Übergangsmetall-Carbin-Komplexe

XCIV *. Reaktionen substituierter Diethylaminocarbin-Komplexe des Wolframs mit Elektrophilen

Alexander Constantin Filippou und Ernst Otto Fischer*

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching (B.R.D.)

(Eingegangen den 23. Februar 1988)

Abstract

The reaction of $I(CO)_2(PMe_3)_2W \equiv CNEt_2$ (I), $I(CO)_2(t-C_4H_9NC)_2W \equiv CNEt_2$ (II) or $I(t-C_4H_9NC)_3(CO)W \equiv CNEt_2$ (III) with the strong methylating agent, $CH_3OSO_2CF_3$, was studied. In all cases elimination of CH_3I takes place, and leads to the yellow, neutral carbyne complexes $(CF_3SO_3)(CO)_2(PMe_3)_2W \equiv CNEt_2$ (IV), $(CF_3SO_3)(CO)_2(t-C_4H_9NC)_2W \equiv CNEt_2$ (V) and $(CF_3SO_3)(t-C_4H_9NC)_3(CO)-W \equiv CNEt_2$ (VI) respectively. The composition and structure of the new complexes IV-VI, which contains a triflate ligand as a good leaving group, were determined by elemental analyses, IR, 1H , ^{13}C , ^{31}P , ^{19}F NMR, and mass spectroscopy.

Zusammenfassung

Die Reaktion von I(CO)₂(PMe₃)₂W≡CNEt₂ (I), I(CO)₂(t-C₄H₉NC)₂W≡CNEt₂ (II) und I(t-C₄H₉NC)₃(CO)W≡CNEt₂ (III) mit dem starken Methylierungsmittel CH₃OSO₂CF₃ wurde untersucht. In allen Fällen beobachtet man eine Abspaltung von CH₃I, die zu den gelben, neutralen Carbin-Komplexen (CF₃SO₃)(CO)₂(PMe₃)₂-W≡CNEt₂ (IV), (CF₃SO₃)(CO)₂(t-C₄H₉NC)₂W≡CNEt₂ (V) und (CF₃SO₃)(t-C₄H₉NC)₃(CO)W≡CNEt₂ (VI) jeweils führt. Die Zusammensetzung und Struktur der neuen Komplexe IV-VI, welche einen Triflat-Liganden als gute Abgangsgruppe enthalten, wurden durch Elementaranalysen, IR-, ¹H-, ¹³C-, ³¹P- und ¹⁹F-NMR-sowie durch Massenspektren bestimmt.

^{*} XCIII. Mitteilung s. Ref. 1.

Einleitung

Das Reaktionsverhalten substituierter Diethylaminocarbin-Komplexe vom Typ $X(CO)_2L_2W\equiv CNEt_2$ (X=Br, I; L=Zweielektronendonor-Ligand) gegenüber Nucleophilen wurde in der Vergangenheit eingehend untersucht. Dabei fand man, dass einfach negativ geladene sowie neutrale Nucleophile den Halogen-Liganden X leicht substituieren und neuartige, neutrale sowie kationische Diethylaminocarbin-Komplexe liefern [1-6], während dianionische Nucleophile sowohl den Halogen- als auch die Zweielektronen-Liganden L aus der Koordinationssphäre des Wolframs unter Bildung reaktiver, anionischer Carbin-Komplexe [7,8] verdrängen. Die hohe Elektronendichte am Metall, welche auf die Anwesenheit der Liganden L mit grossem σ -Donor/ π -Akzeptor-Verhältnis und den guten π -Donor-Liganden X zurückzuführen ist und verantwortlich für die thermische Stabilität der Verbindungen ist [9] liess uns vermuten, dass solche Komplexe auch mit Elektrophilen reagieren sollten und veranlasste die vorliegende Untersuchung.

