ÜBERGANGSMETALLKOMPLEXE MIT SCHWEFELLIGANDEN

XX *. RUTHENIUM(II)-CO- UND PHOSPHINKOMPLEXE MIT [Ru(SNNS)]-FRAGMENTEN, DIE DIE VIERZÄHNIGEN THIOLAT-AMIN-LIGANDEN bmae $^{2-}$ bzw. bmab $^{2-}$ ENTHALTEN [bmae $^{2-}$ = 1,2-BIS(2-MERCAPTOANILINO)-ETHAN(-2); bmab $^{2-}$ = 2,3-BIS(2-MERCAPTOANILINO)BUTAN(-2)]

DIETER SELLMANN*, ULRICH REINEKE,

Institut für Anorganische Chemie der Universität, Egerlandstr. 1, D-8520 Erlangen (BR Deutschland)

GOTTFRIED HUTTNER und LASZLO ZSOLNAI

Fakultät für Chemie der Universität, Postfach 7733, D-7750 Konstanz (BR Deutschland) (Eingegangen den 24. Februar 1986)

Summary

In order to compare the influence of thiolate amine and thiolate thioether ligands on the reactivity of Ru^{II} centers, the complexes [Ru(bmae)] and [Ru(bmab)] have been synthesized. These are isoelectronic to [Ru(dttd)] complexes [bmae²⁻ = 1,2-bis(2-mercapto-anilino)ethane(-2); bmab²⁻ = 2,3-bis(2-mercapto-anilino)butane-(-2); dttd²⁻ = 2,3,8,9-dibenzo-1,4,7,10-tetrathiadecane(-2)]. The complexes [Ru(CO)₃(THF)Cl₂], [Ru(PMe₃)₄Cl₂] and [Ru(PPh₃)₂(CH₃CN)₂Cl₂] are treated with bmae-Na₂ or bmab-Na₂ to give the compounds [RuL₂(bmae)] and [RuL₂(bmab)] respectively (L = CO, PMe₃, PPh₃). These complexes are generally less reactive than the corresponding [RuL₂(dttd)] compounds. UV photolysis of [Ru(CO)₂(bmae)] in the presence of PMe₃ yields [Ru(CO)PMe₃(bmae)]; the bmae ligand proves to be photostable. In contrast to the substitution-labile [Ru(PPh₃)₂-dttd], the bmae complex [Ru(PPh₃)₂(bmae)] proves to be substitution-inert. Since the X-ray structure analysis yields no hints of structural anomalies for [Ru(PPh₃)₂(bmae)], electronic reasons might cause the different substitution behaviour of [Ru(PPh₃)₂(bmae)] and [Ru(PPh₃)₂dttd].

The stabilization of five-coordinate intermediates by the π -donor properties of the sulfur donor atoms should be better in the case of [Ru(PPh₃)dttd] than in the case of [Ru(PPh₃)(bmae)].

^{*} XIX. Mitteilung s. Ref. 1.

Zusammenfassung

Um den Einfluss von Thiolat-amin-liganden und Thiolat-thioether-liganden auf die Reaktivität von Ru^{II}-Zentren vergleichen zu können, wurden die zu den [Ru(dttd)]-Komplexen, (dttd²⁻ = 2,3,8,9-Dibenzo-1,4,7,10-tetrathiadecan(-2)), isoelektronischen Verbindungen mit den vierzähnigen Thiolat-amin-liganden bmae²⁻, [bmae-H₂ = 1,2-Bis(2-mercaptoanilino)ethan] und bmab²⁻, [bmab-H₂ = 2,3-Bis(2-mercaptoanilino)butan], synthetisiert. [Ru(CO)₃(THF)Cl₂], [Ru(PMe₃)₄Cl₂] und [Ru(PPh₃)₂(CH₃CN)₂Cl₂] ergeben mit bmae-Na₂ bzw. bmab-Na₂ [Ru(L)₂bmae] bzw. [Ru(L)₂bmab] (L = CO, PMe₃, PPh₃), die durchweg weniger reaktiv als die entsprechenden [Ru(dttd)]-Verbindungen sind. Die UV-Photolyse von [Ru-(CO)₂bmae] in Gegenwart von PMe₃ liefert [Ru(CO)(PMe₃)bmae]; der bmae-Ligand erweist sich dabei als photostabil. [Ru(PPh₃)₂bmae] ist im Gegensatz zu dem substitutionslabilen [Ru(PPh₃)₂dttd] praktisch substitutionsinert. Da die Röntgenstrukturanalyse für [Ru(PPh₃)₂bmae] keine Strukturanomalien ergibt, dürften elektronische Gründe das unterschiedliche Substitutionsverhalten von [Ru-(PPh₃)₂bmae] und [Ru(PPh₃)₂dttd] verursachen.

Hierfür kommt in erster Linie die Stabilisierung koordinativ ungesättigter Zwischenstufen mit fünffach koordiniertem Ruthenium durch die π-Donoreigenschaften der Schwefeldonoratome in Frage, die für [Ru(PPh₃)(dttd)] besser als für [Ru(PPh₃)(bmae)] sein sollte.

