Journal of Organometallic Chemistry, 364 (1989) 67-71 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09460

Alkylantimondichloride und -bromide

Mustafa Ateş, Hans Joachim Breunig * und Sabahittin Güleç

Universität Bremen, FB 02 (Chemie), Postfach 330 440, D-2800 Bremen 33 (B.R.D.) (Eingegangen den 24. August 1988)

Abstract

MeSbCl₂ is formed by the exchange reaction of equimolar amounts of Me₂SbCl with SbCl₃. Alkylantimony dibromides of the type RSbBr₂ with R = Me, Et, n-Pr, n-Bu are obtained by dismutation of the corresponding dialkylantimony bromides with SbBr₃. Exchange as well as redox reactions occur in the R₃Sb and SbX₃, or R₃Sb and RSbX₂ (R = Me, Et; X = Cl, Br) system. Ethylantimony dibromide can also be synthesized by elimination of EtBr from Et₂SbBr₃. The ¹H NMR spectra of the alkylantimony dihalides in CDCl₃ and C₆D₆ exhibit major solvent effects.

Zusammenfassung

MeSbCl₂ entsteht durch Austauschreaktion äquimolarer Mengen von Me₂SbCl und SbCl₃. Alkylantimondibromide des Typs RSbBr₂ mit R = Me, Et, n-Pr, n-Bu werden durch Dismutationen entsprechender Dialkylantimonbromide mit SbBr₃ gebildet. Sowohl Austausch- als auch Redoxreaktionen laufen in Systemen des Typs R₃Sb und SbX₃ oder R₃Sb und RSbX₂ (R = Me, Et; X = Cl, Br) ab. Ethylantimondibromid wird auch durch Eliminierung von EtBr aus Et₂SbBr₃ gebildet. Die ¹H-NMR Spektren der Alkylantimondihalogenide in C_6D_6 und CDCl₃ zeigen starke Lösungsmitteleffekte.

Einleitung

Alkylantimondichloride und -bromide sind wichtige Ausgangsprodukte der antimonorganischen Synthese [1]. Ihre Darstellung geschieht in klassischer Weise durch Eliminierung von Alkylhalogeniden aus Dialkylantimontrihalogeniden [1,2]. Daneben wurden einige Vertreter auch durch Umsetzung von SbCl₃ mit Bleitetraalkylen hergestellt [3]. In der Patentliteratur gibt es schließlich Hinweise auf die Bildung von MeSbCl₂ oder EtSbBr₂ durch Erwärmen der entsprechenden Trialkylstibane mit SbCl₃ oder SbBr₃ in Dimethylformamid oder Diethylacetamid [4]. Diese Austauschreaktion wäre im Prinzip die attraktivste Variante zur Darstellung der

Titelverbindungen. In Konkurrenz steht jedoch die Redoxreaktion zu Sb und den entsprechenden Trialkylantimondihalogeniden [5].

Wir berichten nun über eine neue einfache Synthese von Alkylantimondihalogeniden durch Austausch zwischen Dialkylantimonchloriden oder -bromiden und SbCl₃ oder SbBr₃ sowie über verwandte Reaktionen.

Ergebnisse und Diskussion

Äquimolare Mengen von Me₂SbCl und SbCl₃ reagieren bei Raumtemperatur ohne Lösungsmittel glatt zu MeSbCl₂ (1). Analog bildet sich MeSbBr₂ (2) als Hauptprodukt der Reaktion von Me₂SbBr und SbBr₃. Auch die Umsetzungen von Et₂SbBr, n-Pr₂SbBr oder n-Bu₂SbBr mit SbBr₃ verlaufen nach diesem Schema (Gl. 1).

$$R_2 SbX + SbX_3 \rightarrow 2 RSbX_2$$

$$(1-5)$$

(1:
$$R = CH_3$$
, $X = Cl$; 2: $R = CH_3$, $X = Br$; 3: $R = C_2H_5$, $X = Br$; 4: $R = n-C_3H_7$, $X = Br$; 5: $R = n-C_4H_9$, $X = Br$)

Die Dihalogenide 1-5 können häufig ohne weiteres für präparative Zwecke benutzt werden. Eine Reinigung der Produkte ist im Fall von 1, 3 und 5 durch Destillation und im Fall von 2 und 4 durch Kristallisation aus Petrolether bei -20° C möglich.