Präparative Ergebnisse

Die Umsetzung von $I(CO)_2L_2W\equiv CNEt_2$ (I: $L=PMe_3$; II: $L=t-C_4H_9NC$) [10,11] mit einem geringen Überschuss an $CH_3OSO_2CF_3$ in CH_2Cl_2 bei R.T. führt unter Abspaltung von CH_3I mit hoher Ausbeute zu den Komplexen IV und V:

Die Verbindungen IV und V lassen sich als gelbe, mikrokristalline Pulver isolieren, welche in CH₂Cl₂ und Et₂O sehr gut, in Pentan dagegen unlöslich sind. Sie schmelzen bei 64 bzw. 66°C, ohne sich zu zersetzen. Im festen Zustand und vor allem in Lösung sind IV und V sehr hydrolyseempfindlich. Ähnliche Reaktivität zeigt der trisubstituierte Carbin-Komplex III gegenüber CH₃OSO₂CF₃:

Der Komplex VI, der in hoher Ausbeute als gelbes, mikrokristallines Pulver erhalten wird, löst sich in CH_2Cl_2 und Et_2O sehr gut, in Pentan dagegen nur wenig. Seine Lösungen sind sehr hydrolyseempfindlich. Er schmilzt bei 63°C ohne Zersetzung.

Spektroskopische Untersuchungen

IR-Spektren

Die Verbindungen IV und V bzw. VI zeigen im Carbonylbereich (2300–1800 cm⁻¹) die aufgrund der *cis*-Anordnung der zwei CO-Liganden erwarteten zwei

Komplex	ν(C≡NR)	ν(CO)
Ī	_	1970vs, 1884vs [10]
II	2170m, 2143m	1980vs, 1911vs [11]
III	2151sh, 2112s, 2068sh	1882s [1]
IV	_	1980vs, 1893vs
V	2182m, 2157m	1989vs, 1918vs
VI	2168sh, 2122s, 2067sh	1888s

Tabelle 1 ν (CO)- und ν (C=NR)-Streckschwingungsfrequenzen der Komplexe I-VI in cm⁻¹ in CH₂Cl₂

Absorptionsbanden annähernd gleicher Intensität, der kürzerwelligen, symmetrischen A_1 - und der längerwelligen, asymmetrischen B_1 -Schwingung (IV,V) [12] bzw. eine starke Bande für die ν (CO)-Streckschwingung des einzelnen CO-Liganden (VI) (Tab. 1). Darüber hinaus beobachtet man zwei Banden mittlerer, annähernd gleicher Intensität (V) bzw. drei Banden unterschiedlicher Intensität (VI) für die ν (C \equiv NR)-Streckschwingungen der cis (V) bzw. meridional (VI) angeordneten Isonitril-Liganden. Lage und Intensität der Banden gehen aus der Tabelle 1 hervor, in welcher zum Vergleich die analogen Absorptionen von I, II und III zusammengestellt sind.

Die beim Übergang von I zu IV, II zu V und III zu VI beobachtete Verschiebung der $\nu(CO)$ - und $\nu(C\equiv NR)$ -Absorptionsbanden nach höheren Wellenzahlen ist auf die Erniedrigung der Elektronendichte am Metall, verbunden mit einer Schwächung der Metall-CO- bzw. Metall-CNR-Rückbindung zurückzuführen [13,14].

¹H-NMR-Spektren

In den ¹H-NMR-Spektren von IV-VI beobachtet man neben dem Triplett für die Methyl- und dem Quartett für die Methylen-Protonen der Diethylaminogruppe im Carbin-Liganden ein Multiplett für die chemisch äquivalenten PMe₃-Liganden in IV, ein Singulett für die chemisch äquivalenten Isonitril-Liganden in V und zwei Singuletts der relativen Intensität 1/2 für die zwei im Verhältnis 1/2 vorliegenden, chemisch nicht äquivalenten Sorten von Isonitril-Liganden in VI (Tab. 2).

