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Abstract 

The reaction of (RCp),Zr(OCH,)Cl with two molar equivalents of 
ClMgCH,OCH, yields (RCp),Zr(CH,OCH,), (6). Thermolysis of 6 at 70 o C gives 
ethylene and (RCp),Zr(OCH,),. The low temperature dynamic NMR spectra of 6 
indicate the presence of a q2-CH20CH3 ligand. It is suggested that the thermally-in- 
duced insertion of the metallaoxirane methylene unit into the remaining 
Zr-CH,OCH, u-bond initiates the reaction sequence leading to CH,=CH, and 
dimethoxyzirconocene. 

Carbon-carbon coupling and chain growth in the reductive coupling of carbon 
monoxide on heterogeneous Fischer-Tropsch catalysts is thought to involve reac- 
tion of surface-bound CH, groups. Methylene groups can thus undergo two main 
types of reaction at the catalyst surface, namely (a) coupling to give ethylene and (b) 
hydride insertion to give surface-bound CH, groups. The latter may then undergo 
insertion of additional CH,, giving rise to chain growth at the catalyst [l]. Steps (a) 
and (b) have been successfully modelled by systems involving molecular metal- 
laoxirane-type complexes in solution [2]. 

Such complexes derived from the Group 4 transition metal zirconium have been 
obtained by two different routes. Carbonylation of the zirconocene hydrides 
(Cp,ZrH,),or (Cp,ZrHCl), led to metallaoxiranes 1 or 2, respectively [3]. Altema- 
tively, stoichiometric reaction of Cp,ZrCl 2 with a-metallated ethers LiCPh,OCH, 
or ClMgCH,OCH, (3) gave the zirconocenyl ethers 4 and 5, respectively, both 
containing Zm ring systems [4]. 

Complexes 2, 4, and 5 cleanly undergo alkylidene transfer with metal hydrides. 
For example, Cp2Zr(Cl)CH20CH3 reacts with (Cp2Zr(H)Cl)X at 40 * C to give a 
l/l mixture of the methylene insertion product Cp,Zr(CH,)Cl and the remaining 
“template” species Cp,Zr(OCH,)Cl [4b]. Further insertion of methylene from the 
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metallaoxirane moiety into the resulting methyl-zirconium unit or into analogous 
M-C u-bonds seems to be much less favoured. We have now obtained evidence that 
such a process does take place in a related system at elevated temperature. 

Reaction of Cp,Zr(OCH,)Cl, obtained from the oligomeric (Cp,ZrHCl), and 
CH,OH at - 75 o C, with two molar equivalents of the reagent ClMgCH,OCH, [5] 
led cleanly to Cp,Zr(CH,OCH,), (6a). Complex 6a was isolated in 87% yield. It is 
characterized by very simple ‘H and 13NMR spectra at ambient temperature, each 
comprising three separate signals for Cp (6(H) 5.57; S(C) 106.Q CH, (6(H) 2.92; 
6(C) 76.7) and CH, (6(H) 3.30; 6(C) 65.2) groups. When a toluene solution of 
complex 6a is heated at 70°C there is a rapid controlled decomposition, which 
gives Cp,Zr(OCH3), and CH,=CH, as the main products (> 80%). 

The recent development of routes to [(MeCp),Zr(H)Cl], (either from 
[(MeCp),ZrH,)], and (MeCp),ZrCl, or involving treatment of (MeCp),ZrCl, with 
lithium aluminum hydride in tetrahydrofuran) [6,7] provided us with the Cp-sub- 
stituted starting material (MeCp),Zr(OCH,)Cl via methanol addition at -75°C. 
Subsequent treatment with 2 equivalents of 3 produced (MeCp), Zr(CH,OCH,), 
(6h) NMR (CS,/C,D,, (IO/l), ambient temperature: S(H) 5.44 (m, 4 H), 5.55 (m, 4 
H), 1.88 (s, 6 H, &H,CH,); 2.92 (s, 4 H), 3.34 (s, 6 H, CH,OCH,); S(C) 14.5, 
104.4, 109.7, 118. 1 (MeCp), 64.6 (OCH,), 77.4 (CH,). 

As the temperature is lowered all the NMR resonances of 6h broaden except for 
the ‘H and 13C Cp-methyl singlets. In 10/l C&&D, at 4.7 Tesla splitting of the 
methylene ‘H NMR singlet into two separate signals (AS 170 Hz) was observed at 
163 K (?“,, = 173 K). In the 13C NMR spectrum at the lowest temperature possible 
with the 10/l CS,/C,D, solvent mixture (163 IQ, there was separation into four 
Me-Cp methine (6 101.5, 103.5, 108.7, 111.1) and two CH,OCH, resonances (AS 
1080 Hz). Under these conditions, the a-ligand 13C methyl signal was still very 
broad. 

The dynamic NMR spectra of 6h provide clear evidence for the presence of two 
chemically different methoxymethyl ligands in the (RCp),Zr(CH,OCH,), com- 
plexes. In view of the preferred metallaoxirane type structure of 5 (shown by X-ray 
diffraction) and the similar NMR chemical shifts of one of the methoxymethyl 
ligands in 6b and 5 [4b], it appears that complexes 6 are metahaoxirane type 
compounds containing both a $- and a TI’-CH~OCH, ligand. Their rapid intercon- 
version (AG* (173K) = 7.8 f 0.4 kcal/mol estimated from the ‘H NMR CU,OCH, 
coalescence) should provide a kinetically feasible pathway for the mutual rearrange- 
ment of the respective q2-O-inside and q2-O-outside isomers, the former probably 
representing the overall minimum for complex type 6, in keeping with the known 
preferred structure of 5 [8]. The q2-O-outside isomer 6’ would allow for CH,-inser- 
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tion into the Zr-CH,OCH, u-bond to give 7. Subsequent rapid &OCH3 elimina- 
tion makes this a very attractive mechanism for the observed formation of ethylene 
and dimethoxyzirconocene. 

The observed methylene insertion from the three membered ZrCH,OR ring 
system of 6 into the adjacent metal-carbon a-bond provides further confirmation of 
the validity of using metallaoxiranes as molecular models for Fischer-Tropsch type 
chemistry [9]. 
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