Da Dialkylantimonhalogenide in einer zweistufigen Synthese aus Trialkylstibanen hergestellt werden [2], wäre die Darstellung von Alkylantimondihalogeniden durch die Reaktion eines Trialkylstibans mit SbCl₃ oder SbBr₃ vorteilhaft. Wir untersuchten dieses Prinzip am Beispiel der Umsetzungen von Me₃Sb mit SbCl₃ im Substanzgemisch, von Me₃Sb mit SbBr₃ in Diethylether und von Et₃Sb mit SbBr₃ ohne Lösungsmittel bei 25°C und bei 100°C. Die gewünschten Alkylantimondihalogenide entstanden jedoch nicht oder nur in geringem Anteil neben den entsprechenden Trialkylantimondihalogeniden und Sb. Dominierend war stets die Redoxreaktion (Gl. 2).

$$3 R_3 Sb + 2 SbX_3 \rightarrow 3 R_3 SbX_2 + 2 Sb$$
 (2)
 $(R = Me, X = Cl [5], Br; R = Et, X = Br)$

Exemplarisch wird im experimentellen Teil die Umsetzung von Et₃Sb und SbBr₃ beschrieben.

Der unterschiedliche Verlauf der Reaktionen in den Systemen vom Typ R₂SbX/SbX₃ einerseits und R₃Sb/SbX₃ andererseits gab Anlaß, auch das chemische Verhalten von Systemen des Typs RSbX₂/R₃Sb zu untersuchen. Dies geschah am Beispiel der Umsetzung von 1 mit Me₃Sb im Molverhältnis 1/1 in Benzol, wobei sowohl die Redoxprodukte Me₃SbCl₂ und (MeSb)_x als auch das Austauschprodukt Me₂SbCl entstanden. Analoge Ergebnisse ergab auch die Umsetzung von 3 mit Et₃Sb.

Die bisher beschriebenen Reaktionen zeigen das in der Reihe $R_3Sb > R_2SbX > RSbX_2 > SbX_3$ (R = Me, Et; X = Cl, Br) schwächer werdende Reduktionsvermögen an. In umgekehrter Reihenfolge wächst von R_2SbX zu SbX_3 die Oxidationskraft. Dies läßt sich leicht mit Blick auf die Unterschiede der induktiven Effekte von Alkylgruppen und Halogenen verstehen. Die Austauschreaktionen überwiegen, wenn das Redoxvermögen der Reaktionspartner für die oxidative Addition nicht ausreicht.

Im Fall der Synthese von EtSbBr₂ wurde zum Vergleich auch die Reaktionssequenz nach Gl. 3 untersucht.

$$Et_2SbBr \xrightarrow{+Br_2} Et_2SbBr_3 \xrightarrow{-EtBr} EtSbBr_2$$
(3)

Die Bromierung von Et₂SbBr verläuft ebenso wie die Eliminierung von EtBr aus Et₂SbBr₃ bei Raumtemperatur und ergibt eine Ausbeute an 3 von 90%. Allerdings ist die Darstellung nach Gl. 3 experimentell aufwendiger als die Synthese nach Gl. 1.

Zur Charakterisierung der Produkte wurden Elementaranalysen sowie ¹H-NMR-und Massenspektren verwendet. Für 1 und 2 erscheinen im ¹H-NMR-Spektrum Singulettsignale, die sich von denen möglicher Nebenprodukte gut unterscheiden. Vergleicht man die Spektren von 1 oder 2 in CDCl₃ und C₆D₆ so findet man eine Verschiebung um ca. 0.8 ppm nach höherem Feld. Einen ebenso deutlichen Lösungsmitteleffekt zeigen auch die Spektren von 3: Bei 60 MHz erscheint in CDCl₃ annähernd ein Quartett-Triplett-Muster, das in Benzol zu einem schmalen Multiplett zusammenrückt. Auch bei 360 MHz zeigt das Spektrum von 3 in Benzol kein reines A₂X₃ Spinsystem. Zusätzlich erscheinen Aufspaltungen mit nichtbinomischen Intensitäten. Das beobachtete Muster läßt sich rechnerisch rekonstruieren, wenn man annimmt, daß die beiden Methylenprotonen magnetisch nicht äquivalent sondern überraschenderweise diastereotop sind. Auf eine vollständige Analyse der komplexen ¹H-NMR-Spektren von 4 und 5 wurde verzichtet. Deutlich ausgeprägt ist wiederum ein Lösungsmitteleffekt in Benzol.

