Journal of Organometallic Chemistry, 352 (1988) C37-C41 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

Interaction of organogold(I) compounds with tetraalkylthiuram disulfides

E.G. Perevalova, K.I. Grandberg, V.P. Dyadchenko, and O.N. Kalinina

Chemistry Department, Moscow State University, Leninsky Gory, Moscow, (U.S.S.R.) (Received May 25th, 1988)

Abstract

Reactions of tetraalkylthiuram disulfides with RAuPPh₃ complexes (R = alkyl, phenyl, ferrocenyl) lead by oxidation to gold(III) dialkyldithiocarbamates. The products formed gaves satisfactory elemental analysis.

Examples of oxidative addition of disulfides to organometallic derivatives of univalent gold are rare [1,2]. Nevertheless disulfides are very promising in this respect owing to the ability of heavy metals and particularly gold, to form bonds with sulfur.

0022-328X/88/\$03.50 © 1988 Elsevier Sequoia S.A.

Table 1
Dithiocarbamates of trivalent gold (II-IV)

Compound	Colour	Yield	M.p.	Elemental a	Elemental analysis (found (calcd.) (%))	(calcd.) (%))		
		(%)	(decomp.)	2	Н	Z	Au	S
MeAu(SC(S)NMe ₂) ₂	yellow	30	> 120	18.59	3.30	6.10	43.77	
				(18.58)	(3.34)	(6.19)	(43.54)	
NCCH ₂ Au(SC(S)NMe ₂) ₂	red	92	148-151	20.30	2.47	86.8	41.49	26.87
				(20.13)	(2.96)	(8.80)	(41.25)	(26.86)
NCCH ₂ Au(SC(S)NEt ₂) ₂	red	65	137-138	26.95	3.93	7.83	36.55	24.02
				(27.00)	(4.15)	(7.91)	(36.90)	(24.03)
C ₅ H ₅ FeC ₅ H ₄ Au(SC(S)NMe ₂) ₂	deep-red	28	181 - 183	31.18	3.40	4.54	1	20.52
				(30.88)	(3.40)	(4.50)		(20.61)
C, H, FeC, H, Au(SC(S)NEt2)2	red	32	144-145	35.11	4.06	4.37	1	18.84
				(35.40)	(4.31)	(4.13)		(18.90)
PhAu(SC(S)NMe2)2	yellow	20	142-144	28.30	3.13	5.36	38.22	24.49
				(28.01)	(3.32)	(5.44)	(38.29)	(24.93)
(C ₅ H ₅ FeC ₅ H ₄) ₂ AuSo(S)NMe ₂	yellow	32 4	>150	40.17	3.41	2.15	ı	9.36
				(40.20)	(3.52)	(2.04)		(9.33)
(C,H,FeC,H4),AuSC(S)NEt2	yellow	32 4	> 150	42.10	3.64	1.97	ı	9.19
		100^{b}		(41.98)	(3.95)	(1.96)		(8.97)
(C ₅ H ₅ FeC ₅ H ₄)(Ph)AuSC(S)NMe ₂	yellow	100	139-140	39.19	3.49	2.46	ı	10.70
				(39.39)	(3.48)	(2.42)		(11.07)
(Me)(Ph)AuSC(S)NMe ₂	white	70	93.5-94.5	29.55	3.46	3.36	48.43	15.76
				(29.34)	(3.45)	(3.42)	(48.12)	(15.67)

^a Reaction of ferrocenyl(triphenylphosphine)gold with thiuram disulfide. ^b Reaction of ferrocenyl(triphenylphosphine)gold with ferrocenylgold-bis(dimethyldithiocarbamate).

We have studied the reactions of tetraalkylthiuram disulfides with organogold complexes RAuPPh₃ (I) that differ from each other in the nature of the σ -bonded organic moiety (R-alkyl, phenyl, ferrocenyl). We have found that our organogold compounds react with thiuram disulfides by oxidative addition to give trivalent gold dialkyldithiocarbamates.

In this way we have obtained the novel bis-dithiocarbamates of trivalent gold, RAu[SC(S)NAlk₂]₂ (II). Yields, melting points and elemental analysis data are listed in Table 1. IR and ¹H NMR spectra are consistent with the structure proposed.

Reaction of the methyl- and ferrocenyl-(triphenylphosphine)gold with the gold dithiocarbamates, leads to the formation of $R_2AuSC(S)NAlk_2$ (III) having two σ -bonded R groups along with bis(dithiocarbamates). Dithiocarbamates III arise from a reaction of initially formed II with starting organogold compounds I as we have shown in a specific experiment. In this reaction a σ -bonded R group is transferred from univalent to the trivalent gold.

$$(R = Me, C_5H_5FeC_5H_4)$$

Phaupph₃ + Rau
$$SCNMe_2$$
 $SCNMe_2$ $SCNMe_2$

$$(R = Me, C_5H_5FeC_5H_4)$$

Interaction between the univalent and trivalent gold compounds containing different R moieties, leads to novel trivalent gold compounds, the mixed dithiocarbamates (IV).

The dithiocarbamates, $R_2AuSC(S)NAlk_2$, are not formed in the reactions of I (R = CH₂CN, Ph) with thiuram disulfides, which is due to the absence of any interaction between the compounds I and II (R = CH₂CN) under the reaction conditions; the reaction of PhAuPPh₃ with PhAu[SC(S)NMe₂]₂ leads to biphenyl.

Previous attempts to obtain Ph₂AuSC(S)NAlk₂ starting from phenylmagnesium bromide and Br₂AuSC(S)NAlk₂ [3] also failed.

In the reactions of MeAuPPh₃ and NCCH₂AuPPh₃ with thiuram disulfides we observed the formation of the dithiocarbamic acid methyl and cyanomethyl esters. There are two possible reaction pathways leading to these esters: electrophilic substitution or oxidative addition followed by reductive elimination.

We have found that MeAu[SC(S)NMe₂]₂ is stable in solution under our reaction conditions with thiuram disulfide. However, in the presence of triphenylphosphine MeAu[SC(S)NMe₂]₂ undergoes reductive elimination. It is one of the few examples of the reductive elimination from trivalent gold that leads to formation of a

carbon-heteroatom bond. In most of the reactions of this type, a C-C bond is formed [4].

The cyanomethyl derivative NCCH₂Au[SC(S)NEt₂]₂ is stable towards reductive elimination both pure and in the presence of triphenylphosphine. So we presume that Au-C bond cleavage in NCCH₂AuPPh₃ under the action of thiuram disulfide proceeds independently of oxidative addition. For MeAuPPh₃ the cleavage that proceeds via oxidative addition and subsequent reductive elimination plays a significant role.

The dithiocarbamic acid ferrocenyl esters have not been detected in the reactions of C₅H₅FeC₅H₄AuPPh₃ with thiuram disulfides. Consequently electrophilic substitution and reductive elimination do not take place in this case.

References

- 1 H. Schmidbaur, J.R. Mandl,, Naturwissenschaften, 63 (1976) 585.
- 2 H.C. Knachel, D.S. Dudis, J.R. Fackler, Organometallics, 3 (1984) 1312.
- 3 M.J.A. Blaaw, R.J.F. Nivard, C.J.N. Van der Kerk, J. Organomet. Chem., 2 (1964) 236.
- 4 R.J. Puddephatt, The Chemistry of Gold, Elsevier, Amsterdam, 1978.