2S_5$ ($\delta(^{51}V)+407$ ppm). In einigen Ansätzen liessen sich aus dem schwarzen Rückstand, der beim Abziehen des Solvens THF zurückbleibt, mit Chloroform geringe Mengen eines roten Produkts extrahieren, das über Silicagel (Elution mit $CHCl_3$) chromatographisch gereinigt und im EI-Massenspektrum als $CpVO(S_5)$ identifiziert werden konnte: m/e 292 (rel. Intensität 54%) [$CpVOS_5^+$ (M^+)], 260 (2) [$CpVOS_4^+$], 244 (2) [$CpVS_4^+$], 228 (55) [$CpVOS_3^+$], 212 (88) [$CpVS_3^+$], 196 (28) [$CpVOS_2^+$], 180 (30) [$CpVS_2^+$], 164 (100) [$CpVOS^+$], 148 (18) [$CpVS^+$], 132 (49) [$CpVO^+$], 116 (21) [CpV^+]. (Das Massenspektrum zeigt auch die Fragmentierungsmuster von $Cp_2V_2S_5$ (m/e 362) und S_8 (m/e 256)). IR (KBr): 961 cm⁻¹ ($\nu(V=O)$). ⁵¹V-NMR: δ -46 ppm ($\Delta\nu_{1/2}$ 110 Hz) bei 15° C.

Spektroskopische Messungen

Alle NMR-Spektren wurden in CDCl₃-Lösung an einem JEOL FX 90Q Spektrometer aufgenommen. Die ⁵¹V-Messungen wurden bei +15°C durchgeführt und beziehen sich auf VOCl₃ als externen Standard. Für die Massenspektren stand ein Gerät des Typs Finnigan MAT 8500 (Ionisierungsenergie 70 eV) mit SS300 Datensystem zur Verfügung.

Röntgenstrukturanalyse: Unregelmässiger dunkelroter Kristall (0.17 × 0.23 × 0.35 mm³), monoklin, Raumgruppe $C_{2h}^5 - P2_1/a$. Elementarzelle: a 1481.8(6), b 1399.7(5), c 1638.8(5) pm, β 144.50(3)° (aus 25 diffraktometrisch zentrierten Reflexen, 4° < 2 θ < 27°), V = 3092.9 ų, Z = 8, M = 2899.8. Empirische Absorptionskorrektur (ψ -scans von 5 Reflexen, 3 < θ < 18), μ 13.02 cm $^{-1}$, F(000) = 1488, d_{rontg} 1.56 g/cm³. Syntex R3, Mo- K_{α} -Strahlung (λ 0.71073 Å), Graphitmonochromator, θ -2 θ scans (h 0/21, k 0/20, l-24/24; 3 < 2 θ < 60°), ca. 9000 Reflexe möglich, 2935 gemessene Reflexe mit $I \ge 2.0\sigma(I)$, davon 2806

unabhängige. Die Struktur wurde mittels direkter Methode gelöst [33], die Verfeinerung erfolgte für alle Nichtwasserstoffatome anisotrop, die H-Atome wurden mit HFIX festgehalten [33]. R = 0.034, $R_{\rm w} = 0.031$ { $R_{\rm w} = [\sum w(|F_0| - |F_{\rm c}|)^2/\sum wF_0^2]^{1/2}$ }, Restelektronendichte $0.3/-0.3{\rm e}/{\rm A}^3$, shift/esd = 0.1(0.7), GOOF = 1.7 { $= [\sum w(|F_0| - |F_{\rm c}|)^2/(NO - NV)]^{1/2}$ }. Alle Rechnungen basieren auf dem Programmsystem SHELXTL [33]; die Atomformfaktoren wurden der Literatur [34] entnommen.

Dank

Wir sind der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung unserer Arbeiten sehr dankbar.