Die Massenspektren von 1-5 enthalten die charakteristischen Molekülionen sowie Fragmente, die durch Alkyl-, Alken- oder Halogenverlust entstehen.

Experimentelles

Alle Arbeiten werden unter Feuchtigkeitsausschluß in Argon durchgeführt. Me₂SbCl, Me₂SbBr, Et₂SbBr, n-Pr₂SbBr und n-Bu₂SbBr wurden nach bekannten Methoden [1] durch thermische Eliminierung von Alkylhalogenid aus den entsprechenden Trialkylantimondihalogeniden hergestellt und möglichst frisch verwendet. Folgende Meßgeräte wurden benutzt: NMR, 60 MHz, EM 360, Varian; 360 MHz, WH 360, Bruker; MS, CH 7A, MAT. Die Spektrensimulation bei 3 erfolgte mit dem Programm PANIC von Bruker. Die MS-Daten beziehen sich auf das jeweils intensivste Signal. Die NMR-Daten sind als δ-Werte in ppm angegeben.

Methylantimondichlorid (1)

Zu 6.0 g (0.026 mol) SbCl₃ in einem 50 ml Einhalskolben werden 4.9 g (0.026 mol) Me₂SbCl gegeben. Das Gemisch wird bei Raumtemperatur ca. 2 h gerührt. Es entsteht praktisch vollständig 1 als farbloses Öl. Zur weiteren Reinigung wird bei 95°C/20 Torr (Lit. Kp₆₀ = 135°C) destilliert. Danach beträgt die Ausbeute 9.3 g (85%). 1: 1 H-NMR, δ (C₆H₆) 1.1; δ (CDCl₃) 1.9; Lit [6,7] ident. Werte). MS (70 eV, 30°C) m/z (%): 208 (40) M^{+} , 193 (100), 173 (17), 136 (8), 121 (10).

Methylantimondibromid (2)

Zu 15.6 g (0.043 mol) SbBr₃ werden bei Raumtemperatur 10.0 g (0.043 mol) Me₂SbBr rasch zugegeben. Die flüssige Mischung wird 2 h gerührt. Die ¹H-NMR-

Analyse zeigt, daß zu ca. 90% 2 vorliegt, neben ca. 2.5% Me₂SbBr und ca. 8% Me₃SbBr₂. Durch Aufnehmen in Petrolether und Ausfällen bei -18° C wird 2 als farbloser kristalliner Festkörper vom Fp. 40°C (Lit. [2]: 42°C) isoliert. 2: ¹H-NMR. $\delta(C_6H_6)$ 1.4; δ (CDCl₃) 2.2 (Lit. [6,7] ident. Werte). MS (70 eV, 30°C) m/z (%): 296 (33) M^+ , 281 (100), 217 (10), 202 (25), 121 (10).

Ethylantimondibromid (3)

- (a) Zu 12.5 g (0.034 mol) SbBr₃ werden 8.9 g (0.034 mol) Et₂SbBr zugegeben. Das Reaktionsgemisch wird 3 h bei Raumtemperatur gerührt. Es entsteht hellgelbes, flüssiges 3, das durch Destillation bei 110°C/5 Torr weiter gereinigt werden kann.
- (b) Zu 13.5 g (0.052 mol) Et₂SbBr werden 8.3 g (0.052 mol) Br₂ in 50 ml Diethylether langsam zugetropft. Danach wird die Lösung 1/2 h bei Raumtemperatur gerührt. Dabei zersetzt sich das gebildete Et₂SbBr₃ bereits. Es entsteht EtBr, das mit dem Lösungsmittel abdestilliert wird. Zurück bleibt 3, das destillativ gereinigt wird. Danach ist die Ausbeute 14.6 g (90.3%).
- 3: ¹H-NMR 60 MHz $\delta(C_6H_6)$ 1.25–1.8 m; δ (CDCl₃) 1.75 t, 2.45 q; 360 MHz, $\delta(C_6D_6)$ 1.364 CH₃, 1.558 1.563 CH₂ (³J 7.57, 7.89 Hz; ²J 26.8 \pm 0.5 Hz). MS (70 eV, 30 °C) m/z (%): 310 (55) M^+ , 282 (60), 281 (68), 230 (85), 202 (100); Gef.: C, 7.87; H, 1.51. ($C_2H_5Br_2Sb$) ber.: C, 7.73; H, 1.62%.