Tabelle 2

¹H-NMR-Daten der Komplexe IV-VI in CD₂Cl₂; chem. Verschiebungen in ppm rel. CDHCl₂ (δ 5.32 pm); rel. Intensitäten und Multiplizitäten in Klammern, Kopplungskonstanten in Hz

Komplex	NCH ₂ CH ₃	$P(CH_3)_3$	t-C ₄ H ₉ NC	NCH ₂ CH ₃	T (°C)
IV	1.17(6,t) ³ J(HH) 7.3	1.53(18,m)	_	3.11(4,q) ³ J(HH) 7.3	+ 5
V	1.25(6,t) ³ J(HH) 7.3	_	1.53(18,s)	3.13(4,q) ³ J(HH) 7.3	+25
VI	1.22(6,t) ³ J(HH) 7.3	_	1.49(9,s) 1.50(18,s)	3.04(4,q) ³ J(HH) 7.3	+10

¹³C-NMR-Daten der Komplexe IV-VI in CD₂Cl₂; chem. Verschiebungen in ppm rel. CD₂Cl₂ (δ 53.8 ppm), Kopplungskonstanten in Hz Tabelle 3

Komplex	Komplex NCH_2CH_3 $P(CH_3)_3$	$P(CH_3)_3$	$(CH_3)_3CNC$	NCH_2CH_3	Me_3CNC	(CH ₃) ₃ CNC NCH ₂ CH ₃ Me ₃ CNC CF ₃ SO ₃ Me ₃ CNC	Me_3CNC	W-CO W≡C		$T({}^{\circ}C)$
IV	14.6	18.8(m) a		44.3(t) ⁴ /(PC) 1.8		119.2(q) ¹J(CF) 319.0	ı	214.6 (m) ^a	247.5 (t) ² J(PC)	+ 5
>	14.5	ı	30.5	45.3	57.7	119.8(q)	150.9	210.6	8.3 247.0	+ 25
IA	14.6	ı	30.7, 30.9	45.6	56.5, 57.4	7(CF) 319.1 120.6(q)	156.7, 161.2	213.1	247.4	+ 10

^a Für die Angabe der chemischen Verschiebung wurde das Zentrum des Multiplettsignals gewählt.

¹³C-NMR-Spektren

Die ¹³C-NMR-Spektren belegen die chemische Äquivalenz der PMe₃- und CO-Liganden in IV bzw. Isonitril- und CO-Liganden in V und das Vorliegen von zwei chemisch nicht äquivalenten Sorten von Isonitril-Liganden in VI. Die Anwesenheit des CF₃SO₃-Liganden in IV-VI wird durch das Quartett für das C-Atom der Trifluoromethyl-Gruppe bestätigt. Das Carbin-C-Signal ist in IV aufgrund der Kopplung mit zwei chemisch äquivalenten ³¹P-Kernen in ein Triplett aufgespalten. Die Grösse der Kopplungskonstante spricht für eine *cis*-Anordnung des Carbin-relativ zu den PMe₃-Liganden [10]. Die Substitution des Iodid- durch den CF₃SO₃-Liganden in der *trans*-Position relativ zum Carbin-Liganden führt in IV-VI zu einer Entschirmung des Carbin-C-Signals (Tab. 3) [1,10,11].

31P-NMR-Spektren

Tabelle 4

31P-NMR-Daten von I [10] und IV in CD₂Cl₂; chem. Verschiebungen in ppm rel. ext. 85% H₃PO₄-Lösung; Kopplungskonstanten in Hz

Komplex	³¹ p	T (° C)	
I	$-42.3 (^{1}J(^{183}W-^{31}P) 229.5)$	- 20	
IV	-19.4 (${}^{1}J({}^{183}W - {}^{31}P) 239.3)$	+ 25	

Das Auftreten eines Singuletts im ³¹P-NMR-Spektrum von IV (Tab. 4), welches von Wolfram-Satelliten begleitet wird, belegt die chemische Äquivalenz der zwei PMe₃-Liganden.

