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The redox properties of the carbyne-, arninocarbyne- and q2-vinyl-(metallacy- 
clopropene) complexes trans-[ReCl(LH)(dppe),][BF4] (1; LH = CCNIR (R = Bu’ or 
Ph), CNH, and q2-C(CH,Ph)CH,; dppe = Ph,PCH,CH2PPh2), as well as of their 
parent vinyhdene, isocyanide and akne complexes, fauns-[ReClL.(dppe),] (2; L = 
C=CHR, CNH or q2-CH,.** -C=CHPh), have been studied by cyclic voltammetry 
and controlled potential electrolysis in aprotic media. The results are interpreted in 
terms of anodically- or cathodically-induced /3-dehydrogenation processes of com- 
plexes (l), to give the corresponding compounds (2) (in the oxidized or the neutral 
form), as well as of a reversible dissociation of the former into the latter, in a basic 
solvent. The electrochemical Pr ligand parameter has been estimated for aJl these 
ligands. 

The extensive chemistry of carbene and carbyne complexes [l] has involved very 
few studies of redox properties [2-g], in spite of the promising redox-induced 
chemistry of their multiple metal-carbon bonded ligands. Only a smaLl number of 
examples are known, involving either cathodically-induced reactions of these ligands 
(such as, conformation changes [7] or protonation [S]) or anodic processes with 
coupled chemical reactions (e.g., vinylidene insertion into a metal-nitrogen bond 
PI)- 

We outline below the results of an explanation of the redox behaviour of some 
rhenium complexes with a variety of multiple metal-carbon bonded ligands and 
attempt to obtain information about the net electron-acceptor/donor properties of 
the latter and on their activation by electron transfer. 

In continuation of our interest in the activation of unsaturated carbon species by 
electron-rich metal sites, we have obtained series of isocyanide and alkyne-derived 
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complexes of the type trans-[ReCIL(dppe),] (2: L = CNR (R = H [lo], alkyl or aryl 
[ll]), =C=CHR (vinylidene, R = alkyl or aryl) [12] or q2-CH,-C=CHPh (phenylal- 
lene) [13]). In these complexes, the organic ligand is activated towards fl-protona- 
tion to give the corresponding aminocarbyne- [10,14], carbyne- [15] or q2-vinyl- 
(metallacyclopropene) [16] species trans-[ReCl(LH)(dppe),]+ (1: LH = CNHR, 
*CH,R or -CH2C(CH2Ph)= (denoted as n2-C(CH,Ph)CH,), respectively). The 
redox properties of the isocyanide complexes 2 (R = alkyl or aryl) have already been 
described [ll] and now we report a preliminary electrochemical study (by cyclic 
voltammetry (CV) and controlled potential electrolysis (CPE), at a Pt electrode, in 
0.2 M [Bu,N][BF,]/THF (NCMe or CH,Cl,)) of the other types of complexes in 
which the organic ligand contains at least one labile hydrogen atom in the &posi- 
tion (relative to the metal). 

All the neutral complexes 2 undergo, in CV, a single-electron reversible oxidation 
('ET,, = -0.26 (L = CCHBu’), -0.16 (L = CCHPh), - 0.03 (L = q2- 
CH,-C=CHPh) or +0.36 V (L = CNH) vs. SCE), which is followed by an 
irreversible anodic process, at a higher potential ("EF ca. 1.0 V (L = CCHBu’, 
CCHPh or q2-CH,=C=CHPh) or 1.74 V (detected in NCMe, for L = CNH)]. The 
low ‘E1”;2 values observed for these complexes are in agreement with the known [ll] 
high electron-richness of the {ReCl(dppe)z } centre. 

As expected, the cationic complexes 1 exhibit anodic processes at considerably 
higher potentials. In fact, the carbyne complexes 1 (LH = CCH,Ph or CCH2Bu’), 
in NCMe, show a reversible one-electron oxidation in CV at EPT2 = 1.60 or 1.56 V 
vs. SCE, respectively, whereas irreversible anodic processes are observed for the 
aminocarbyne or the q2-vinyl compounds 1 (LH = CNH, or q2-C(CHZPh)CH2,, at 
E p"; = 0.90 or 1.34 V, respectively. 

In terms of their net electron s-acceptor/a-donor character, the organic LH and 
L ligands (the estimated values for the PL ligand parameter of which are given in 
parentheses) * can be ordered in the following way: CCH,Ph (P, = 0.27 V) 5 
CCH,Bu’ (0.26 v) > v2-C(CH, Ph)CH, (0.22 V) > CNH, (0.09 V) > CNH (- 0.09 
V) > q2-CH,=C=CHPh (-0.21 V) > C=CHPh (-0.25 V) > C=CHBu’ (-0.28 V). 
The carbyne ligands are the best net g-electron acceptors, being (together with the 
q2-vinyl and the aminocarbyne) even stronger than carbonyl ( PL = 0); however, they 
are not as strong as acceptors as NO+ (PL = 1.40 [17]). In contrast, the vinylidenes 
(followed by phenylallene) are the poorest net electron acceptor ligands; neverthe- 
less, at the strong m-electron releasing (ReCl(dppe),) site they appear to behave as 
much better acceptors than the related ligating carbenes CXY (X = OR, SR or 
NRR’; Y = alkyl, aryl, etc.) * *, at the much weaker a-donor (Cr(CO),) centre. As 