Einleitung

Schwefelkoordinierte Übergangsmetalle bilden die aktiven Zentren vieler Elektronentransfer-Enzyme und Oxidoreduktasen [2]. Als Grund für die Bevorzugung von Schwefelliganden in diesen Enzymen wurden bisher hauptsächlich die guten Redoxeigenschaften vieler Metall-Schwefel-Komplexe angesehen [3]. Wie sich jetzt zu zeigen beginnt, müssen dafür auch andere Eigenschaften von Schwefelliganden in Betracht gezogen werden: Schwefel- und insbesondere Thiolatliganden können nicht nur ungewöhnliche Koordinationszahlen und Elektronenkonfiguration von Metallen, wie z.B. in $[Cr(CO)_3(C_6H_4S_2)]^{2-}$ [4], sondern durch die Ausbildung von RS $^-\cdots H\cdots X$ -Wasserstoffbrücken auch energetisch ungünstige Reaktionszwischenstufen wie Diazen in $[\mu-N_2H_2\{Ru(PPh_3)dttd\}_2]$ [5] stabilisieren.

An den von uns unter diesen Gesichtspunkten untersuchten Übergangsmetallkomplexen, die den vierzähnigen Schwefelliganden $dttd^{2-} = 2,3,8,9$ -Dibenzo-1,4,7,10-tetrathiadecan(-2) enthalten, haben wir inzwischen häufiger beobachtet,

dass der dttd-Ligand im Massenspektrometer, photolytisch wie auch durch sehr milde Reduktionsmittel, z.B. Ethanthiolat, unter Verlust der C₂H₄-Brücke in o-Benzoldithiolatliganden gespalten wird [6]. Der grosse Einfluss von CO- und PMe₃-

Koliganden auf die Knüpfung bzw. die Abspaltung von C₂H₄-Brücken zwischen zwei o-Benzoldithiolatliganden ist von uns kürzlich berichtet worden [7].

In den zu dttd²⁻ isoelektronischen und ebenfalls vierzähnigen Thiolat-aminliganden bmae²⁻ (= 1,2-Bis(2-mercaptoanilino)ethan(-2)) sowie bmab²⁻ (= 2,3-

Bis(2-mercaptoanilino)butan(-2)) sollte eine solche C₂H₄-Abspaltung wegen der grösseren Stabilität von N-C-Bindungen erschwert sein.

Wir haben deswegen versucht, davon Ru^{II}-Komplexe zu erhalten, die isoelektronisch zu [Ru(dttd)]-Komplexen [8], aber photolyse- wie auch reduktionsstabiler sind. Die Synthese der Liganden bmae²⁻ bzw. bmab²⁻ wurde erstmals von Corbin und Work bereits 1974 beschrieben [9], ihre Koordinationseigenschaften bisher aber praktisch ausschliesslich gegenüber Molybdän in hohen Oxidationsstufen untersucht [10,11].

Ergebnisse und Diskussion

Bei der Reaktion nach Gl. 1 bildet sich [Ru(CO)₂bmae], das aus der siedenden Lösung als farbloses Pulver ausfällt und nach Filtration und Waschen mit MeOH analysenrein ist.

$$[Ru(CO)_3(THF)Cl_2] + bmae-Na_2 \xrightarrow{MeOH/Rückfluss} H \xrightarrow{N} Ru \xrightarrow{CO} + 2 NaCl \qquad (1)$$

 $[Ru(CO)_2bmae]$ ist in DMSO, DMF und THF gut, in MeOH und CH_2Cl_2 nur noch mässig und in Petrolether oder Benzol praktisch unlöslich. Die $\nu(CO)$ -Absorptionen treten im KBr-IR-Spektrum bei 2050 und 1980 cm⁻¹ auf und weisen somit nur geringfügig niedrigere Frequenzen als $[Ru(CO)_2dttd]$ (2055/2005 cm⁻¹) auf. Im IR-KBr-Spektrum ist für den bmae-Liganden besonders charakteristisch die intensive $\nu(NH)$ -Bande, die z.B. bei $[Ru(CO)_2bmae]$ bei 3080 cm⁻¹ erscheint. Im ¹H-NMR-Spektrum von $[Ru(CO)_2bmae]$ in DMSO- d_6 lässt sich der bmae-Ligand anhand des Multipletts für die C_2H_4 -Gruppe bei 2.6–3.2 ppm und des Multipletts der aromatischen Protonen bei 6.8–7.3 ppm charakterisieren. Den NH-Protonen lässt sich das breite Signal bei 7.9 ppm zuordnen, wobei die relativ grosse Tieffeldverschiebung eventuell eine gewisse Acidität der NH-Protonen widerspiegelt.

In den Massenspektren werden für die [Ru(bmae)]- und [Ru(bmab)]-Komplexe durchwegs die Molekülionen beobachtet, für [Ru(CO)₂bmae] z.B. bei m/e=432. Bereits massenspektroskopisch lässt sich somit die von uns gegenüber den dttd-Komplexen erwartete grössere Stabilität der C_2H_4 -Brücke bei diesen Systemen beobachten.