Tabelle 5

19F-NMR-Daten von IV-VI in CD₂Cl₂; chem. Verschiebungen in ppm rel. ext. CF₃COOH

Komplex	¹⁹ F	T (°C)	
IV	1.18	+ 25	
V	1.21	+ 25	
VI	1.18	+ 25	

Massenspektren

Beim elektronenstossinduzierten Zerfall zeigen die Isonitril-substituierten Komplexe V und VI ein recht einheitliches Verhalten [1]. Ausgehend vom Molekülion geringer Intensität (V: m/e = 639; VI: m/e = 694, Massenzahlen bezogen auf das ¹⁸⁴W-Isotop) beobachtet man die Abspaltung eines CO-Liganden (V: m/e = 611; VI: m/e = 666), welcher die Abspaltung des zweiten CO-Liganden (V) bzw. eines Isonitril-Liganden (VI) folgt und zum Ion [(CF₃SO₃)(C₄H₉NC)₂WCNEt₂]⁺ (m/e = 583) führt. Anschliessend tritt eine Fragmentierung der restlichen Isonitril-Liganden unter Eliminierung von Isobuten ein, die zu den Ionen [(CF₃SO₃)(C₄H₉NC)(HNC)-WCNEt₂]⁺ (m/e = 527) und [(CF₃SO₃)(HNC)₂WCNEt₂]⁺ (m/e = 471) führt. Dagegen zerfällt die Verbindung IV unter gleichen Bedingungen durch Abspaltung der zwei CO-Liganden (m/e = 569), sodass das Molekülion nicht beobachtet werden kann.

¹⁹F-NMR-Spektren

Diskussion

Die substituierten Diethylaminocarbin-Komplexe I-III reagieren mit dem Elektrophil CH₃OSO₂CF₃ unter Eliminierung des Iodid-Liganden als CH₃I in hoher Ausbeute zu Verbindungen, welche in *trans*-Stellung zum Carbin-Liganden einen CF₃SO₃-Liganden als leichte Abgangsgruppe enthalten und somit als leicht zugängliche, reaktive Synthesewerkzeuge einen Weg zur Variation der Koordinationssphäre in Diethylaminocarbin-Komplexen durch die Einführung neuer Liganden eröffnen.

Experimenteller Teil

IR-Spektren: Nicolet 5 DX FT IR-Spektrometer; ¹H-NMR- und ³¹C-NMR-Spektren: JEOL FT NMR-Spektrometer GX 270; ³¹P- und ¹⁹F-NMR-Spektren: JEOL FT NMR-Spektrometer FX 90Q; Massenspektren: Massenspektrometer Varian MAT CH7, Elektronenstoss-Ionenquelle IXB. Alle Arbeiten wurden unter Ausschluss von Luft und Feuchtigkeit in einer N₂-Atmosphäre durchgeführt, wobei die Lösungsmittel sorgfältig getrocknet (Pentan und Et₂O über Na; CH₂Cl₂ über P₂O₅ und Na/Pb-Legierung) und mit Stickstoff gesättigt wurden. Die Synthese der Carbin-Komplexe I–III erfolgte nach Literaturangaben [1,10,11].

1. $(CF_3SO_3)(CO)_2(PMe_3)_2W \equiv CNEt_2$ (IV)

Zur gelben Lösung von 190 mg (0.31 mmol) I in 30 ml CH_2Cl_2 gibt man bei $-30\,^{\circ}C$ 0.04 ml (0.35 mmol) $CH_3OSO_2CF_3$. Man bringt die Lösung auf Raumtemperatur, rührt 1 h und zieht anschliessend das Lösungsmittel im HV ab. Man nimmt den öligen Rückstand in einer $Et_2O/Pentan$ -Mischung (1.5/1) auf, filtriert von wenig Unlöslichem ab, engt das Filtrat auf wenige ml ein, kühlt auf $-70\,^{\circ}C$ und fällt mit n-Pentan einen mikrokristallinen, gelben Feststoff aus, der im HV bei R.T. getrocknet wird. Ausbeute: 170 mg (86% bezogen auf I).

Gef.: C, 26.94; H, 4.48; F, 8.51; N, 2.21; P, 9.94; S, 5.12; W, 29.19. $C_{14}H_{28}F_3NO_5P_2SW$ (625.23) ber.: C, 26.89; H, 4.51; F, 9.12; N, 2.24; P, 9.91; S, 5.13; W, 29.41%.

