
Cl 

Journal of Organometallic Chemistry, 359 (1989) Cl-C4 
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands 

Preliminary communication 

Organotransition-metal complexes of multidentate ligands 

VIII *. Convenient syntheses and structure of the paramagnetic 
&electron molybdenum( II) carbonyl derivatives, 
[Mo( CO) 2 Br,( N-N)] (N-N = nitrogen bide&ate ligands) 

Kom-Bei Shiu * and Kuen-Song Liou 
Department of Chemistry National Cheng Kung University, Tainan, Taiwan 70101 (ROC) 

Sue-L&n Wang, C.P. Cheng and Fang-Jy Wu 
Department of Chemistv, National Tsing Hua University, Hsinchy Taiwan 30043 (ROC) 

(Received August 9th, 1988) 

The paramagnetic 16-electron metal carbonyl derivatives of molybdenum(II), 
[Mo(CO),Br,(N-N)] (N-N = H,CPz, (l), H,CPz; (2), H,CPz;’ (3); Pz = pyrazol- 
1-yl; Pz’ = 3,5-dimethylpyrazol-l-yl; Pz” = 3,4,5-trimethylpyrazol-1-yl) are obtained 
either by bromination of [Mo(CO),(N-N)] in CH,Cl, at - 20 o C or by reaction of 
[Mo(CO),Br,(MeCN),] with N-N in MeCN at room temperature. These electron- 
deficient species have been characterized by elemental analyses, IR, NMR, and 
magnetic moments. The monomeric nature of the complexes is further supported by 
the solid-state structure of 2. 

Numerous metal carbonyl derivatives of both Moo and MO” obey the effective 
atomic number rule [2]. In view of the premise that the 16-electron species are 
common intermediates in homogeneous catalysis or related stoichiometric reactions 
[3], the synthesis * * and reactivity [4] of electron-deficient molybdenum carbonyl 
compounds are of fundamental importance. Previously [Id], we presented a concept 
of how bulky multidentate ligands probably help to stabilize the 17-electron 

* For Parts I-VII, see ref. 1. 
l * (a) [Mo(CO),X,pY,] (X = Cl, Br; Py = pyridine) [S]; (b) [M4CO),I,(Diars)] (Diars = u- 

GH.(A~M~zM bl; W lMo(CO)~Ct~W%)~l [71; 08 lMo(CO)~Br~U’Ph~)~l [8,91; (e) 
1~4CO)&CNPr’~)~1[10,11,121; (0 ~M~CO),(OBU’),PY,I [131; [Mo(CO),(Ph,BPz,XZmethyl- 
allyl)l w41. 
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Fig. 1. Structure of the neutral N-N bidentates. H,CPz,: R’ = R2 = R3 = H; H,CPz;: R’ = R3 = Me, 
R2 = H; H,CPz;‘: R’ = R2 = R3 = Me. 

compounds and why the larger hydridotris(3,5-dimethylpyrazol-1-yl)borate, (Tp’) 
relative to hydridotris(pyrazol-l-yl)borate (Tp), causes [Tp’Mo(CO),] to be more 
stable in air than [TpMo(CO),]. Now we report that an extension of the same 
concept by using it to stabilize a series of paramagnetic 16-electron compounds. 
However, use of all neutral pyrazole-derived bidentate ligands, N-N, leads to the 
facile formation of [Mo(CO),Br,(N-N)] (N-N = H,CPz, (1) H,CPz; (2) H,CPz;’ 
(3); Pz = pyrazol-1-yl; Pz’ = 3,5-dimethylpyrazol-1-yl; Pz” = 3,4,5%irnethylpyrazol- 
l-y1 (Fig. 1)) without the usual dependence on the methyl groups in the 3, 4, or 5 
position of the pyrazolyl ring. 

Bromination of [Mo(CO),(N-N)] [lb] in CH,Cl, at -20°C, or substitution of 
the neutral N-N bidentate ligands in [Mo(CO),Br,(MeCN),] [15] in MeCN at 
room temperature readily afforded the paramagnetic, six-coordinate, 16-electron 
monomers, 1-3, which are air-stable solids, in 64-74% yield after recrystallization 
from CH,Cl,/MeOH (eq. 1). These complexes were characterized by elemental 
analysis, IR and NMR * spectroscopy. The monomeric nature of complexes l-3 is 
supported by a complete structural characterization of 2 * *. The magnetic moments 
of 3.32 pBM for 1, 4.07 PB for 2, and 4.14 PB for 3 in acetone-d, at 294 K, 

[ MO(CO),(N-N)] +Br2_y iz Oc b [Mo(CO)zBr, (N-N)] 

[Mo(C0)3Br,(MeCN)2] ‘~,Ma&~m~~p. 1‘ 
> 

(1) 

