Journal of Organometallic Chemistry, 356 (1988) 85-91 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Die Reaktion von $(C_5 Me_5)_2 Ru_2(CO)_4$ mit S₈, ein Beitrag zur Synthese von Ruthenium-Polysulfidkomplexen

Henri Brunner, Norbert Janietz, Joachim Wachter *

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg (Deutschland)

Bernd Nuber und Manfred L. Ziegler

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (Deutschland)

(Eingegangen den 13. Mai 1988)

Abstract

Reaction of $Cp_2^*Ru_2(CO)_4$ ($Cp^* = \eta^5 \cdot C_5 Me_5$) with an excess of sulfur upon irradiation in THF solution gives the complexes $Cp_2^*Ru_2(CO)_4S_4$ (I), $Cp_2^*Ru_2(CO)_3S_4$ (II), $Cp_2^*Ru_2(CO)S_5$ (III) and $Cp_2^*Ru_2(CO)_2S_6$ (IV). The ratios of the products are dependent on the irradiation time. The analogous reaction in boiling toluene gives only I and III. The structures of the new compounds are described on the basis of spectroscopic data. In complex III the two Ru centers are bridged by an η^1, η^2 -S₂- and an η^1, η^2 -S₃-ligand as shown by an X-ray diffraction analysis, thus forming a metal-substituted seven-membered chalcogen cycle.

Zusammenfassung

Die Reaktion von $Cp_2^*Ru_2(CO)_4$ ($Cp^* = \eta^5 - C_5Me_5$) mit überschüssigem Schwefel liefert bei Bestrahlung in THF-Lösung die Komplexe $Cp_2^*Ru_2(CO)_4S_4$ (I), $Cp_2^*Ru_2(CO)_3S_4$ (II), $Cp_2^*Ru_2(CO)S_5$ (III) und $Cp_2^*Ru_2(CO)_2S_6$ (IV). Die Produktverhältnisse hängen von der Bestrahlungsdauer ab. Die analoge Reaktion in siedendem Toluol ergibt lediglich I und III. Die Strukturen der neuen Verbindungen werden anhand spektroskopischer Daten diskutiert. Eine Röntgenstrukturanalyse von III zeigt, daß die beiden Ru-Zentren so durch einen η^1, η^2 -S₂- und einen η^1, η^2 -S₃-Liganden verbrückt sind, daß sie einen Übergangsmetall-substituierten Chalkogen-Siebenring bilden.

Einleitung

Polysulfidionen S_n^{2-} $(n \ge 2)$ sind äußerst vielseitige Liganden, und die interessanten Eigenschaften ihrer Komplexe stimulieren die Synthese immer neuer Komplextypen [1]. Als Spezialfall lassen sich schwefelreiche Übergangsmetallkomplexe des Typs $\operatorname{Cp}_{2}M_{2}S_{n}$ ($\operatorname{Cp}_{3}^{*}=\eta^{5}-C_{5}Me_{5}, n \geq 4$) betrachten, da sie trotz hoher Schwefelgehalte, wie z.B. in $Cp_{2}^{\star}Mo_{2}S_{10}$ [2], nur ein- und zweiatomige S-Bausteine enthalten [3]. Die bisher einzige Ausnahme in dieser Substanzklasse bilden zwei η^1 , η^2 -S₄-Brücken in dem Komplex Cp^{*}₂Rh₂S₈ [4]. Das Synthesekonzept zur Darstellung dieser Verbindungen beruht auf der Reaktion von Zweikernkomplexen, die reaktive Metall-Metall-Mehrfachbindungen enthalten, mit elementarem Schwefel, wobei in der Regel eine direkte M-M-Wechselwirkung erhalten bleibt. Auch Komplexe mit M-M-Einfachbindungen, wie $[C_5R_5Fe(CO)_2]_2$ (R = H, CH₃), reagieren nach diesem Prinzip unter Bildung von $(C_5R_5)_2Fe_2S_4$ [5,6]. In diesem Komplextyp, wie auch in $(EtC_5Me_4)_2Ru_2S_4$ [7] liegen zwei aufeinander senkrecht stehende Disulfidbrücken vor. Wir berichten nunmehr über die Reaktion von [Cp*Ru(CO)₂]₂ mit Schwefel zu polysulfidverbrückten carbonylhaltigen Zweikernkomplexen, die zudem teilweise ineinander umwandelbar sind.