[Ru(CO)₂bmae] ist chemisch ähnlich unreaktiv wie [Ru(CO)₂dttd] und als Feststoff wie auch in THF- bzw. in DMSO-Lösung weitgehend luftstabil. Eine thermi-

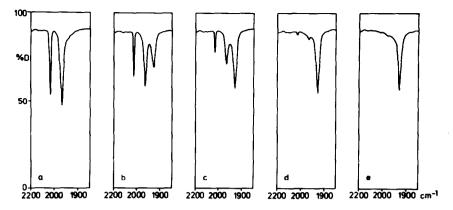


Fig. 1. ν (CO)-Bereich der IR-Spektren (in THF) von (a) [Ru(CO)₂bmae]+PMe₃, (b) nach 10 min Bestrahlung, (c) nach 20 min Bestrahlung, (d) nach 40 min Bestrahlung, (e) nach 3 h Bestrahlung.

sche CO-Substitution durch PMe₃ in siedendem MeOH oder THF gemäss Gl. 2 ist nicht möglich:

$$[Ru(CO)_2bmae] + PMe_3 \xrightarrow{\text{THF od. MeOH}} [Ru(CO)(PMe_3)bmae] + CO$$
 (2)

Hingegen lässt es sich – im Gegensatz zu [Ru(CO)₂dttd] – gemäss Gl. 3 photolytisch glatt und praktisch quantitativ in den PMe₃-Komplex überführen, ohne dass

$$\left[\text{Ru}(\text{CO})_2\text{bmae}\right] \xrightarrow{\text{PMe}_3 \text{ exc.}} /\text{THF}/h\nu \atop -\text{CO}/15^{\circ}\text{C}/40 \text{ min}} \left[\text{Ru}(\text{CO})(\text{PMe}_3)\text{bmae}\right]$$
(3)

eine Zersetzung des bmae-Liganden zu beobachten ist. Die Bildung von $[Ru(CO)PMe_3(bmae)]$ kann bequem IR-spektroskopisch anhand der $\nu(CO)$ -Bande bei 1925 cm⁻¹ verfolgt werden (Fig. 1); eine Abspaltung des zweiten CO-Liganden erfolgt auch bei längerer Bestrahlungsdauer nicht.

Die entsprechende Reaktion mit PPh₃ zu [Ru(CO)(PPh₃)bmae] gemäss Gl. 4 verläuft wesentlich schleppender, erfordert daher erheblich längere Bestrahlungszeiten und liefert zusätzlich nicht näher identifizierte Nebenprodukte. Auch nach 2 h UV-Bestrahlung sind IR-spektroskopisch noch Reste von [Ru(CO)₂bmae] in der Reaktionslösung zu erkennen.

$$[Ru(CO)_2bmae] \xrightarrow{+PPh_3/h\nu/2 h} [Ru(CO)(PMe_3)bmae]$$
 (4)

[Ru(CO)(PPh₃)bmae] wird nach Umfällung aus THF/MeOH als hellgelbes Pulver erhalten und elementaranalytisch sowie spektroskopisch (Tab. 2) charakterisiert.

Um zu prüfen, ob sich mit dem [Ru(bmae)]-System solvensstabilisierte Komplexe wie z.B. [Ru(CO)(THF)bmae] oder [Ru(CO)(CH₃CN)bmae] erhalten lassen, wurde [Ru(CO)₂bmae] in THF bzw. CH₃CN UV-bestrahlt. Dabei nimmt die Intensität beider ν (CO)-Absorptionen gleichmässig ab, ohne dass eine Monocarbonylspezies auftritt. Einleiten von CO in diese Lösungen ergibt hauptsächlich wieder [Ru(CO)₂bmae]; in geringer Menge bilden sich auch andere Carbonylkomplexe, die bislang aber nicht näher charakterisiert wurden.

[Ru(PMe₃)₂bmae], das sich aus [Ru(CO)₂bmae] nicht erhalten liess, bildet sich gemäss Gl. 5 und fällt dabei in gelben Mikrokristallen aus der Reaktionslösung aus:

$$[Ru(PMe_3)_4Cl_2] + bmae-Na_2 \xrightarrow{MeOH/Rückfluss} [Ru(PMe_3)_2bmae] + 2 PMe_3 + 2 NaCl$$
 (5)

Es erwies sich bislang als ebenso reaktionsträge wie das isoelektronische [Ru(PMe₃)₂dttd] und reagierte z.B. mit CO auch unter drastischen Bedingungen nicht zu [Ru(CO)PMe₃(bmae)].

Bei den entsprechenden [Ru(bmab)]-Komplexen interessierte uns der Einfluss der Brücken-Methylgruppen auf Reaktivität, Stabilität und vor allem auf die Löslichkeit der Verbindungen. [Ru(CO)₂bmab] und [Ru(PMe₃)₂bmab] sind analog zu Gl. 1 und 5 zu erhalten. Bei der Umsetzung nach Gl. 6 ist ebenfalls keine Zersetzung des Liganden zu beobachten.

$$[Ru(CO)_2bmab] \xrightarrow{+PMe_{3 \text{ exc.}}/h\nu/40 \text{ min}} \xrightarrow{H_3C} \underset{N}{\overset{R_0}{\bigvee}} \underset{CO}{\overset{PMe_3}{\bigvee}}$$
(6)

Die ν (CO)-bzw. ν (NH)-Absorptionen der bmab-Komplexe weichen nur geringfügig von denen der bmae-Komplexe ab, und auch chemisch weisen bmae- und bmab-Komplexe gleiche Eigenschaften auf. Deutlich besser ist jedoch die Löslichkeit der bmab-Komplexe in vielen Lösungsmitteln einschliesslich MeOH; [Ru(CO)₂bmab] z.B. ist sogar noch in Et₂O oder Toluol löslich.