Literatur

- M. Draganjac und T.B. Rauchfuss, Angew. Chem., 97 (1985) 745; Angew. Chem. Int. Ed. Engl., 24 (1985) 742.
- 2 E. Samuel, Bull. Soc. Chim. Fr., (1966) 2548; E. Samuel und C. Giannotti, J. Organomet. Chem., 113 (1976) C17.
- 3 H. Köpf, B. Block und M. Schmidt, Chem. Ber., 101 (1968) 272; H. Köpf und B. Block, Chem. Ber., 102 (1969) 1504; H. Köpf, Chem. Ber., 102 (1969) 1509; vgl. auch H. Köpf und W. Kahl, J. Organomet, Chem., 64 (1974) C37.
- 4 E.F. Epstein und I. Bernal, J. Chem. Soc., Chem. Commun., (1970) 410; E.F. Epstein, I. Bernal und H. Köpf, J. Organomet. Chem., 26 (1971) 229.
- 5 E.G. Muller, J.L. Petersen und L.F. Dahl, J. Organomet. Chem., 111 (1976) 91.
- 6 E.W. Abel, M. Booth und K.G. Orrell, J. Organomet. Chem., 160 (1978) 75.
- 7 R. Steudel und R. Strauss, J. Chem. Soc., Dalton Trans., (1984) 1775.
- 8 C.M. Bolinger und T.B. Rauchfuss, Inorg. Chem., 21 (1982) 3947; vgl. auch D.M. Giolando, T.B. Rauchfuss, A.L. Rheingold und S.R. Wilson, Organometallics, 6 (1987) 667.
- 9 J.M. McCall und A. Shaver, J. Organomet. Chem., 193 (1980) C37.
- 10 P.H. Bird, J.M. McCall, A. Shaver und U. Siriwardane, Angew. Chem., 94 (1982) 375; Angew. Chem. Int. Ed. Engl., 21 (1982) 384.
- 11 H. Köpf, A. Wirl und W. Kahl, Angew. Chem., 83 (1971) 146; Angew. Chem. Int. Ed. Engl., 10 (1971) 137.
- 12 S. Gambarotta, C. Floriani, A. Chiesi-Villa und C. Guastini, J. Chem. Soc., Chem. Commun., (1983) 184.
- 13 S.A. Koch und V. Chebolu, Organometallics, 2 (1983) 350.
- 14 C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, Organometallics, 1 (1982) 1551.
- 15 D.A. Wrobleski, D.T. Cromer, J.V. Ortiz, T.B. Rauchfuss, R.R. Ryan und A.P. Sattelberger, J. Amer. Chem. Soc., 108 (1986) 174
- 16 Ch. Burschka, K. Leonhard und H. Werner, Z. Anorg. Allg. Chem., 464 (1980) 30.
- 17 Y. Wakatsuki und H. Yamazaki, J. Organomet. Chem., 64 (1974) 393.
- 18 A. Müller, W. Jaegermann und J.H. Enemark, Coord. Chem. Rev., 46 (1982) 245.
- 19 M. Herberhold und B. Schmidkonz, J. Organomet. Chem., in Vorbereitung.
- 20 M. Herberhold, D. Reiner und U. Thewalt, Angew. Chem., 95 (1983) 1028; Angew. Chem. Int. Ed. Engl., 22 (1983) 1000; Angew. Chem. Suppl., (1983) 1343.
- 21 M. Herberhold, D. Reiner, K. Ackermann, U. Thewalt und T. Debaerdemaker, Z. Naturforsch. B, 39 (1984) 1199.
- 22 M. Herberhold und B. Schmidkonz, J. Organomet. Chem., 308 (1986) 35.
- 23 M. Herberhold und M. Kuhnlein, Nouv. J. Chim., in Vorbereitung.
- 24 R.A. Schunn, C.J. Fritchie, Jr., und C.T. Prewitt, Inorg. Chem., 5 (1966) 892.
- 25 J. Steidel, J. Pickardt und R. Steudel, Z. Naturforsch. B, 33 (1978) 1554.
- 26 P. Coppens, Y.W. Yang, R.H. Blessing, W.F. Cooper und F.K. Larsen, J. Amer. Chem. Soc., 99 (1977) 760.

- 27 R. Steudel, Top. Curr. Chem., 102 (1983) 149.
- 28 F. Bottomley, J. Darkwa, L. Sutin und P.S. White, Organometallics, 5 (1986) 2165.
- 29 M. Herberhold, W. Kremnitz, M. Kuhnlein, M.L. Ziegler und K. Brunn, Z. Naturforsch. B, 42 (1987) 1520
- 30 W.A. Herrmann, G. Weichselbaumer und H.-J. Kneuper, J. Organomet. Chem., 319 (1987) C21.
- 31 E.O. Fischer, S. Vigoureux und P. Kuzel, Chem. Ber., 93 (1960) 701.
- 32 F. Fehér in G. Brauer (Hrsg.), Handbuch der Präparativen Anorganischen Chemie, Band I, 3. Auflage, Ferdinand Enke Verlag, Stuttgart, 1975, S. 378.
- 33 G.M. Sheldrick, SHELXTL-Programm, Universität Göttingen, BRD, 1983.
- 34 International Tables for X-Ray Crystallography, Vol. IV, The Kynoch Press, Birmingham, 1974.
- 35 F.H. Allen und D. Rogers, Acta Cryst., B25 (1969) 1326.