Präparative Ergebnisse

Bestrahlt man die orangefarbene Suspension aus $Cp_2^*Ru_2(CO)_4$ und S_8 (Verhältnis Ru/S = 1/4) in Tetrahydrofuran (THF), so bilden sich die Komplexe $Cp_2^*Ru_2(CO)_4S_4$ (I), $Cp_2^*Ru_2(CO)_3S_4$ (II), $Cp_2^*Ru_2(CO)S_5$ (III) und $Cp_2^*Ru_2(CO)_2S_6$ (IV) (Gl. 1). Sie können in der Reihenfolge IV, III, I und II durch Chromatographie an Al_2O_3 getrennt werden. Die Produktverhältnisse variieren mit der Bestrahlungsdauer: Nach bereits 10 min liegt 1 in 34–36% Ausbeute vor, während von den anderen Komplexen sich nur IV in nennenswerten Mengen (7%) nachweisen läßt. I dominiert auch noch nach 30 min, das Verhältnis IV/III/I/II beträgt ungefähr 3/1/8/2.5. Nach 70 min hat es sich auf 5/3/3/5 eingependelt. Die Gesamtausbeute nach 70 min beträgt ca. 60%.

(III)

Die Schlüsselstellung von Komplex I beim Aufbau der hier beschriebenen Ru-Komplexe geht auch daraus hervor, daß er sich durch Bestrahlen seiner THF-Lösung in II, III und IV umwandeln läßt. Während sich die Bildung von II als CO-Eliminierung bei sonst unverändertem S-Gehalt beschreiben läßt, sind III bzw. IV laut analytischen Befunden und Felddesorptions-Massenspektren schwefelreicher als I. Die Ausbeuten an III und IV lassen sich in Gegenwart von S₈ auf 23 bzw. 15% steigern, während sie sonst im vergleichbaren Zeitraum wesentlich niedriger liegen.

 $Cp_{2}^{*}Ru_{2}(CO)_{4}$ reagiert mit Schwefel auch in siedendem Toluol (18 h). Es bilden sich bei einem Ru/S-Verhältnis von 1/4 lediglich die Komplexe I und III in 15 bzw. 20% Ausbeute. Der Anteil an CO-freien Komplexen ist gering: Es lassen sich nur Spuren von braunem $Cp_{2}^{*}Ru_{2}S_{6}$ und blauem $Cp_{2}^{*}Ru_{2}S_{4}$, die beide durch FD-Massenspektroskopie identifiziert wurden, nachweisen.

Strukturen der Komplexe I-IV

Die Struktur von I kann aus IR- und ¹H-NMR-spektroskopischen Daten (Tab. 1) erschlossen werden. Demnach sind zwei Cp^{*}Ru(CO)₂-Einheiten durch eine S₄-Kette zu einem symmetrischen Komplex verknüpft. Da [Cp^{*}Ru(CO)₂]₂ photochemisch leicht in die reaktiven 17-e Fragmente Cp^{*}Ru(CO)₂ dissoziert [8], läßt sich I auch als Einschiebungsprodukt von S₈ in die Ru-Ru-Bindung von [Cp^{*}Ru(CO)₂]₂ betrachten. Eine analoge Struktur wurde für [CpFe(CO)₂]₂(μ -S₄) (Cp = η ⁵-C₅H₅) gesichert [9], allerdings wird dieser Komplex besser durch eine Substitutionsreaktion aus CpFe(CO)₂Br und Li₂S₄ dargestellt.

