Synthese und Reaktivität von Dienylmetall-Verbindungen

XXXIV *. Zur Existenz von C₅H₅Co(SMe₂)₂

Norbert Kuhn * und Edgar Zauder

Fachbereich 6 (Chemie) der Universität (GH) Duisburg, Lotharstr. 1, D-4100 Duisburg 1 (B.R.D.) (Eingegangen den 29. Juni 1988)

Abstract

 $C_5H_5Co(SMe_2)_2$ (II) is thought to be an intermediate in the deprotonation of $[C_5H_5Co(SMe_2)_2H]BF_4$ (III). This compound is obtained from the reaction of $C_5H_5Co(C_5H_5CCl_3)$ (I) with HBF₄ and an excess of SMe₂. Compound II becomes stable upon dimerisation to give SMe₂ and $(C_5H_5CoSMe_2)_2$ (IX). The addition of PR₃ to complex IX gave the mononuclear complexes $C_5H_5Co(SMe_2)PR_3$ (X). The low stability of $C_5H_5Co(SMe_2)_2$ as a consequence from lone pair repulsion of the SMe₂ ligands is discussed.

Zusammenfassung

 $C_5H_5Co(SMe_2)_2$ (II) wird als Zwischenstufe bei der Deprotonierung von $[C_5H_5Co(SMe_2)_2H]BF_4$ (III) vermutet. Diese Verbindung wird durch Umsetzung von $C_5H_5Co(C_5H_5CCl_3)$ (I) mit HBF_4 und überschüssigem SMe_2 erhalten. Verbindung II stabilisiert sich durch Dimerisierung zu SMe_2 und $(C_5H_5CoSMe_2)_2$ (IX) woraus die stabilen monomeren Komplexe $C_5H_5Co(SMe_2)PR_3$ durch Addition von PR_3 erhalten werden. Die geringe Stabilität von $C_5H_5Co(SMe_2)_2$ wird als Folge der Abstoßung der freien Elektronenpaare der SMe_2 -Liganden diskutiert.

Einleitung

Sulfan-Komplexe [1] des Typs $[C_5H_5M(SMe_2)_m]^{n+}$ (M = Ni, m=2, n=1 [2,3]; M = Co, m=3, n=2 [4-6]; M = Fe, m=3, n=1 [5-8]) eignen sich als interessante Ausgangssubstanzen in der koordinationschemischen Synthese. Hierbei zeigt sich, daß die Labilität des Fragments $M(SMe_2)_m$ mit steigender Elektronendichte

^{*} XXXIII. Mitteilung vgl. Lit. 17.

am Komplexzentrum zunimmt (vgl. hierzu [8]). Cobalt(I)-Komplexe der Zusammensetzung $C_5H_5CoL_2$ haben wegen ihrer Metall-Basizität prinzipielle Bedeutung in der metallorganischen Katalyse erlangt [9,10]. Deshalb erschien uns die Synthese von $C_5H_5Co(SMe_2)_2$ zur Verbesserung des Zugangs zu dieser Substanzklasse lohnenswert.

Ergebnisse

Erwartungsgemäß läßt sich die gesuchte Verbindung $C_5H_5Co(SMe_2)_2$ (II) durch Substitution der Neutralliganden in $C_5H_5Co(CO)_2$ bzw. $C_5H_5Co(C_5H_6)$ nicht herstellen, da hier die Bindungen zum Koordinationszentrum durch hohe Rückbindungsanteile stabilisiert werden. Die formale Überführung des Cobalts in die Oxidationsstufe +III durch Protonierung gestattet jedoch die Substitution des Dien-Liganden gegen SMe_2 im leicht zugänglichen Komplex $C_5H_5Co(C_5H_5CCl_3)$ (I) [11,12]; hierbei ist die geringe Brønstedt-Basizität des Sulfans von Vorteil. Das violette luftstabile Komplexkation $[C_5H_5Co(SMe_2)_2H]^+$ (III) läßt sich aus der Reaktionslösung in guten Ausbeuten isolieren und ist unzersetzt lagerbar (Schema 1).

