Journal of Organometallic Chemistry, 361 (1989) 289-297 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Synthese und Eigenschaften von 2,3-Dihydro-4*H*-1,3,2-thiazaborin-4-onen

Carl D. Habben

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen (B.R.D.) (Eingegangen den 20. Juni 1988)

Abstract

3-Bromo-1,2,3-dithiaboroles react with Grignard reagents by formation of 3-al-kyl(aryl)-1,2,3-dithiaboroles, which, upon reaction with isocyanates leads to the 2,3-dihydro-4*H*-1,3,2-thiazaborine-4-ones. ¹H, ¹¹B, ¹³C NMR and mass spectra are described and discussed.

Zusammenfassung

3-Brom-1,2,3-dithiaborole reagieren mit Grignard-Verbindungen unter Bildung von 3-Alkyl(aryl)-1,2,3-dithiaborolen, deren Reaktion mit Isocyanaten zu den 2,3-Dihydro-4*H*-1,3,2-thiazaborin-4-onen führt. ¹H-, ¹¹B-, ¹³C-NMR und Massenspektren werden mitgeteilt und diskutiert.

Einleitung

Die Reaktion von 1,2,3-Diselenaborolen mit organischen Isocyanaten [1] führt zu den 2,3-Dihydro-4*H*-1,3,2-selenazaborin-4-onen:

Durch Selen-Schwefel-Austausch war bereits ein 2,3-Dihydro-4H-1,3,2-thiazaborin-4-on ($R = CH_3$, $R' = C_2H_5$) zugänglich. Von Interesse war nun die Darstellung geeigneter 1,2,3-Dithiaborole, deren Reaktivität gegenüber Isocyanaten mit dem Ziel der Direktsynthese von 2,3-Dihydro-4H-1,3,2-thiazaborin-4-onen untersucht werden sollte.

Ergebnisse und Diskussion

Die Umsetzung von 3,5-Dibrom-1,2,4-trithiadiborolan mit 2-Butin liefert das bisher nicht beschriebene 3-Brom-4,5-dimethyl-1,2,3-dithiaborol:

BrB
$$\stackrel{SS}{>}$$
 BBr + 2 H₃C - C \equiv C - CH₃ $\stackrel{H_3C}{\longrightarrow}$ $\stackrel{C}{\longrightarrow}$ $\stackrel{B-Br}{\longrightarrow}$ $\stackrel{Polykon-}{\longleftarrow}$ (2)

3-Brom-4,5-dialkyl-1,2,3-dithiaborole reagieren mit Grignard-Verbindungen zu 3,4,5-Trialkyl-1,2,3-dithiaborolen:

Die Aufarbeitung von 2d, e lieferte nur Gemische mit den Ausgangsverbindungen, die durch Umsetzung mit Lithiohexamethyldisilazan gebunden wurden:

Die Daten des 4,5-Diethyl-3-bistrimethylsilyl-1,2,3-dithiaborols wurden bereits mitgeteilt [2].

3,4,5-Trialkyl-1,2,3-dithiaborole reagieren mit Isocyanaten ohne Lösungsmittel zu 2,3-Dihydro-4*H*-1,3,2-thiazaborin-4-onen:

Verb.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴
3a	CH ₃	CH ₃	CH ₃	CH ₃
3b	CH_3	$n-C_3H_7$	CH_3	CH ₃
3c	C_2H_5	C_2H_5	CH_3	CH_3
3d	C_2H_5	C_2H_5	CH ₃	C_2H_5
3e	C_2H_5	C_2H_5	CH_3	i-C ₃ H ₇
3f	C_2H_5	C_2H_5	C_2H_5	CH_3
3g	C_2H_5	C_2H_5	$i-C_3H_7$	CH_3

Unter vergleichbaren Bedingungen findet zwischen 2c und t-C₄H₉NCO sowie 2f und H₃CNCO keine Umsetzung statt.

Diskussion der Spektren

Die spektroskopischen Daten der Verbindungen sind in Tabelle 1 zusammengefaßt.