Von besonderem Interesse was für uns $[Ru(PPh_3)_2bmae]$, weil wir von diesem Komplex ein ähnliches Substitutionsverhalten wie von $[Ru(PPh_3)_2dttd]$ erwarteten, in dem ein PPh_3 -Ligand leicht durch L = CO, N_2H_4 , NH_3 , NO, PMe_3 und viele andere kleine Liganden unter Bildung von $[Ru(L)(PPh_3)dttd]$ substituiert werden kann [8,12]. $[Ru(PPh_3)_2bmae]$ wird bei der heterogenen Reaktion gemäss Gl. 7, bei

$$[Ru(PPh_3)_2(CH_3CN)_2Cl_2] + bmae-Na_2 \xrightarrow{Aceton/MeOH} + 2 CH_3CN + 2 NaCl \qquad (7)$$

$$\downarrow N \qquad PPh_3 \qquad + 2 CH_3CN + 2 NaCl \qquad (7)$$

der sich der suspendierte CH_3CN -Komplex in den ebenfalls suspendierten bmae-Komplex umwandelt, als orangegelbes Pulver erhalten. Die $\nu(NH)$ -Schwingung des bmae-Liganden in $[Ru(PPh_3)_2bmae]$ tritt im KBr-IR-Spektrum als scharfe und intensive Bande bei 3230 cm⁻¹ und somit deutlich höher als bei $[Ru(PMe_3)_2bmae]$ sowie $[Ru(CO)_2bmae]$ (3160 bzw. 3080 cm⁻¹) auf.

Entgegen unseren Erwartungen erwies sich [Ru(PPh₃)₂bmae] als praktisch substitutionsinert, und auch unter drastischen Reaktionsbedingungen liessen sich bis-

lang keine Reaktionen gemäss Gl. 8 erzielen.

$$[Ru(PPh_3)_2bmae] + L \longrightarrow [Ru(PPh_3)(L)bmae] + PPh_3$$

$$(8)$$

$$(L = N_2H_4, CO, N_3^-)$$

Weder in siedendem MeOH noch in THF trat mit einem grossen Überschuss von N_2H_4 , NEt_4N_3 oder CO bei Normaldruck Substitution ein. Diese wegen der Substitutionslabilität des isoelektronischen Thiolato-thioether Komplexes [Ru-(PPh₃)₂dttd] völlig unerwartete Substitutionsträgheit von [Ru(PPh₃)₂bmae] war der Grund, eine Röntgenstrukturanalyse davon durchzuführen, insbesondere auch, um sicherzustellen, dass es die in Gl. 7 angedeutete Struktur aufweist.

Röntgenstrukturanalyse von [Ru(PPh_3),bmae] · CH₂Cl₂

Geeignete Einkristalle von $[Ru(PPh_3)_2bmae]$ wurden bei -20°C aus CH_2Cl_2 durch Überschichten mit MeOH in Form des Solvats $[Ru(PPh_3)_2bmae] \cdot CH_2Cl_2$ erhalten. Zellkonstanten und Beugungsintensitäten wurden auf einem Syntex P3-Diffraktometer unter folgenden Bedingungen bestimmt. λ - $(Mo-K_{\alpha})$ 71.069 pm, Graphitmonochromator, T 233 K, ω -scan, $\Delta \omega = 1^{\circ}$, $2.3 \le \omega \le 29.3$ min⁻¹, $2^{\circ} \le 2\theta \le 44^{\circ}$. Von 5300 unabhängigen Beugungsintensitäten wurden 4756 $(I \ge 2\sigma)$ für die direkte Lösung und Verfeinerung der Struktur mit dem Programmsystem SHELXTL [13] verwendet. Die Lagen der Wasserstoffatome wurden berechnet $(R_1 = 0.048; R_2 = 0.068)$.

[$C_{51}H_{46}N_2P_2S_2Cl_2Ru$] (984.9): Raumgruppe C2c, a 2114(2), b 1411(1), c 2924(2) pm, β 97.43(6)°, V 8664,8 × 10⁶ pm³, Z=8, d_{ber} 1.51 g cm⁻³, linearer Absorptionskoeffizient μ 6.5 cm⁻¹.

Beschreibung und Diskussion der Struktur

Die Elementarzelle enthält acht Komplexmoleküle sowie acht Solvatmoleküle CH_2Cl_2 , von denen jeweils vier kristallographisch unabhängig sind. In den Komplexmolekülen liegen verzerrt pseudooktaedrisch koordinierte Ru-Zentren vor, die von jeweils zwei *cis*-ständigen N- bzw. P-Atomen sowie zwei *trans*-ständigen S-Atomen umgeben sind (Fig. 2). Wichtige Abstände und Winkel sind in Tab. 1 wiedergegeben.