Die Struktur von II läßt sich aus derjenigen von I ableiten: Ein β -ständiger Schwefel der S₄-Kette ist demnach zur Substitution einer CO-Gruppe imstande. Entsprechend dem unterschiedlichen Substitutionsgrad der beiden Ru-Zentren sind die IR-Absorptionen dem Cp^{*}(CO)₂Ru-Rest (ν (CO) 2028, 1987 cm⁻¹) bzw. dem Cp^{*}(CO)Ru-Rest (ν (CO) 1932 cm⁻¹) zuzuordnen.

Komplex III enthält aufgrund der analytischen und spektroskopischen Befunde einen terminalen CO-Liganden (ν (CO) 1955 cm⁻¹) und ist daher nicht symmetrisch aufgebaut, was auch durch das ¹H-NMR-Spektrum bestätigt wird (δ (CH₃) 1.68, 1.74). Zentraler Bestandteil des Moleküls ist laut Röntgenstrukturanalyse (Tab. 2, 3) ein Siebenring aus fünf S- und zwei Ru-Atomen (Fig. 1). Das chirale Molekül besitzt in seinem Schwerpunkt die kristallographische Punktsymmetrie 2. Demzufolge gibt es zwei Möglichkeiten für je drei S-Atome und die terminale CO-Gruppe, wie in Fig. 1 gezeigt. Die Schwefelatome und die CO-Gruppe sind statistisch (50/50) um die C₂-Achse so verteilt, daß die CO-Gruppe an Ru(1) bzw. Ru(1)' mit

Tabelle 1

Spektroskopische Daten der Komplexe I-IV

Komplex	IR (cm^{-1}, KBr)	¹ H-NMR ^{<i>a</i>}	
	ν(CO)	$(\delta(CH_3))$	
I	2016, 1972 ^b	1.96	
II	2028, 1987, 1932 ^b	2.03, 1.76	
III	1955	1.74, 1.68	
IV	1960	1.86	

^a Varian EM-360 L Spektrometer (33°C), CDCl₃-Lösung, i-TMS. ^b Toluollösung.

jeweils entsprechender Anordnung des S3- bzw. S2-Liganden koordiniert ist. Übergangsmetallsubstituierte Chalkogen-Siebenringe sind äußerst selten [1]. So liegt z.B. in $Cp_2 Re_2(CO)_2 S_5$ eine gewellte Konformation vor mit relativ gleichmäßigen Winkeln an Re und S (zwischen 106.1 und 114.7°) [10]. Die elektronische Absättigung der Re-Zentren wird durch π -Elektronenrückbindung von S zu Re hin erreicht [11]. Obwohl, wie das Beispiel $Cp^*_2Ru_2(\mu,\eta^2-S_2)(\mu,\eta^1-S_2)$ lehrt, Ru-Zentren hierzu prinzipiell fähig sind [7], wird in III zum Ausgleich der Elektronenbilanz offensichtlich η^2 -Koordination der Polysulfidliganden bevorzugt. Beide können hierdurch als 4-e-Donoren fungieren, womit jedes Ru-Zentrum 18-e-Konfiguration erreicht. Allerdings wird durch die η^2 -Koordination die Idealkonformation des Ringes gestört, so daß die Winkel an den einzelnen Ringgliedern von 61.4 bis 120.5(1)° variieren. Großen, anomalen Schwankungen unterliegen auch die S-S-Abstände. Der extrem kurze Abstand S(1)-S(2) (1.907(5) Å) ist auf Grund der beobachteten Fehlordnung der S-Liganden im Kristall mit großer Vorsicht zu betrachten, denn S-S-Bindungslängen unter 2.0 Å wurden bisher nur für Matrix-S₂ (1.88 Å) [12] und für den Komplex Mo₂Cl₈(μ , η^2 -S₂) (d_{S-S} 1.970 Å) [13] gefunden. Die S-S-Abstände in η^1, η^2 -S₂-Brückenliganden streuen um 2.05 Å [6,14], für eine η^1, η^2 -S₃-Brücke gibt es dagegen bisher noch keine Vergleichswerte. Die Ru-S-Abstände liegen in bekannten Größenordnungen [7,15]. Wechselwirkungen zwischen nicht direkt miteinander verknüpften Ringgliedern sind auszuschließen, da z.B. die