2. $(CF_3SO_3)(CO)_2(t-C_4H_9NC)_2W \equiv CNEt_2(V)$

Zu einer Lösung von 170 mg (0.27 mmol) II in 15 ml CH₂Cl₂ tropft man eine Lösung von 0.28 mmol CH₃OSO₂CF₃ in 10 ml CH₂Cl₂ bei -40 °C zu. Man bringt auf R.T., rührt 1.5 h, zieht das Lösungsmittel ab, nimmt den öligen Rückstand in einer CH₂Cl₂/Et₂O/Pentan-Mischung (1/10/20) auf, filtriert von wenig Unlöslichem ab und arbeitet das gelbe Filtrat wie unter 1. beschrieben auf. Mikrokristalliner, gelber Feststoff. Ausbeute: 150 mg (85% bez. auf II).

Gef.: C, 33.75; H, 4.51; F, 8.46; N, 6.53; S, 4.86; W, 28.65. C₁₈H₂₈F₃N₃O₅SW (639.34) ber.: C, 33.82; H, 4.41; F, 8.91; N, 6.57; S, 5.02; W, 28.76%.

3. $(CF_3SO_3)(t-C_4H_9NC)_3(CO)W \equiv CNEt_2(VI)$

Zu einer Lösung von 170 mg (0.25 mmol) III in 25 ml CH₂Cl₂ tropft man bei -20°C eine Lösung von 0.26 mmol CH₃OSO₂CF₃ in 10 ml CH₂Cl₂ zu, bringt auf R.T., rührt 1 h, entfernt das Lösungsmittel im HV, nimmt den öligen Rückstand in einer Et₂O/Pentan-Mischung (1/1) auf, filtriert von wenig Unlöslichem ab und

arbeitet das gelbe Filtrat nach dem Einengen analog zur Isolierung von IV auf. Mikrokristalliner, gelber Feststoff. Ausbeute: 160 mg (91% bez. auf III).

Gef.: C, 37.95; H, 5.44; F, 8.22; N, 8.09; S, 4.50; W, 26.09. $C_{22}H_{37}F_3N_4O_4SW$ (694.46) ber.: C, 38.05; H, 5.37; F, 8.21; N, 8.07; S, 4.62; W, 26.47%.

Dank

Wir danken Herrn M. Barth, Frl. U. Graf und Frl. L. Eidel für die Durchführung der Mikroanalysen sowie Herrn Prof. Dr. H.G. Alt und Herrn Dipl. Chem. H. Daake für die Hilfestellung bei der Aufnahme der Massenspektren und der ¹⁹F-NMR-Spektren.

Literatur

- 1 A.C. Filippou und E.O. Fischer, J. Organomet. Chem., 352 (1988) 141.
- 2 E.O. Fischer, A.C. Filippou und H.G. Alt, J. Organomet. Chem., 296 (1985) 69.
- 3 A.C. Filippou, E.O. Fischer, K. Öfele und H.G. Alt, J. Organomet. Chem., 308 (1986) 11.
- 4 A.C. Filippou, E.O. Fischer, H.G. Alt und U. Thewalt, J. Organomet. Chem., 326 (1987) 59.
- 5 A.C. Filippou, E.O. Fischer und H.G. Alt, J. Organomet. Chem., 340 (1988) 331.
- 6 A.C. Filippou, E.O. Fischer und H.G. Alt, J. Organomet. Chem., 344 (1988) 215.
- 7 E.O. Fischer, A.C. Filippou, H.G. Alt und U. Thewalt, Angew. Chem., 97 (1985) 215; Angew. Chem. Int. Ed. Engl., 24 (1985) 203.
- 8 A.C. Filippou und E.O. Fischer, J. Organomet. Chem., 330 (1987) C1.
- 9 A.C. Filippou und E.O. Fischer, Z. Naturforsch. B, 38 (1983) 587.
- 10 A.C. Filippou, E.O. Fischer und J. Okuda, J. Organomet. Chem., 339 (1988) 309.
- 11 A.C. Filippou, E.O. Fischer und R. Paciello, J. Organomet. Chem., 347 (1988) 127.
- 12 D.M. Adams, Metal-Ligand and Related Vibrations, Edward Arnold (Publishers) Ltd., London 1967.
- 13 F.A. Cotton und C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
- 14 F.A. Cotton und F. Zingales, J. Amer. Chem. Soc., 83 (1961) 351.