Bei der Synthese von III sind die im experimentellen Teil angegebenen Versuchsbedingungen sorgfältig einzuhalten. Ein lokaler Überschuß an Säure begünstigt die Bildung der Zwischenstufe [C₅H₅Co(SMe₂)₂FBF₃]BF₄ (IV), die zum Cobalticinium-Kation V, SMe₂ und anorganischen Cobaltsalzen weiterreagiert. Die Addition von SMe₂ an IV liefert den von III leicht abtrennbaren dikationischen Komplex [C₅H₅Co(SMe₂)₃](BF₄)₂ (VI) [4]. Zur Unterdrückung der Bildung von V wird deshalb mit überschüssigem SMe₂ gearbeitet, wobei die Verwendung des Solvens Nitromethan wegen der guten Löslichkeit von VI hierin die bevorzugte Bildung des Dikations durch Verschiebung denkbarer Gleichgewichte verhindert.

Die Synthese von III ausgehend von $C_5H_5Co(C_5H_6)$ ist auf diesem Wege nicht möglich. Hier dominiert auch bei großem Überschuß von SMe_2 die Oxidation zum Cobalticinium-Kation. Dies kann als Folge des stärkeren Hydrid-Charakters des endo-ständigen Wasserstoffs im C_5H_6 -Liganden gegenüber $C_5H_5CCl_3$ wie auch der sterisch bedingten geringeren Bildungstendenz von $[C_5H_5Co(C_5H_4CCl_3)]^+$ gegenüber dem Cobalticinium-Kation V angesehen werden.

Das Kation $[C_5H_5Co(SMe_2)_2H]^+$ (III) ist als Ausgangsprodukt zur Synthese der Hydrido-Komplexe $[C_5H_5Co(L(L')H]^+$ geeignet. In der Praxis müssen hierzu, vor allem bei Verwendung basischer Liganden, für jeden Einzelfall individuelle Reaktionsbedingungen zur Unterdrückung von Nebenreaktionen gesucht werden; einen ähnlichen Sachverhalt haben wir auch für das Kation $[C_5H_5Fe(SMe_2)_2CO]^+$ beobachtet [13]. Gute Ausbeuten des Zielprodukts werden erreicht durch kurze Reaktionszeiten bzw. heterogene Reaktionsführung, wie am Beispiel der Komplexe $[C_5H_5Co(Ph_2PC_2H_4PPh_2)H]^+$ (VII) und $[C_5H_5Co(TeMe_2)_2H]^+$ (VIII) gezeigt wird (Schema 2).

Verbindungen des Strukturtyps $[C_5H_5M(EMe_2)_2L]^{n+}$ ($L \neq EMe_2$, E = S, Se, Te) eignen sich wegen ihrer Symmetrie [14] zur Untersuchung des Inversionsvorgangs an E mittels kernmagnetischer Resonanz (vgl. hierzu [15,16]). Erwartungsgemäß erfolgt dieser Prozeß im Sulfan-Komplex III bei Raumtemperatur schnell im Sinne der NMR-Zeitskala, läßt sich jedoch bei 203 K durch die Aufspaltung des Signals der Methylgruppe (vgl. Experimenteller Teil) nachweisen. Hingegen überrascht die bei

Schema 1.

Raumtemperatur schnelle Inversion am Telluratom in VIII im Hinblick auf die allgemeine Erfahrung [15] wie auf den Befund der Kationen [C₅H₅Fe(TeMe₂)₂CO]⁺ [16] und [C₅H₅Co(TeMe₂)₂I]⁺ [4]; die große Differenz der Anregungsenergie der

Schema 2.

beiden Kationen $[C_5H_5Co(TeMe_2)X]^+$ (X = H, I) interpretieren wir versuchsweise als Folge des gegenüber I geringen Platzanspruchs von H.