Fig. 1. Molekülstruktur von $Cp_2^*Ru_2(CO)S_5$ (III) (ORTEP-Zeichnung) mit den beiden möglichen Anordnungen. Drei der fünf Schwefelatome (S(2), S(3), S(4) sowie die CO-Gruppe sind aufgrund der Punktsymmetrie 2 des Molekülschwerpunkts auf zwei Lagen statistisch (~ 50/50) verteilt.

$\overline{\mathrm{Ru}(1) - \mathrm{S}(1')}$	2.355(2)	$\operatorname{Ru}(1') - S(1)$	2.355(2)
Ru(1) - S(2)	2.383(4)	Ru(1')-S(2)	2.316(4)
Ru(1)-C(1)	2.19(1)	Ru(1')-S(3')	2.362(6)
Ru(1)-C(2)	2.20(1)	Ru(1') - S(4')	2.255(4)
Ru(1)-C(3)	2.20(1)		
Ru(1)-C(4)	2.17(1)	S(1)-S(2)	1.907(5)
Ru(1)-C(5)	2.19(1)	S(1) - S(4)	2.110(5)
Ru(1)-C(11)	1.83(3)	S(3)-S(4)	2.014(7)
S(1')-Ru(1)-S(2)	94.4(1)	Ru(1)-S(1')-S(2')	64.8(1)
S(1')-Ru(1)-S(2')	48.2(1)	Ru(1)-S(1')-S(4')	111.6(2)
S(1')-Ru(1)-S(3)	87.6(2)	Ru(1)-S(2)-S(1)	120.5(1)
S(1')-Ru(1)-S(4)	95.4(1)	Ru(1)-S(3)-S(4)	61.4(2)
S(1')-Ru(1)-C(11)	94.4(9)	Ru(1)-S(4)-S(1)	117.4(2)
S(2)-Ru(1)-C(11)	94.2(9)	S(1)-S(4)-S(3)	116.7(3)
S(3) - Ru(1) - S(4)	51.7(2)		

Tabelle 2 Ausgewählte Bindungslängen (Å) und -winkel (°) für $Cp^*_2Ru_2(CO)S_5$ (III)

Abstände Ru(1)–Ru(1)' 4.04 Å und S(1')–S(2) 3.47 Å betragen. Eine Überführung von IV, das durch terminale CO-Liganden charakterisiert ist (Tab. 1), in obigen Komplex mittels PPh₃ zum endgültigen Strukturbeweis gelang jedoch nicht, ebenso widersetzten sich die CO-Liganden einer Substitution durch PhCH₂NC.

Eine zu III ähnliche Struktur dürfte auch für IV anzunehmen sein. Die Annahme eines Achtrings in dem zwei S₃-Liganden die Cp^{*}(CO)Ru-Zentren verbrücken, erfordert jedoch andere Bindungsverhältnisse. Als strukturell gesichertes Vergleichsmaterial liegt der Komplex $(MeC_5H_4)_2Ru(PPh_3)_2S_6$ vor. In dieser ebenfalls blauschwarzen Verbindung, die aus $[(MeC_5H_4)_2Ru_2(PPh_3)_4S_2]^{2+}$ und S_6^{2-}

Tabelle 3

Atomkoordinaten (Ru×10⁵; S, C, O×10⁴) und thermische Parameter (U_{eq} ×10³) von Cp^{*}₂Ru(CO)S₅ (III)