Die für [Ru(PPh₃)₂bmae] ermittelten Abstände und Winkel weisen im wesentlichen die auch bei anderen Ru^{II}-Komplexen gefundenen Werte auf. Die mittleren Ru-S- (237.3 pm) sowie die Ru-P-Abstände (232.5 pm) entsprechen z.B. etwa den Abständen in [μ-N₂H₂{Ru(PPh₃)dttd}₂], das mittlere Ru-P- bzw. Ru-S-Abstände von 231.8 bzw. 234.3 pm besitzt [5]; die Ru-N-Abstände (216.5 pm) sind mit normalen Ru-N-Einfachbindungen vereinbar. Die relativ grossen Abweichungen der Winkel im RuS₂N₂-Gerüst von 90° lassen sich auf den kleinen Chelatwinkel zurückführen, der durch die Amin-N-Atome im vierzähnigen bmae-Liganden erzwungen wird. Vergleichbare Abstände und Winkel sind z.B. in [Ru-N₃)(N₂)(H₂NC₂H₄NH₂)₂]PF₆ zu finden, das im [Ru(NH₂C₂H₄NH₂)]-Gerüst Ru-N-Abstände von 212.5 pm bzw. NRuN-Winkel von 81.6° aufweist [14]; gleiche Ru-N-Abstände werden auch z.B. im [μ-N₂{Ru(NH₃)₅}₂]⁴⁺-Ion beobachtet (Ru-N(NH₃) 213 pm) [15]. Ein noch kleinerer Chelatwinkel von 74.7° für die N-M-N-Einheit wird übrigens in dem Mo^{VI}-Komplex [Mo(O)₂bmae] beobachtet [16]; dieser Komplex weist jedoch auch deutlich andere Metall-N- sowie -S-

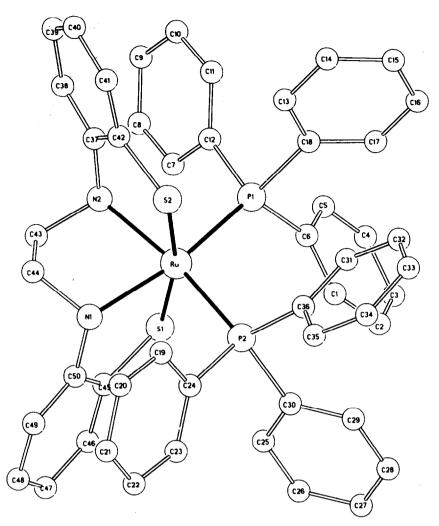


Fig. 2. Molekülstruktur von [Ru(PPh₃)₂bmae].

TABELLE 1 $AUSGEW\ddot{a}HLTE\ ATOMABST\ddot{a}NDE\ (pm)\ UND\ WINKEL\ (°)\ IN\ [Ru(PPh_3)_2bmae]$

Ru-N(1)	217.4(6)	N(1)-Ru-N(2)	79.5(2)	
Ru-N(2)	215.7(6)	N(2)-Ru-S(2)	82.8(2)	
Ru-S(1)	237.5(2)	S(2)-Ru-P(1)	97.4(1)	
Ru-S(2)	237.1(3)	P(1)-Ru-P(2)	103.5(1)	
Ru-P(1)	231.9(2)	P(2)-Ru-S(1)	97.1(1)	
Ru-P(2)	233.2(3)	S(1)-Ru-N(1)	82.6(2)	
S(1)-C(45)	175.1(7)	S(1)-Ru-S(2)	167.9(1)	
S(2)-C(42)	174.4(8)	Ru-N(1)-C(50)	114.6(4)	
N(1)-C(50)	146.1(9)	Ru-N(1)-C(44)	108.1(4)	
N(2)-C(37)	145.2(9)	Ru-S(1)-C(45)	99.0(2)	
N(1)-C(44)	148.3(9)	Ru-S(2)-C(42)	98.9(2)	
N(2)-C(43)	149.1(9)	N(1)-Ru-P(1)	166.4(2)	
C(43)-C(44)	149.1(10)	N(2)-Ru-P(1)	88.4(2)	

Abstände auf (Mo-S 242.7; Mo-N 236.8 pm). In $[\mu-N_2H_2\{Ru(PPh_3)dttd\}_2]$ hingegen, das im vierzähnigen Liganden ausschliesslich die grösseren S-Atome enthält, weichen die entsprechenden Winkel nur maximal 4° von 90° ab.

Insgesamt betrachtet weist also die Struktur von [Ru(PPh₃)₂(bmae)] keine Anomalien auf. Unter der Voraussetzung, dass dies auch für (das röntgenstrukturanalytisch noch nicht bestimmte) [Ru(PPh₃)₂dttd] gilt, lassen sich die unerwartet grossen Reaktivitätsunterschiede von [Ru(PPh₃)₂bmae] und dem isoelektronischen [Ru(PPh₃)₂dttd] bei Substitutionsreaktionen somit wahrscheinlich nicht durch sterische, sondern eher durch elektronische Effekte erklären. In erster Linie kommt dafür die Stabilisierung koordinativ ungesättigter Zwischenstufen durch die π-Donoreigenschaften von Schwefelliganden in Frage, wie sie bereits für [Cr-