n-Propylantimondibromid (4)

12.0 g (0.041 mol) n-Pr₂SbBr werden mit 15.0 g (0.041 mol) SbBr₃ 5 h gerührt. Es entsteht ein braunes Öl, das in Petrolether aufgenommen wird. Bei $-15\,^{\circ}$ C fallen farblose Kristalle vom Fp. 55 $^{\circ}$ C aus. Die Ausbeute beträgt 23.0 g (85%). 4: 1 H-NMR, 60 MHz, δ (CDCl₃) 1.12 t; 1.7–2.4 m; 2.4–2.8 m (3 J 7 Hz). 360 MHz δ (C₆H₆) 0.717 t; 1.52–1.63 m; 1.67–1.72 m (3 J 7.3 Hz). MS (70 eV, 50 $^{\circ}$ C) m/z (%): 324 (10) M⁺, 281 (24), 244 (1), 164 (1), 121 (10), 43 (100). Gef.: C, 11.27: H, 2.20; (C₃H₇Br₂Sb) ber.: C, 11.10; H, 2.10%.

n-Butylantimondibromid (5)

8.0 g (0.025 mol) n-Bu ₂SbBr werden mit 9.2 g (0.025 mol) SbBr₃ 5 h gerührt. Es entsteht 5 als hellbraunes Öl, das beim Abkühlen erstarrt (Fp. 29 °C). 5: ¹H-NMR 360 MHz δ (C₆D₆) 0.766 t CH₃; 1.120 s, CH₂, (³J 7.5 Hz), 1.52–1.61 m β -CH₂, 1.75–1.8 m α -CH₂. MS (70 eV, 20 °C) m/z (%): 338 (30) M^+ , 281 (60), 259 (5), 202 (100). Gef.: C, 12.93; H, 2.44. (C₄H₉Br₂Sb) ber.: C, 14.18; H, 2.68%.

Reaktion von Et₃Sb mit SbBr₃

2.7 g (0.012 mol) Et₃Sb werden mit 9.2 g (0.025 mol) SbBr₃ 1.5 h gerührt. Dabei erwärmt sich die Mischung und färbt sich dunkel. Durch Aufnehmen in Diethylether wird Et₃SbBr₂ in einer Ausbeute von 4 g (84%) vom entstandenen Sb abgetrennt und durch Vergleich mit einer aus Et₃Sb und Br₂ erhaltenen Probe identifiziert. Et₃SbBr₂: 1 H-NMR, $\delta(C_6H_6)$ 1.42 t, 2.73 q.

Dank

Wir danken der Stiftung Volkswagenwerk sowie dem Fonds der Chemischen Industrie für finanzielle Unterstützung und Herrn Dr. W. Offermann für die Simulation und Interpretation des NMR-Spektrums von 3.

Literatur

- 1 M. Wieber, Gmelin Handbook of Inorganic Chemistry, Sb Organoantimony Compounds, Part 2, Springer Verlag, Berlin, Heidelberg, New York, 1981.
- 2 G.T. Morgan und G.R. Davies, Proc. Roy. Soc., London, A 110 (1926) 523.
- 3 A.L. Rheingold, P. Choudhury und M.F. El-Shazly, Synth. React. Inorg. Met.-Org. Chem., 8 (1978) 453
- 4 H.I. Weingarten und W.A. White, Monsanto Co. U.S. 3366655 (1965), C.A. 68 (1968) 95975.
- 5 R.R. Holmes und E.F. Bertaut, J. Amer. Chem. Soc., 80 (1958) 2983.
- 6 J.G. Stevens, J.M. Trooster, H.A. Meinema und J.G. Noltes, Inorg. Chem., 20 (1981) 801.
- 7 H.J. Breunig und W. Kanig, Phosphorus and Sulfur, 12 (1982) 149.