Atom	x/a	y/b	z/c	U _{eq} ^a	
Ru (1)	9978(7)	11785(4)	15524(3)	44(1)	
S (1)	1553(3)	774(2)	3478(1)	70(1)	
S(2)	996(4)	1607(3)	2761(2)	50(1)	
S(3)	1548(8)	- 320(4)	1843(3)	78(2)	
S(4)	2417(5)	65(4)	2456(2)	58(2)	
O(11)	204(2)	-67(1)	1789(9)	111(5)	
C(11)	167(3)	4(2)	174(2)	130(9)	
C(1)	71(1)	2332(6)	853(5)	69(4)	
C(2)	103(1)	1607(7)	443(5)	72(4)	
C(3)	237(2)	1325(8)	610(8)	117(6)	
C(4)	298(1)	181(1)	1143(9)	123(7)	
C(5)	194(2)	249(7)	130(1)	96(5)	
C(6)	-70(2)	292(1)	80(1)	22(1)	
C(7)	000(2)	131(1)	- 191(7)	19(1)	
C(8)	304(2)	50(1)	17(1)	23(1)	
C(9)	453(2)	173(2)	141(2)	44(2)	
C(10)	203(3)	323(1)	1797(8)	38(2)	

^{*a*} $U_{\rm eq} = 1/3$ Spur \tilde{U} .

90

zugänglich ist, wurde ein bicyclischer Ru_2S_6 -Kern mit einer schwachen transannularen S-S-Bindung von 2.77 Å gefunden [15]. In gleicher Weise gibt es Hinweise auf eine π -Donor-Stabilisierung der Ru-Zentren durch jeweils ein S-Atom.

Aus den vorliegenden Ergebnissen geht hervor, daß im Cp^*Ru/S -System sowohl unter photochemischen als auch thermischen Bedingungen bevorzugt höhergliedrige Schwefelliganden gebildet werden. Dagegen enthalten die aus [CpFe(CO)₂]₂ und S₈ darstellbaren Komplexe $[CpFe(CO)_2]_2(S)_x$ (x = 1-4) [9], $Cp_2Fe_2(CO)S_4$ [5], $(C_5R_5)_2Fe_2S_4$ (R = H, CH₃) [5,6] und Cp₄Fe₄S₄ [16] überwiegend ein- und zweiatomige Schwefelliganden. Interessanterweise behalten die Polysulfidliganden in den Komplexen I-IV ihr Grundgerüst selbst unter drastischen thermischen Bedingungen bei oder modifizieren es nur geringfügig. Gerüstumlagerungen, wie sie in der thermischen Reaktion von $Cp_2Fe_2(CO)_4(\mu-S)_4$ zu dem 60-e-Heterocubancluster $Cp_4Fe_4(\mu_3-S)_4$ [9] beobachtet worden sind, sind also nicht möglich. Diese Unterschiede lassen sich wie auch bei den Organometallsulfiden benachbarter Gruppen zum großen Teil auf den unterschiedlichen Einfluß von 3d- bzw. 4d-Metallen zurückführen. Im Einzelfall bewirken jedoch auch nur geringfügige Modifikationen an den Substituenten des Cyclopentadienylliganden eine drastische Veränderung des Reaktionsablaufs: $(EtC_5Me_4)_2Ru_2(CO)_4$ reagiert mit Schwefel in siedendem Toluol zu $(EtC_5Me_4)_2Ru_2S_4$ und weiteren CO-freien, jedoch noch nicht näher charakterisierten Produkten [7].

Experimenteller Teil

Sämtliche Arbeiten erfolgten unter Schutzgas (N_2) . Ausgewählte Eigenschaften, Ausbeuten und Analysenwerte der Komplexe I–IV finden sich in Tab. 4.