Während bei Versuchen zur Reduktion von [C₅H₅Co(SMe₂)₃]²⁺ (VI) [4] bislang keine kobaltorganischen Produkte nachgewiesen werden konnten, läßt sich die reduktive Deprotonierung von [C₅H₅Co(SMe₂)₂H]⁺ (III) mit Methyllithium in Dichlormethan bei -60°C unter Erhaltung der C₅H₅Co-Bindung durchführen. Hierbei konnten wir allerdings die gesuchte Verbindung C₅H₅Co(SMe₂)₂ (II) selbst bei -60°C und großem Überschuß an SMe, nicht spektroskopisch nachweisen. Offensichtlich führt die eingangs erwähnte Destabilisierung des Fragments Co(SMe₂)₂ zur Abspaltung von SMe₂ und nachfolgender Dimerisierung zum Zweikernkomplex (C₅H₅CoSMe₂)₂ (IX); diese Art der Stabilisierung lebt vom Wegfall der nichtbindenden Elektronenpaare im nun verbrückend koordinierenden SMe2-Liganden und wurde von uns kürzlich auch bei Cyclopentadienylmolybdän-Komplexen beobachtet [17]. Im Gegensatz zum hier resultierenden Dikation [(C₅H₅Mo(CO)SMe₂)₂]²⁺ (vgl. hierzu auch [18]) zersetzt sich jedoch die bei tiefen Temperaturen analysenrein isolierbare Verbindung IX in Lösung wie im festen Zustand bei ca. 0°C. Nach Einbau des nichtbindenden Elektronenpaares durch Ausbildung der SMe,-Brücke in das Molekülgerüst wird die Destabilisierung hier vermutlich durch die Nachbarschaft der elektronenreichen Co-Zentren bewirkt. Die Stabilisierung von IX durch Oxidation zum Dikation [(C₅H₅CoSMe₂)₂]²⁺ (XI) konnte bislang nicht realisiert werden.

P-Donorliganden PR_3 öffnen den Co_2S_2 -Ring in IX unter Bildung der einkernigen Komplexe $C_5H_5Co(SMe_2)PR_3$ (X, R = Me, OMe); diese sind bei Raumtemperatur stabil. Die Substitution des verbliebenen SMe_2 -Liganden erfordert verschärfte Reaktionsbedingungen.

Diskussion

Insgesamt bleibt zunächst festzuhalten, daß mit der Koordination von zwei SMe₂-Liganden an das C₅H₅Co^I-Zentrum die Stabilitätsgrenze des Verbindungstyps C₅H₅M(SMe₂)_mⁿ⁺ erreicht wird. Der Einfluß des elektronenreichen Koordinationszentrums auf die SMe₂-Koordination wird in den NMR-Daten von C₅H₅Co(SMe₂)P(OMe)₃ (Xb) sichtbar. Die chemische Verschiebung ist im ¹H- wie im ¹³C-NMR-Spektrum gegenüber den Erwartungswerten (¹H-NMR 2.0-2.5, ¹³C-NMR 20-30 ppm [2-8]) mit 0.44 (¹H) bzw. 1.39 (¹³C) ppm drastisch zu hohen Feld verschoben; selbst gegenüber dem nicht koordinierten Liganden SMe₂ (¹H-NMR 2.12, ¹³C-NMR 18.09 ppm) wird eine Hochfeldverschiebung beobachtet. Erfahrungsgemäß wird diese Verschiebung vom s-Charakter der Schwefel-Kohlenstoff-Bindung beeinflußt. Wir schreiben deshalb die starke Hochfeldverschiebung des Sulfan-Liganden in Xb dem dort geringen s-Charakter der SCH₃-Bindung zu. Dieser wird bewirkt durch die hier große Abstoßung der elektronenreichen Zentren Co und S voneinander, die zur Aufweitung der CoS-Bindung führt und für den Schwefel den Valenzzustand p³ begünstigt.

Für die Destabilisierung der Metall-Schwefel-Bindung im Komplextyp $M(SMe_2)_n$ (n > 1) ist die isoliert betrachtete MS-Bindung jedoch offensichtlich selbst im Falle stark elektronenreicher Zentren nicht allein verantwortlich, wie die Stabilität der Komplexe X beweist. Den wesentlichen Beitrag zur Reaktivität leistet hier die gegenseitige Abstoßung der freien Elektronenpaare an den benachbarten Schwe-

felatomen, die mit steigendem s-Charakter dieser Elektronenpaare, also mit steigendem p^3 -Charakter des Valenzzustands am Schwefel, ein Maximum erreicht. Diesen Zusammenhang machen wir für die geringe Stabilität der Titelverbindung $C_5H_5Co(SMe_2)_2$ (II) verantwortlich; im hierzu isoelektronischen Kation $[C_5H_5Ni(SMe_2)_2]^+$ * [2] führt der stärker positive Charakter des Koordinationszentrums zur Aufweitung des Winkels C-S-C und vermindert die Abstoßungskräfte.