Massenspektren

Die Massenspektren (EI) der neu dargestellten 1,2,3-Dithiaborole zeigen Molpeaks mit rel. Intensitäten zwischen 53 (2a) und 100% (2f). Bei den 2,3-Dihydro-4H-1,3,2-thiazaborin-4-onen wurden im Vergleich schwächere Fragmentierungen registriert. M^+ bildet den Basispeak bei 3a,c,d,f und g. Fragmente der Masse $[M-CH_3]$ können in rel. Intensitäten zwischen 25 (3e) und 100% (3b) in jedem Spektrum zugeordnet werden. Liegen vier Methylgruppen am Ringgerüst gebunden vor 3a, sinkt die rel. Intensität auf 11%. Die 5,6-diethylsubstituierten Derivate 3c-g zeigen ferner ein olefinisches Fragment m/z 41 mit rel. Intensitäten zwischen 49 (3c) und 73% (3e). Die Selenanaloga [1] zu 3c-e weisen in ihren Massenspektren (EI) eine stärkere Fragmentierung und geringere rel. Intensitäten von $[M]^+$ auf: [%] (SeAnalogon) 3c: 100(25), d: 100(6), e: 62(25).

NMR-Spektren

 ^{I}H -NMR-Spektren. Die erhaltenen Signale stimmen in Lage und Intensität mit den zu erwartenden überein. Ein Vergleich der Spektren von 3c-e mit denen der Selenanaloga ergibt für BC H_3 eine geringe Tieffeldverschiebung beim Übergang von $S \rightarrow Se$.

¹¹B-, ¹³C-NMR-Spektren. Der Ersatz des borständigen Bromatoms in 1a durch eine Methylgruppe (2a) führt zu einer Tieffeldverschiebung um 12 ppm [3]. Nach Insertion der -N=C=O Gruppierung und Abspaltung eines S ist die B-N-Bindungsbildung ¹¹B-NMR-spektroskopisch durch eine Hochfeldverschiebung (2a \rightarrow 3a) von 15 ppm zu verfolgen. Beim Wertevergleich von 3c-e mit denen der Selenazaborin-4-one [1] unterscheiden sich entsprechende Verbindungen um 3.4-3.8 ppm:

Ausgewählte 11 B-NMR-Werte

R	δ(¹¹ B) (ppm)		
	X = S	Se	
CH ₃	46.4	50.0	
C_2H_5	46.3	50.1	
$i-C_3H_7$	46.3	49.7	

Tabelle 1
Massen- und NMR-spektroskopische Daten

MS m Verb. [Basis	M^+/Int ,		δ(¹ H) (ppm)		Int.	δ(¹³ C) (ppm)	δ(¹¹ B) (ppm)
la	210/24 [86]	CH ₃ CH ₃	2.04 2.38	(q)(a) (q)(a)	[3H] [3H]	15.21 17.28	49.6
		B -C=				138.3	
		S-C= 				170.40	
2a	144/53	B-CH ₃	0.94	(s)	[3H]	2.5	61.5
	[86]	CH ₃	1.97	(q)(a)	[3H]	15.05	
		СН ₃ В-С=	2.33	(q)(a)	[3H]	16.79 138.2	
		_					
		S-C= 				166.96	
2b	172/64	B-CH ₃	0.96	(s)	[3H]	2.6	61.7
	[143]	CH ₃	0.99	(t)	[3H]	14.00	
		CH ₂	1.60-1.75	(br)	[2H]	23.32	
		=C- <i>CH</i> ₃	2.01	(s)	[3H]	15.07	
		=C-CH ₂	2.68-2.75	(br)	[2H]	33.63	
		B-C= 				137.6	
		S-C=				172.46	
2c	172/53	В-СН3	0.97	(s)	[3H]	2.4	62.2
	[157]	CH ₃	1.03	(t)	[3H]	15.42	
		CH ₃	1.27	(t)	[3H]	15.54	
		CH ₂	2.46	(q)	[2H]	23.06	
		CH ₂ B–C≈	2.78	(q)	[2 H]	24.70	
						137.6	
		S-C=				172.46	
d	186/90	CH ₃	1.04	(t)	[3H]	15.47	64.4
	[41]	$B-CH_2-CH_3$		(t)	[3H]	11.37	
		CH ₃	1.28	(t)	[3H]	15.70	
		B-CH ₂ CH ₂	1.50 2.46	(q) (q)	(2H) [2H]	12.2 23.07	
		CH ₂	2.79	(q) (q)	[2H]	23.07 24.68	
		B-C≈	,	ערי	[-11]	143.7	
		S-C=				174.74	
L e	200/32	CH ₃	1.06	(t)	[3H]	15.44	65.1
	[41]	$CH(CH_3)_2$	1.18	(d)	[6H]	21.67	
		CH ₃	1.29	(t)	[3H]	16.09	
		$CH(CH_3)_2$	1.90	(sp)	[1 H]	18.8	
		CH ₂	2.49	(9)	[2H]	22.91	
		CH ₂ B–C≔	2.79	(q)	[2H]	24.78 143.2	
		l					
		S-C=				176.07	