Photochemische Reaktion von $Cp^{\star}_{2}Ru_{2}(CO)_{4}$ mit S_{8}

Bei der Bestrahlung einer orangen Suspension aus 350 mg (0.60 mmol) $Cp_{2}^{*}Ru_{2}(CO)_{4}$ und 154 mg (0.60 mmol) S_{8} in THF (Tauchlampenapparatur, Hg-Lampe 125 W, Wasserkühlung) erhält man nach 70 min eine dunkelgrüne Lösung. Diese wird vom Solvens befreit, der Rückstand in 10 ml Toluol gelöst und an Al₂O₃ (Akt. II/III, Säule 16 × 3 cm) chromatographiert. Mit Toluol eluiert man der Reihe nach eine blauschwarze ($Cp_{2}^{*}Ru_{2}(CO)_{2}S_{6}$ (IV)), rotbraune ($Cp_{2}^{*}Ru_{2}$ -

Tabelle 4

Ausgewählte Eigenschaften, Ausbeuten und Analysenwerte der Komplexe I-IV

Summenformel	Ausbeute ^a (%)	Fp. (°C)	Mol.gew. ^b (Gef. (ber.))	Analysen (Gef. (ber.) (%))		
				C	Н	S
$\overline{C_{24}H_{30}Ru_2O_4S_4}$	11	ab 143	C	40.44	4.24	17.99
(I)		(Zers.)	712.9	40.42	4.19	18.16
$C_{23}H_{30}Ru_2O_3S_4$	18-21	ab 150	686	40.34	4.41	18.72
(II)		(Zers.)	684.9	40.51	4.42	18.97
$C_{21}H_{30}Ru_2OS_5$	10-12	ab 173	662	38.16	4.58	24.25
(III)		(Zers.)	660.9	38.28	4.54	23.03
$C_{22}H_{30}Ru_2O_2S_6$	18-29	ab 185	722	36.65	4.19	26.68
(IV)		(Zers.)	721.0	36.79	4.22	25.50

^{*a*} Bezogen auf eine Bestrahlungsdauer von 70 min (siehe Text). ^{*b*} Felddesorptionsmassenspektren (Gerät Varian 311A, Toluollösung) bezogen auf ¹⁰²Ru. ^{*c*} Es werden insgesamt drei Peaks bei m/e = 746, 714 und 682 beobachtet.

 $(CO)S_5$ (III)) und gelbe Zone $(Cp^*_2Ru_2(CO)_4S_4$ (I)). Schließlich läßt sich mit Ether noch gelboranges $Cp^*_2Ru_2(CO)_3S_4$ (II) eluieren. Eine optimale Reinigung der Produkte I und III wird durch wiederholte Chromatographie unter obigen Bedingungen erzielt. I und II werden aus Toluol/Hexan (1/1 bzw. 3/1-Gemisch) umkristallisiert und III und IV aus CH_2Cl_2/Et_2O (3/1- bzw. 1/1-Gemisch).

Röntgenstrukturanalyse von $Cp^{\star}_{2}Ru_{2}(CO)S_{5}$ (III)

Orange-roter unregelmäßiger Kristall $(0.3 \times 0.3 \times 0.4 \text{ mm}^3)$; monoklin, Raumgruppe C_{2h}^6 -C2/c (Nr. 15); Gitterkonstanten: a 8.921(2), b 14.990(6), c 18.987(6) Å, β 91.05(2)°, V 2538.6 Å³, Z = 4; empirische Absorptionskorrektur (ψ -scans von 8 Reflexen, 4.6 < θ < 26.1); μ 15.75 cm⁻¹, F(000) = 1328, d_{rontg} 1.73 g Mg m⁻³. Die Messung erfolgte auf einem Syntex P3 (DATA GENERAL NOVA 3), Mo- K_{α} -Strahlung, Graphit-Monochromator, $\theta/2\theta$ scans h(0/13), k(0/22), l(-27/27), 3° $\leq 2\theta \leq 60$ °, von ca. 3800 möglichen Reflexen 2569 ($I \geq 2\sigma(I)$)) gemessen, davon unabhängige 2394 ($I \geq 2.5\sigma(I)$, $R_{merge} = 0.046$). Die Struktur wurde gelöst mittels Patterson, Fourier- und Differenzsynthesen, alle Nichtwasserstoffatome wurden nach der Methode der kleinsten Quadrate anisotrop verfeinert, die Wasserstoffatome wurden mit Hilfe des Programms HFIX [17] fixiert; R = 0.06, $R_w = 0.055$ ($R_w = [\sum_w (|F_0| - |F_c|)^2 / \sum_w F_0^2]^{1/2}$), Restelektronendichte 1.13/-0.74 e/Å³, shift/esd = 0.22/1.4, Goof = 4.23 = [$\sum_w (|F_0| - |F_c|)^2 / (NO - NV)$]^{1/2}. Alle Rechnungen basieren auf dem Programm SHELXTL [17]. Die Atomformfaktoren wurden den International Tables for X-Ray Crystallography entnommen [18].