Der Einfluß des s-Charakters auf die Destabilisierung des Fragments M(SMe₂)₂ erklärt auch die große Tendenz der Komplexe [C₅H₅Mo(CO)₂(SMe₂)₂]⁺ [17] und Mo(CO)₄(SMe₂)₂ [19], unter Aufweitung des Winkels S-Mo-S die *trans*-Isomeren zu bilden.

Die Sonderstellung des Fragments $C_5H_5Co^I$ wird auch bei verbrückender SMe₂-Koordinierung sichtbar. Die in $(C_5H_5CoSMe_2)_2$ (IX) für den Brückenliganden beobachteten Verschiebungen (1H -NMR 2.14, ^{13}C -NMR 24.70 ppm) zeigen gegenüber dem strukturell vergleichbaren Dikation $[(C_5H_5Mo(CO)SMe_2)_2]^{2+}$ [17,18] (1H -NMR 3.66, ^{13}C -NMR 46.92 ppm) ebenfalls eine drastische Hochfeldverschiebung, weswegen wir für IX einen gegenüber der Molybdän-Verbindung deutlich verringerten Bindungswinkel C-S-C erwarten; dieser ist in $[C_5H_5Mo(CO)C_5H_5-Mo(PMe_3)(\mu$ -SMe₂)₂]²⁺ mit 99° ermittelt worden [18].

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Argon durchgeführt. (C₅H₅)₂Co [20] und TeMe₂ [21] wurden nach Literaturvorschriften erhalten.

 $C_5H_5Co(C_5H_5CCl_3)$ (I). In eine Lösung von 1.89 g (10 mmol) Cobaltocen in 50 ml Chloroform wird ca. 45 min intensiv Sauerstoff eingeleitet. Die Reaktionslösung wird filtriert und bis zur Trockne eingeengt. Ausbeute: 2.80 g (91% d. Th.), orangebrauner Feststoff. ¹H-NMR (CDCl₃): δ (H(3,4)) 5.27 (t), δ (C₅H₅) 4.80 (s), δ (H(1)) 3.77 (t), δ (H(2,5)) 3.03 (q) ppm. ¹³C-NMR (C₆D₆): δ (CCl₃) 99.41, δ (C₅H₅) 79.61, δ (C(3,4)) 76.02, δ (C(1)) 68.26, δ (C(2,5)) 40.14 ppm. Gef.: C, 42.3; H, 3.0; Co, 20.0. C₁₁H₁₀Cl₃Co ber.: C, 42.97; H, 3.28; Co, 19.17%.

[$C_5H_5Co(SMe_2)_2H]BF_4$ (III). 0.65 g (2.1 mmol) I werden in 15 ml Nitromethan gelöst und mit 0.73 ml (10 mmol) SMe₂ versetzt. Nach Zutropfen von 0.27 ml (2 mmol) HBF₄·Et₂O wird 1 h bei Raumtemperatur gerührt. Der nach Zugabe von 100 ml Benzol resultierende Niederschlag wird abfiltriert und im Vakuum getrocknet. Ausbeute nach Umkristallisation aus Dichlormethan/Pentan: 0.45 g (64% d. Th.), tiefviolette Kristalle. ¹H-NMR (CD₂Cl₂ bei 298 K): δ (C₅H₅) 5.80, δ (Me) 2.49 ppm; bei 203 K: 5.84, 2.61, 2.43 ppm. ¹³C-NMR: δ (C₅H₅) 88.77, δ (Me) 23.69 ppm. Gef.: C, 31.7; H, 5.2; Co, 18.5. C₉H₁₈BCoF₄S₂, ber.: C, 32.16; H, 5.40; Co, 17.53%.

