Preliminary communication

A selective synthesis of α -methylene- β -hydroxyalkanones catalyzed by RuH₂(PPh₃)₄

Isamu Matsuda*, Masahiro Shibata, and Susumu Sato

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464 (Japan)

(Received October 14th, 1987; in revised form November 25th, 1987)

Abstract

The RuH₂(PPh₃)₄-catalyzed coupling of vinyl ketones with aldehydes accomplishes the selective synthesis of α -methylene- β -hydroxyalkanones under neutral conditions. A plausible pathway involving possible intermediacy of a ruthenium enolate is proposed.

Despite the current widespread upsurge of interest in the selective reactions catalyzed by ruthenium complexes [1], relatively little attention has been paid to catalytic carbon-carbon bond formation [2]. Neither complex formation nor catalytic reactions involving ruthenium enolates have been reported. We report on the intermediacy of ruthenium enolate in the $RuH_2(PPh_3)_4$ -catalyzed coupling of a vinyl ketone with an aldehyde to give an α -methylene- β -hydroxyalkanone (3).

When a mixture of 20.5 mmol (1.44 g) of 3-buten-2-one, 54.2 mmol (3.15 g) of propanal, and 0.046 mmol (0.054 g) of $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ was heated in a sealed tube at 40 °C for 40 h, 3-methylene-4-hydroxyhexan-2-one (3a) [3] and 3-methyleneheptan-2,6-dione (4a) [3] were isolated in yields of 82 and 2%, respectively. The presence of an extra mole of propanal diminished the formation of 4a remarkably (3a/4a 85/15 in the reaction of 3-buten-2-one with an equivalent of propanal). Some other examples are summarized in eq. 1 and Table 1. These results are particularly

$$\begin{array}{c} R^{1} \\ 0 \\ 1 \\ 1 \\ 2 \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{1} \\$$

surprising because it has been reported that an aldehyde readily dimerizes to give an ester with the aid of a catalytic amount of $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ even at room temperature [4]. Even the use of an excess of aldehyde here did not give rise to the formation of ester.

0022-328X/88/\$03.50 © 1988 Elsevier Sequoia S.A.

Entry	Vinyl ketone 1	Aldehyde 2	Product		Turnover
			Yield of 3 ^b (%)	Selectivity ^c (3/4)	of Ru
1	3-Buten-2-one	Propanal	82	97/3	164
2	3-Buten-2-one	Propanal	83 ^d	97/3	365
3	3-Buten-2-one	Butanal	57	97,73	236
4	3-Buten-2-one	3-Methylbutanal	46	93/7	49
5	3-Buten-2-one	2-Methylpropanal	72	92/8	106
6	3-Buten-2-one	2-Ethylhexanal	9	45/55	13
7	3-Buten-2-one	2-Ethylhexanal	27 ^d	61/39	.31
8	3-Buten-2-one	Benzaldehyde	33	95/5	87
9	1-Penten-3-one	Propanal	87	> 99/1	196

Table 1 RuH₂(PPh₃)₄-catalyzed coupling reaction of 1 and 2^{*a*}

^{*a*} Reactions were carried out at 40 °C for 40 h on a 5 mmol scale without solvent in a scaled tube containing 1 mol% (relative to vinyl ketone) of $RuH_2(PPh_3)_4$ and a mixture of vinyl ketone/aldehyde 1/2. ^{*b*} Isolated yield after column chromatography on silica gel and subsequent bulb-to-bulb distillation. ^{*c*} The ratio was determined by capillary GLC analyses (PEG-HT Bonded, 25 m column). ^{*d*} 2-Propanol (about 20%) was added.

The previous routes to 3 are three-step operations which include Michael type additions of unstable organometals to α,β -enones [5]. Thus, our results are extremely valuable because direct carbon-carbon bond formation is realized at the α -position of vinyl ketones under almost neutral conditions.

It is known that $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ readily activates alkyl methacrylate [6] and aldehyde [3] by oxidative addition with C-H bond cleavage. However, the formation of products 3 and 4 cannot be accounted for in terms of such intermediates. Thus, we propose a nucleophilic interaction of H-(Ru) with vinyl ketone in the first stage of the reaction. Although any direct evidence suggesting the intermediacy of complexes 5, 6, and 7 has not been obtained up to the present, the pathway shown in Scheme 1 can be proposed as one plausible route to the product. It entails the

Scheme 1.

formation of enolate complex 5 as a result of Michael type addition of H-(Ru) to 1, the subsequent aldol type reaction of 5 with aldehyde to give 6, and 1,4-elimination of H-(Ru) from 7 which is in equilibrium with 6. While similar coupling also was accomplished by the assistance of RhH(PPh₃)₄ [7], the addition of 20% of alcohol (typically 2-propanol) was crucial for acceptable yields of 3. In contrast to the rhodium catalyst, RuH₂(PPh₃)₄ did not require the presence of alcohol to complete the catalytic cycle. Furthermore, a significant improvement of catalytic activity was observed in the reaction of 1-penten-3-one with propanal (entry 9 in Table 1), in which an unsatisfactory result was obtained for rhodium [7]. Thus the equilibrium between 6 and 7 is attained rapidly enough without the assistance of alcohol. The presence of alcohol also slightly improves the yield of 3 or turnover of Ru (entries 1 and 7 in Table 1).

Acknowledgment. The author (I.M.) thanks the Ishida Foundation for the support of part of this work.

References

- (a) M.A. Bennett and T.W. Matheson, Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, Vol. 4, p. 931;
 (b) T. Nakano, K. Ohkawa, S. Ikemori, H. Matsumoto, and Y. Nagai, Nippon Kagakukaishi, (1983) 1778;
 (c) H. Nagashima, K. Ara, H. Wakamatsu, and K. Itoh, J. Chem. Soc. Chem. Commun., (1985) 518.
- 2 T. Mitsudo, Y. Hori, and Y. Watanabe, Bull. Chem. Soc. Jpn., 59 (1986) 3201 and ref. cited therein.
- 3 T. Miyakoshi, O. Ohmichi, and S. Saito, Nippon Kagakukaishi, (1980) 44.
- 4 T. Ito, H. Horino, Y. Koshiro, and A. Yamamoto, Bull. Chem. Soc. Jpn., 55 (1982) 504.
- 5 (a) D.J. Ager and I. Fleming, J. Chem. Soc. Chem. Commun., (1978) 177; (b) T. Shono, Y. Matsumura, S. Kashimura, and K. Hatanaka, J. Am. Chem. Soc., 101 (1979) 4752; (c) T. Mukaiyama, K. Inomata, and M. Muraki, ibid., 95 (1973) 967; (d) W.D. Leonard and T. Livinghouse, J. Org. Chem., 50 (1985) 730; (e) A. Ito, S. Ozawa, K. Oshima, and H. Nozaki, Tetrahedron Lett., 21 (1980) 361; (f) M. Suzuki, T. Kawagishi, and R. Noyori, ibid., 22 (1981) 1809.
- 6 S. Komiya, T. Ito, M. Cowie, A. Yamamoto, and J.A. Ibers, J. Am. chem. Soc., 98 (1976) 3874.
- 7 S. Sato, I. Matsuda, and Y. Izumi, Chem. Lett., (1985) 1875.