Literatur

- 1 M. Draganjac und T.B. Rauchfuss, Angew. Chem., 97 (1985) 745; Angew. Chem. Int. Ed. Engl., 24 (1985) 742; A. Müller und E. Diemann, Adv. Inorg. Chem., 31 (1987) 89.
- 2 M. Rakowski DuBois, D.L. DuBois, M.C. VanDerveer und R.C. Haltiwanger, Inorg. Chem., 20 (1981) 3064.
- 3 J. Wachter, J. Coord. Chem. B, 15 (1987) 219.
- 4 H. Brunner, N. Janietz, W. Meier, B. Nuber, J. Wachter und M.L. Ziegler, Angew. Chem., 100 (1988) 717; Angew. Chem. Int. Ed. Engl., 27 (1988) 708.
- 5 H. Chanaud, A.M. Ducourant und C. Giannotti, J. Organomet. Chem., 190 (1980) 201; R. Weberg, R.C. Haltiwanger und M. Rakowski DuBois, Organometallics, 4 (1985) 1315.
- 6 H. Brunner, N. Janietz, W. Meier, G. Sergeson, J. Wachter, T. Zahn und M.L. Ziegler, Angew. Chem., 97 (1985) 1056; Angew. Chem. Int. Ed. Engl., 24 (1985) 1060.
- 7 T.B. Rauchfuss, D.P.S. Rodgers und S.R. Wilson, J. Am. Chem. Soc., 108 (1986) 3114.
- 8 H.B. Abrahamson, M.C. Palazzotto, C.L. Reichel und M.S. Wrighton, J. Am. Chem. Soc., 101 (1979) 4123.
- 9 M.A. El-Hinnawi, A.A. Aruffo, B.D. Santarsiero, D.R. McAlister und V. Schomaker, Inorg. Chem., 22 (1983) 1585.
- 10 M. Herberhold, D. Reiner, K. Ackermann, U. Thewalt und T. Debaerdemaker, Z. Naturforsch. B, 39 (1984) 1199.
- 11 C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, J. Am. Chem. Soc., 105 (1983) 6321.
- 12 L.R. Maxwell, V.M. Mosley und S.B. Hendricks, Phys. Rev., 50 (1936) 41; B. Meyer, Chem. Rev., 76 (1976) 367.
- 13 U. Müller, P. Klingelhöfer, C. Friebel und J. Pebler, Angew. Chem., 97 (1985) 710; Angew. Chem. Int. Ed. Engl., 24 (1985) 689.
- 14 A. Müller, W. Jaegermann und J.E. Enemark, Coord. Chem. Rev., 46 (1982) 245.
- 15 J. Amarasekera, T.B. Rauchfuss und A.L. Rheingold, Inorg. Chem., 26 (1987) 2017.
- 16 R.A. Schunn, C.J. Fritchie, Jr. und C.T. Prewitt, Inorg. Chem., 5 (1966) 892.
- 17 G.M. Sheldrick, SHELXTL-Programm, 1983, Anorganisch-Chemisches Institut der Universität Göttingen, BRD.
- 18 International Tables for X-Ray Crystallography, Vol. IV, S. 99, Kynoch Press, Birmingham, 1974.