 $[C_5H_5Co(Ph_2PC_2H_4PPh_2)H]BF_4$ (VII). 0.34 g (1 mmol) III und 0.40 g (1 mmol) $Ph_2PC_2H_4PPh_2$ werden in 20 ml Dichlorethan gelöst und 5 min gerührt. Die Reaktionslösung wird in 60 ml Diethylether filtriert. Der resultierende Feststoff wird mit Ether gewaschen und im Vakuum getrocknet. Ausbeute nach Umkristalli-

^{*} 1 H-NMR (CD₃NO₂): δ (C₅H₅) 5.57, δ (Me) 2.33 ppm; 13 C-NMR (CD₃NO₂): δ (C₅H₅) 96.79, δ (Me) 24.17 ppm.

sation aus Dichlormethan/Ether: 0.48 g (79% d. Th.), brauner Feststoff. ¹H-NMR (CD₂Cl₂): δ (Ph) 7.87-7.24 (m), δ (C₅H₅) 5.42, δ (CH₂) 2.92, 2.76 ppm. Gef.: C, 60.6; H, 4.4; Co, 10.3; C₃₁H₃₀BCoF₄P₂ ber.: C, 61.01; H, 4.95; Co, 9.66%.

 $[C_5H_5Co(TeMe_2)_2H]BF_4$ (VIII). 0.17 g (0.5 mmol) III und 0.79 g (5 mmol) TeMe₂ werden in 20 ml Ether über Nacht bei Raumtemperatur gerührt. Der resultierende Feststoff wird mit Ether gewaschen und getrocknet. Ausbeute nach Umkristallisation aus Dichlormethan/Ether: 0.23 g (86% d. Th.), braunvioletter Feststoff. ¹H-NMR (CD₃NO₂): δ (C₅H₅) 5.56, δ (Me) 2.38 ppm. Gef.: C, 20.4; H, 3.5; Co, 11.9; C₉H₁₈BCoF₄Te₂ ber.: C, 20.51; H, 3.44; Co, 11.18%.

 $(C_5H_5CoSMe_2)_2$ (IX). Eine Lösung von 0.67 g (2 mmol) III in 30 ml Dichlormethan wird bei $-60\,^{\circ}$ C langsam mit 1.25 ml einer 1.6 M Lösung von Methyllithium in Ether versetzt. Die Lösung wird nach 15 min bei $-30\,^{\circ}$ C filtriert und das Filtrat bei gleicher Temperatur im Vakuum zur Trockne eingeengt. Ausbeute: 0.23 g (61% d. Th.), rotbrauner Feststoff, Zers. ab $0\,^{\circ}$ C. 1 H-NMR (CD₂Cl₂ bei $-40\,^{\circ}$ C): δ (C₅H₅) 4.56, δ (Me) 2.14 ppm. 13 C-NMR (CD₂Cl₂ bei $-40\,^{\circ}$ C): δ (C₅H₅) 85.74, δ (Me) 24.70 ppm. Gef.: C, 44.1; H, 4.8; Co, 33.0; C₁₄H₂₂Co₂S₂ ber.: C, 45.16; H, 5.96; Co, 31.66%.

 $C_5H_5Co(SMe_2)PMe_3$ (Xa). Eine Lösung von 0.19 g (0.5 mmol) IX in 10 ml Ether wird bei $-30\,^{\circ}$ C unter Rühren mit 0.20 ml (2 mmol) PMe₃ versetzt. Nach Erwärmen der Reaktionslösung auf Raumtemperatur wird filtriert. Der nach Entfernen des Lösungsmittels im Vakuum verbliebene Rückstand wird zur Reinigung aus Toluol/Pentan bei $-78\,^{\circ}$ C umkristallisiert. Ausbeute: 0.22 g (84% d. Th.), rotbraunes Öl. ¹H-NMR (C_6D_6): δ (C_5H_5) 4.38, δ (PMe₃) 0.81 (d, ²J(P,H) 9.5 Hz), δ (SMe₂) 0.26 (d, ⁴J(P,H) 3.0 Hz). Gef.: C, 45.5; H, 7.1; Co, 22.5; $C_{10}H_{20}$ CoPS ber.: C, 45.80; H, 7.69; Co, 22.47%.