TABELLE 2
AUSGEWÄHLTE SPEKTROSKOPISCHE DATEN DER KOMPLEXE

Komplex	IR (im KBr) (cm ⁻¹)	NMR, δ (ppm) rel. TMS	
(Farbe)		¹ H	¹³ C
[Ru(CO) ₂ bmae] (weiss)	ν(CO) 2050, 1980 ν(NH) 3080	2.6-3.2 (m,C ₂ H ₄ ,4) ^a 6.8-7.3 (m,C ₆ H ₄ ,8) 7.9 (NH,2)	-
[Ru(PMe ₃) ₂ bmae] (gelb)	ν(NH) 3160	1.0-1.2 (m,PMe ₃ ,18) ^a 2.5-3.3 (m,C ₂ H ₄ ,4) 6.7-7.4 (m,C ₆ H ₄ + NH,10)	-
[Ru(CO)(PMe ₃)bmae] (weiss)	ν(CO) 1930 ν(NH) 3095	1.2 (d,PMe ₃ ,9) a,c 2.5-3.3 (m,C ₂ H ₄ ,4) 6.7-7.4 (m,C ₆ H ₄ +NH,10)	-
[Ru(CO)(PPh ₃)bmae] (gelb)	ν(CO) 1935 ν(NH) 3145, 3265	2.35 und 3.2 (m,C ₂ H ₄ ,4) ^b 5.0 und 6.45-7.8 (m,C ₆ H ₄ + NH,25)	-
[Ru(PPh ₃) ₂ bmae] (orangegelb)	ν(NH) 3230	2.3 und 3.45 (C ₂ H ₄ ,4) ^b 4.5 (NH,2)	57 (t,C ₂ H ₄) ^b 119-138 (m,arom. C-H)
		6.1-7.6 (arom. H,38)	148 und 154 (arom. C-S,C-N)
[Ru(CO) ₂ bmab]	ν(CO) 2035, 1965	1.05 (CH ₃ ,6) ^a 3.1–3.6 (m,C ₂ H ₂ ,2)	18 (q,CH ₃ ,6) ^a 69 (d,C ₂ H ₄ ,2)
(heligelb)	ν(NH) 3140	6.8-7.3 (m,C ₆ H ₄ ,8)	123-135 (m,arom. C-H,8)
		7.45 (NH,2)	148 und 154 (s,arom. C-S bzw. C-N,4) 201 (s,CO,2)
[Ru(PMe ₃) ₂ bmab] (gelb)	ν(NH) 3185	1.1 (m,PMe ₃ + CH ₃ ,24) ^a 2.95 und 3.8 (C ₂ H ₂ ,2) 5.7 (NH,2) 6.55-7.25 (m,C ₆ H ₄ ,8)	22 (m,PMe ₃ + CH ₃) ^a 63 und 67 (d,C ₂ H ₂) 120–160 (m,arom. C)
[Ru(CO)(PMe ₃)bmab] (gelb)	ν(CO) 1930 ν(NH) 3155	1.2 (m,PMe ₃ + CH ₃ ,15) ^a 2.9-4.1 (m,C ₂ H ₂ ,2) 6.3-7.3 (m,C ₆ H ₄ + NH, 10)	_

^a In DMSO-d₆. ^b In CD₂Cl₂. ^cJ(PCH₃) 10 Hz.

(CO)₃S₂C₆H₄]²⁻ diskutiert worden sind. Die Stabilisierung koordinativ ungesättigter Zwischenstufen sollte danach mit der Zahl der koordinierten S-Atome wachsen und dürfte die Bildung einer [Ru(PPh₃)dttd]-Zwischenstufe nach Gl. 9 im

Vergleich zu der isoelektronischen [Ru(PPh3)bmae]-Spezies begünstigen.

Experimentelles

Alle Reaktionen wurden unter N₂ in absolutierten Lösungsmitteln durchgeführt und, soweit möglich, IR-spektroskopisch verfolgt. Spektren wurden mit folgenden Geräten aufgenommen: Zeiss Infrarot-Spektralphotometer IMR 16, JEOL JNM-PX 60- und JNM-GX 270 FT-NMR-Spektrometer, Varian MAT 212 Massenspektrometer. Als Bestrahlungsquelle diente ein 150 W-Hg-Hochdruckbrenner der Fa. Original Quarzlampen GmbH, Hanau. Die Ausgangsverbindungen wurden nach loc. cit. dargestellt: bmae-H₂ und bmab-H₂ [9], PMe₃ [17], [Ru(CO)₃(THF)Cl₂] [18], [Ru(PMe₃)₄Cl₂] [8] und [Ru(PPh₃)₂(CH₃CN)₂Cl₂] [19].

Synthesen

[Ru(CO)₂bmae]. 46 mg (2 mmol) Natrium werden in 30 ml MeOH gelöst und mit 280 mg (1.01 mmol) bmae-H₂ versetzt. Nach dem vollständigen Auflösen des Liganden wird eine Lösung von 310 mg (0.95 mmol) [Ru(CO)₃(THF)Cl₂] in 20 ml MeOH zugegeben und 3 h unter Rückfluss gekocht. Das dabei ausgefallene, farblose [Ru(CO)₂bmae] wird abfiltriert, mit insgesamt 20 ml MeOH gewaschen und 6 h im Vakuum getrocknet. Ausbeute: 320 mg (78% d. Th. bez. auf [Ru(CO)₃(THF)Cl₂]), Elementaranalyse: Gef.: C, 44.60; H, 3.31; N, 6.50. C₁₆H₁₄O₂N₂S₂Ru (431.48) ber.: C, 44.54; H, 3.27; N, 6.49%. Molmasse: 432 (102 Ru, FD-massenspektroskopisch).