The oxidation potential of the first anodic wave for complexes 1 and 2 allowed us to evaluate the net 
electron r-acceptor/o-donor character of ligands LH and L, as measured by the PL ligand 
parameter, which was estimated by applying eq. 1 [17] (or the analogous one where EpO;* replaces 
E$ for the irreversible processes) and the known [ll] value of the electron-richness (ES 0.68 V) 
taking account of polarisability (B = 3.4) of the binding metal site {M,} = (ReCl(dppe);?}. 

E;;,[M,L] = ES + /3.PL (1) 

By considering eq. 2 [17] (which defines PL) and taking data from the literature [2], one can estimate 
PL values for =CXY carbenes at the (Cr(CO),) site (P,(CXY) - 0.60 to ca. -0.8 V) which are much 
more negative than those obtained for vinylidenes at the Ret centre. 

PL = EC;* [ Cr( CO)sL] - EfT2 [ Cr(C0)6] (2) 
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expected, the isocyanide CNH is a slightly weaker net electron donor than CNMe, 
which, at the same Re centre, is known [ll,lS] to have PL -0.17 V. 

In solution (mainly in THF, which is considerably basic) complexes 1 undergo a 
little dissociation (with proton loss) to the corresponding neutral compounds 2, 
which are fully generated on addition of NEt, (for 1, LH = CNH2 or q2- 
C(CH,Ph)CH,) or potassium tri(sec-butyl) borohydride, KB[CH(Me)Et],H, (for 1, 
LH = q2-C(CH2Ph)CH2 or CCH2R). Complexes 2 are also formed upon cathodic 
reduction of solutions of complexes 1 (e.g., at ea. -0.7 V for 1 (LH = CNH,) with 
liberation of H,, which was detected by gas-liquid chromatography). 

Moreover, as a result of the single-electron anodic oxidation of the aminocarbyne 
complex 1 (LH = CNH,), proton loss occurs to give the isocyanide compound 2 
(L = CNH) in the oxidized (+ 1) form. Such a type of anodic process, involving the 
expected enhancement of acid strength leading to /3-proton elimination, conceivably 
may also occur with the q2-vinyl complex 1 (LH = q2-C(CH,Ph)CH2), but this 
could not be confirmed in view of its higher anodic potential relative to that of the 
irreversible oxidation process of the presumable oxidized allene product. A possibly 
related chemical reaction is known for [F~(T&H,),(CO)(CNM~)(~-CO)(p- 
CNHMe)]+ which, on treatment with Ag+ gives [Fe(v-C,H,)(CO)(CNMe),]+, 
although the authors [19] suggest the involvement of the liberated H+ as an oxidant. 

The results obtained in the present study (except the anodic behaviour of the 
q2-vinyl complex) are summarized in Scheme 1 where Re represents the - 
(ReCl(dppe) 2) site. 

The anodically- or cathodically-induced formation of complexes 2 (in the oxidized 
or the neutral form, respectively) from the corresponding compounds 1 was recog- 
nized by CV, which allowed detection of the characteristic redox waves of the 
products 2 in the subsequent sweeps. The results were confirmed by CPE, followed 
in some cases by isolation of the products; the course of the electrolyses was 
monitored by CV. The reversibility of the chemical 1-2 conversion (deprotonation- 
protonation reactions) was also demonstrated by CV experiments. 

Within the three types of multiple metal-carbon bonded species in complexes 1, 
the carbyne ligands CCH,R appear to be not only the strongest T-electron 
acceptors but also the most stable towards redox induced B-deprotonation. In 
contrast, the aminocarbyne ligand CNH, seems to behave as the weakest a-accep- 
tor, and to exhibit the strongest protic acid character. 

Although ligand deprotonation resulting from anodic oxidation [20] and H2 
evolution from cathodic reduction of a coordination compound [21] are known 
reactions in electrochemistry of organometallic compounds, to our knowledge the 

[Re(LH)]+ 2 - [Re(LH)12+ (LH = CCH,R) - 

-H+ 

II/ 

H+‘ 
(or +e) -e/-H+ (LH = CNH,) 

NW1 2 [Re(L)]+ 3 products - - 

Scheme 1. Redox processes and interconversion of complexes 1 (LH = CCH,R, CNH, or $- 
CJCH,Ph)CH,) and 2 (L = CCHR, CNH or ~2-CH2-C==CHPh). (Re stands for (ReCl(dppe),)). The 
anodic process for 1 (Lh = q2-C(CH,Ph)CH,) is not included. - 
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present study provides the first examples of such types of reactions for carbyne, 
aminocarbyne or q2-vinyl complexes. 
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