 $C_5H_5Co(SMe_2)P(OMe)_3$ (Xb). 0.19 g (0.5 mmol) IX, 0.18 ml (2 mmol) P(OMe)₃, Durchführung wie bei Xa. Ausbeute: 0.25 g (82% d. Th.), rotbraunes Öl. ¹H-NMR (C_6D_6): δ (C_5H_5) 4.54, δ (P(OMe)₃) 3.34 (d, ³J(P,H) 11 Hz), δ (SMe₂) 0.44 (d, ⁴J 4.0 Hz) ppm. ¹³C-NMR (C_6D_6): δ (C_5H_5) 87.70, δ (P(OMe)₃) 51.19 (d, ²J(P,C) 6.6 Hz), δ (SMe₂) 1.39 ppm. Gef.: C, 38.2; H, 6.10; Co, 20.2; $C_{10}H_{20}CoO_3PS$ ber.: C, 38.72; H, 6.50; Co, 19.00%.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt. Wir danken der Fa. Hoechst AG, Werk Knapsack (Dr. Klose) für die Überlassung von Trimethylphosphan-Hydrochlorid, Frl. J. Haveresch-Kock für ihre Mitarbeit sowie Herrn Prof. Dr. P. Sartori für sein freundliches Interesse.

Literatur

- Übersicht: S.G. Murray und F.R. Hartley, Chem. Rev., 81 (1981) 365; C.G. Kuehn und S.S. Isied, Prog. Inorg. Chem., 27 (1980) 153.
- 2 N. Kuhn und M. Winter, Chem.-Ztg., 107 (1983) 73.
- 3 N. Kuhn, N. Heuser und M. Winter, J. Organomet. Chem., 267 (1984) 221; N. Kuhn und M. Winter, J. Organomet. Chem., 276 (1984) C16; N. Kuhn, M. Winter und E. Zimmer, J. Organomet. Chem., 344 (1988) 401.
- 4 N. Kuhn, H. Brüggemann, M. Winter und V.M. de Bellis, J. Organomet. Chem., 320 (1987) 391.

- 5 N. Kuhn, E.M. Horn, E. Zauder, D. Bläser und R. Boese, Angew. Chem., 100 (1988) 572.
- 6 N. Kuhn, E.M. Horn und E. Zauder, Inorg. Chim. Acta, 149 (1988) 163.
- 7 N. Kuhn, H. Schumann, M. Winter und E. Zauder, Chem. Ber., 121 (1988) 111.
- 8 N. Kuhn und E. Zauder, J. Organomet. Chem., 340 (1988) C1.
- 9 H. Werner, Angew. Chem., 95 (1983) 932.
- 10 H. Bönnemann, Angew. Chem., 97 (1985) 264.
- 11 M.L.H. Green, L. Pratt und G. Wilkinson, J. Chem. Soc., (1959) 3753.
- 12 H. Kojima, S. Takahashi, H. Yamazaki und N. Hagihara, Bull. Chem. Soc. Jap., 43 (1970) 2272.
- 13 N. Kuhn, H. Schumann und E. Zauder, J. Organomet. Chem., 327 (1987) 17.
- 14 W.B. Jennings, Chem. Rev., 75 (1975) 307.
- 15 E.W. Abel, S.K. Bhargava und K.G. Orrell, Prog. Inorg. Chem., 32 (1984) 1.
- 16 N. Kuhn und H. Schumann, Inorg. Chim. Acta, 116 (1986) L11.
- 17 N. Kuhn, H. Schumann und E. Zauder, J. Organomet. Chem., 354 (1988) 161.
- 18 N. Kuhn, E. Zauder, R. Boese und D. Bläser, J. Chem. Soc., Dalton Trans., (1988) 2171.
- 19 N. Kuhn und E. Zauder, Veröffentlichung in Vorbereitung.
- 20 J.F. Cordes, Chem. Ber., 95 (1962) 3084.
- 21 N. Kuhn, P. Faupel und E. Zauder, J. Organomet. Chem., 302 (1986) C4.