[Ru(PMe₃)₂bmae]. 30 mg (1.3 mmol) Natrium werden in 40 ml MeOH gelöst und mit 190 mg (0.69 mmol) bmae-H₂ versetzt. Nach der Zugabe von 300 mg (0.63 mmol) [Ru(PMe₃)₄Cl₂] wird die Lösung 3 h unter Rückfluss gekocht, wobei gelbes, mikrokristallines [Ru(PMe₃)₂bmae] ausfällt, das abfiltriert, mit insgesamt 20 ml MeOH gewaschen und 4 h im Vakuum getrocknet wird. Ausbeute: 240 mg (72% d. Th. bez. auf [Ru(PMe₃)₄Cl₂]). Elementaranalyse: Gef.: C, 45.55; H, 6.05; N, 5.29. C₂₀H₃₂N₂S₂P₂Ru (527.61) ber.: C, 45.53; H, 6.11; N 5.31%. Molmasse: 528 (¹⁰²Ru, EI- und FD-massenspektroskopisch).

 $[Ru(CO)(PMe_3)bmae]$. Eine Suspension von 100 mg (0.23 mmol) $[Ru(CO)_2-bmae]$ und 0.4 ml (3.8 mmol) PMe_3 in 30 ml THF wird bei 15°C unter gelegentlichem Einleiten von N_2 bestrahlt, bis im IR-Spektrum der Lösung die ν (CO)-Absorptionen des $[Ru(CO)_2bmae]$ vollständig verschwunden sind (ca. 40 min). Nach dem Abkondensieren aller flüchtigen Bestandteile wird $[Ru(CO)-(PMe_3)bmae]$ durch Umkristallisieren aus MeOH als farbloser, mikrokristalliner Feststoff erhalten. Ausbeute: 70 mg (63% d. Th.), Elementaranalyse: Gef.: C, 45.05; H, 4.80; N, 5.81. $C_{18}H_{23}ON_2S_2PRu$ (479.54) ber.: C, 45.08, H, 4.83; N, 5.84%. Molmasse: 480 (^{102}Ru , EI- und FD-massenspektroskopisch).

[Ru(CO)(PPh₃)bmae]. 200 mg (0.46 mmol) [Ru(CO)₂bmae] und 1 g (3.8 mmol) PPh₃ werden in 60 ml THF gelöst und 2 h unter gelegentlichem Einleiten von N₂ bestrahlt. Nach dem Abkondensieren des Lösungsmittels erhält man ein hellgelbes Rohprodukt, das durch Umfällen aus THF/MeOH (1/3) in analysenreines [Ru(CO)(PPh₃)bmae] überführt werden kann. Ausbeute: 70 mg (23% d. Th.), Elementaranalyse: Gef.: C, 59.59; H, 4.38; N, 4.22. C₃₃H₂₉ON₂S₂PRu (665.74) ber.: C, 59.53; H, 4.39; N, 4.21%. Molmasse: 666 (102 Ru, EI- und FD-massenspektroskopisch).

[Ru(PPh₃)₂bmae]. 60 mg (2.6 mmol) Natrium werden in 20 ml MeOH gelöst und mit 380 mg (1.38 mmol) bmae-H₂ versetzt. Nach der Zugabe von 1.04 g (1.34 mmol) [Ru(PPh₃)₂(CH₃CN)₂Cl₂] in 30 ml Aceton wird 3 h unter Rückfluss gekocht. Der gebildete, orangegelbe Feststoff wird abfiltriert, mit 40 ml MeOH sowie mit 50 ml Et₂O gewaschen und 6 h im Vakuum getrocknet. Ausbeute: 780 mg (65% d. Th. bez. auf [Ru(PPh₃)₂(CH₃CN)₂Cl₂]), Elementaranalyse: Gef.: C, 66.73; H, 4.93; N, 3.11. C₅₀H₄₄N₂S₂P₂Ru (900.00) ber.: C, 66.72; H, 4.93; N, 3.11%. Molmasse: 900 (¹⁰²Ru, EI-massenspektroskopisch).

[Ru(CO)₂bmab]. 46 mg (2 mmol) Natrium werden in 20 ml MeOH gelöst und mit 0.3 ml (ca. 1.1 mmol) bmab-H₂ versetzt. Nach Zugabe von 228 mg (1 mmol) [Ru(CO)₃(THF)Cl₂] wird die Lösung 4 h unter Rückfluss gekocht. Das dabei ausgefallene, blassgelbe [Ru(CO)₂bmab] wird nach dem Einengen auf ca. 20 ml abfiltriert, mit 10 ml MeOH gewaschen und 6 h im Vakuum getrocknet. Ausbeute: 110 mg (24% d. Th. bez. auf [Ru(CO)₃(THF)Cl₂]), Elementaranalyse: Gef.: C, 47.04; H, 3.95; N, 6.09. C₁₈H₁₈O₂N₂S₂Ru (459.53) ber.: C, 47.04; H, 3.95; N, 6.10%. Molmasse: 460 (¹⁰²Ru, FD-massenspektroskopisch).