* 1: Anal. Found: C, 23.41; 23.44; H, 1.76, 1.77; N, 12.29, 12.27. C,H,Br,MoN,O, calcd.: C, 23.50; 
H, 1.75; N, 12.19%. IR(KBr): v(CO), 2016,1947 cm-‘. ’ H NMR (acetone-d,, 294 K, 400 MHz): S 
- 24.00 (s, 2 H, R’), 9.46 (s, 2 H, R2), - 31.27 (s, 2 H, R3) ppm. 2: Anal Found: C, 30.66, 30.63; H, 
3.25, 3.24; N, 10.59, 10.60. C,3H,,Br2MoN,02 calcd.: C, 30.26; H, 3.13; N, 10.86%. IR(KBr): 
v(CO), 2007,1933 cm-‘. ’ H NMR (acetone-d,, 294 K, 400 MHz): S 44.30 (s, 6 H, R’), 7.31 (s, 2 H, 
R2), 40.60 (s, 6 H, R3), 16.0 (s, 1 H, H4), 0.1 (s, 1 H, H4’) ppm. 3: Anal Found: C, 32.63, 32.61; H, 
3.71, 3.70; N, 10.21, 10.16. C,,H,Br,MoN,O, cakd.: C, 33.03; H, 3.70; N, 10.27%. IR(KBr): 
v(CO), 2013,1934 cm-‘. ’ H NMR (acetone-d,, 294 K, 400 MHz): S 45.21 (s, 6 H, R’), 4.55 (s, 6 H, 
R2), 43.01 (s, 6 H, R3), 17.8 (s, 1 H, H4 or H4’) ppm. 

* * Compound 2 crystahizes in the triclinic space group Pi with a 8.198(2) A, b 9.130(2) A, c 12.291(3) 
A, (Y 81.57(2)O, /_I 89.50(2) O, y 83.94(2)O, V 905.0(4) A3, Z = 2, and dcalcd 1.89 g/cm3. A total of 
1619 reflections with Z > 2.5 a(Z) were considered observed. The MO atom was first solved by the 
Patterson-superposition method. The remaining non-hydrogen atoms were subsequently located 
from a Fourier difference map and all atoms were then refined anisotropicahy by full-matrix 
least-squares methods. The positions of all hydrogen atoms were calculated and refined isotropically 
to give residuals, R and R,, of 0.032 and 0.029, respectively. 
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Fig. 2. Structure of [M~($-H&F’z;)(CO)~B~~] (2) with atomic numbering scheme. Thermal ellipsoids 
are drawn at the 50% probability level. Selected bond lengths and bond angles are: Mo-Br(l), 2.537(l); 
MO-Br(2), 2.538(l); MO-N(I), 2.252(5); MO-N(~), 2.234(5); MO-C(I) 2.018(9); MO-C(~), 2.004(9); 
C(l)-o(l), 1.088(S); C(2)-o(2), 1.123(S) A; and Br(l)-Mo-Br(Z), 175.5(l); N(l)-MO-N(~), 84.6(2); and 
C(l)-MO-C(~), 83.1(3) “. 

measured by use of a published method [16], are consistent with the ground state 
triplet expected for the complexes. That the values are larger than the spin-only 
value of 2.83 PBM may be due to a g value greater than 2. 

Figure 2 shows the solid-state structure of 2, the first of the paramagnetic 
16-electron metal carbonyl derivatives of MO” to have been crystallographically 
characterized. The complex is monomeric with a quasi-octahedral geometry which is 
compatible with the observed paramagnetism for this d4 transition metal complex 
[17]. The six-membered C(~)N(~)N(~)MON(~)N(~) metallacycle adopts a shallow 
boat form in contrast to the nearly planar five-membered MoNCCN metallacycle of 
the Mo(bipy) fragment which is observed in the [Mo(CO),(bipy)(SO,),] (bipy = 
2,2’-bipyridine) structure [18] and which is probably maintained in [Mo(CO),(bipy)] 
[19]. Hence, that there is no apparent difference among the rate of formation of 1-3 
and that the bromination of [Mo(CO),(bipy)] gives the 18-electron [Mo(CO),Br,- 
(bipy)] [19] leads us to believe that the boat metahacycle is responsible for 
converting the possible [Mo(CO),Br,(N-N)] intermediate in eq 1 into the 16-elec- 
tron complexes, l-3. Unexpectedly, Br(l)-Mo-Br(2) the angle is not 180” but 
175_5(1)O in 2. This observation supports the steric congestion present in this 
six-coordinate complex and reflects the much larger nonbonded interactions in the 
unknown seven-coordinate complexes, [Mo(CO),Br,(N-N)]. Thus, if these com- 
plexes are formed at all, they lose CO as rapidly as they are formed into 1-3. 

Iodination of [Mo(CO),(N-N)], halogenation of [W(CO),(N-N)], and the reac- 
tivity of l-3 are currently under investigation. 

Supplementary material available. Tables of crystal data and collection parame- 
ters, positional and thermal parameters, and bond distances and angles for 2 (6 
pages) are available from the authors. 
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