[Ru(CO)(PMe)₃bmab]. 100 mg (0.22 mmol) [Ru(CO)₂bmab] werden in 25 ml THF gelöst, mit 0.4 ml (3.8 mmol) PMe₃ versetzt und unter gelegentlichem Einleiten von N₂ bestrahlt, bis im IR-Spektrum der Lösung die ν(CO)-Absorptionen des [Ru(CO)₂bmab] vollständig verschwunden sind. Nach dem Abkondensieren aller flüchtigen Bestandteile wird der gelbe Rückstand in MeOH gelöst und filtriert. Nach erneutem Abkondensieren des Lösungsmittels bleibt hellgelbes [Ru(CO)-(PMe₃)bmab] zurück, das mit 25 ml Et₂O gewaschen und 6 h im Vakuum getrocknet wird. Ausbeute: 50 mg (45% d. Th.), Elementaranalyse: Gef.: C, 47.33; H, 5.35; N, 5.53. C₂₀H₂₇ON₂S₂PRu (507.60) ber.: C, 47.32; H, 5.36; N, 5.52%. Molmasse: 508 (102 Ru, EI-massenspektroskopisch).

[Ru(PMe₃)₂bmab]. 46 mg (2 mmol) Natrium werden in 30 ml MeOH gelöst und mit 0.3 ml (ca. 1.1 mmol) bmab-H₂ und 460 mg (0.97 mmol) [Ru(PMe₃)₄Cl₂] versetzt. Nach 4 h Kochen unter Rückfluss und Einengen der Lösung auf ca. 10 ml werden die ausgefallenen, gelben Kristalle abfiltriert, mit insgesamt 10 ml MeOH gewaschen und 6 h im Vakuum getrocknet. Ausbeute: 330 mg (61% d. Th. bez. auf [Ru(PMe₃)₄Cl₂]), Elementaranalyse: Gef.: C, 47.61; H, 6.56; N, 5.04. C₂₂H₃₆N₂-S₂P₂Ru (555.66) ber.: C, 47.55; H, 6.53; N, 5.04%. Molmasse: 556 (¹⁰²Ru, EI- und FD-massenspektroskopisch).

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie – Fonds der Chemischen Industrie – und der Dr. Otto Röhm Gedächtnisstiftung unterstützt, wofür wir auch an dieser Stelle herzlich danken möchten.

Literatur

- 1 D. Sellmann, M. Waeber, G. Huttner und L. Zsolnai, Inorg. Chim. Acta, im Druck.
- 2 Vergl. dazu: A. Müller und B. Krebs (Hrsg.), Sulfur, its Significance for Chemistry, for the Geo-, Bioand Cosmosphere and Technology, Studies in Inorganic Chemistry, Vol. 5, Elsevier Science Publishers, Amsterdam, 1984.
- 3 Vergl. dazu z.B. die Redoxeigenschaften von Dithiolen-Komplexen: J.A. McCleverty, Progr. Inorg. Chem., 10 (1968) 49.
- 4 D. Sellmann, W. Ludwig, G. Huttner und L. Zsolnai, J. Organomet. Chem., 294 (1985) 199.
- 5 D. Sellmann, E. Böhlen, M. Waeber, G. Huttner und L. Zsolnai, Angew. Chem., 97 (1985) 984; Angew. Chem. Int. Ed. Engl., 24 (1985) 981.
- 6 D. Sellmann, U. Kleine-Kleffmann und L. Zapf, J. Organomet. Chem., 263 (1984) 321; D. Sellmann und W. Reisser, J. Organomet. Chem., 297 (1985) 319.
- 7 D. Sellmann und W. Reisser, J. Organomet. Chem., 294 (1985) 333.
- 8 D. Sellmann und E. Böhlen, Z. Naturforsch, B, 37 (1982) 1026.
- 9 J.L. Corbin und D.E. Work, Can. J. Chem., 52 (1974) 1054.
- 10 J.K. Gardner, N. Pariyadath, J.L. Corbin und E.I. Stiefel, Inorg. Chem., 17 (1978) 897.
- 11 J.T. Spence, M. Minelli und P. Kroneck, J. Am. Chem. Soc., 102 (1980) 4538.
- 12 D. Sellmann und M. Waeber, Z. Naturforsch. B, im Druck.
- 13 SHELXTL Programmsystem von Prof. Dr. G.M. Sheldrick, Göttingen (Revision 1983); weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D 7514 Eggenstein-Leopoldshafen 2 unter Angabe der Hinterlegungsnummer CSD-51808, der Autoren und des Zeitschriftenzitats angefordert werden.
- 14 B.R. Davis und J.A. Ibers, Inorg. Chem., 9 (1970) 2768.
- 15 J.M. Treitel, M.T. Flood, R.E. Marsh und H.B. Gray, J. Am. Chem. Soc., 91 (1969) 6512.
- 16 A. Bruce, J.L. Corbin, P.L. Dahlstrom, J.R. Hyde, M. Minelli, E.I. Stiefel, J.T. Spence und J. Zubieta, Inorg. Chem., 21 (1982) 917.
- 17 W. Wolfsberger und H. Schmidbaur, Synth. React. Inorg. Metallorg. Chem., 4 (1974) 149.
- 18 M.I. Bruce und F.G.A. Stone, J. Chem. Soc. A, (1967) 1238.
- 19 J.D. Gilbert und G. Wilkinson, J. Chem. Soc. A, (1969) 1749.