Tabelle 1 (Fortsetzung)

	n/z . M ⁺ /Int. speak]		δ(¹ H) (ppm)		Int.	δ(¹³ C) (ppm)	δ(¹¹ B) (ppm)
21	276/100 [276]	CH ₃ CH ₃ Ar(CH ₃) ₂ (2) Ar(CH ₃)(4) CH ₂ CH ₂ C ₆ H ₂ ArC(3,5) B-C(1) ArC(4) ArC(2,6) B-C= S-C=	0.89 1.34 2.16 2.28 2.33 2.86 6.84	(t) (t) (s) (s) (q) (q) (s)	[3H] [3H] [6H] [3H] [2H] [2H] [2H]	15.38 15.46 22.97 23.35 21.20 25.13 127.31 134.7 137.80 139.46 144.1	61.4
3a	169/100 [169]	B-CH ₃ CH ₃ CH ₃ N-CH ₃ C(5) C(6) C=O	0.82 2.05 2.20 3.20	(s) (q)(b) (q)(b) (s)	[3H] [3H] [3H] [3H]	4.6 15.20 24.07 32.63 126.88 141.44 167.83	46.2
3b	197/48 [182]	B-CH ₃ CH ₂ =C-CH ₃ CH ₂ CH ₂ N-CH ₃ C(5) C(6) C=O	0.84 0.98 1.54–1.68 2.09 2.47–2.54 3.22	(s) (t) (br) (s) (br) (s)		4.9 13.76 22.17 15.06 39.38 32.56 126.51 146.22 167.66	46.2
3c	197/100 [197]	B-CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ N-CH ₃ C(5) C(6) C=O	0.84 1.07 1.21 2.56 2.59 3.22	(s) (t) (t) (q) (q) (s)	[3H] [3H] [3H] [2H] [2H] [3H]	4.9 14.01 14.07 22.46 30.21 32.55 132.19 148.22 167.61	46.4
3d	211/100 [211]	B-CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C(5) C(6) C=O	0.85 1.06 1.20 1.21 2.53 2.58 3.79	(s) (t) (q) (q) (q)	[3H] [3H] [3H] [3H] [2H] [2H]	4.5 13.99 14.02 15.13 22.45 30.23 40.46 132.49 148.05 166.97	46.3

Tabelle 1 (Fortsetzung)

MS m Verb. [Basis	M^+/Int .		δ(¹ H) (ppm)		Int.	δ(¹³ C) (ppm)	δ(¹¹ B) (ppm)
3e	225/62	B-CH ₃	0.86	(s)	[3H]	5.4	46.3
	[183]	CH ₃	1.06	(t)	[3H]	13.94	
		CH ₃	1.20	(t)	[3 H]	14.07	
		$CH(CH_3)_2$	1.48	(d)	[6 H]	20.91	
		CH ₂	2.51	(q)	[2H]	22.43	
		CH ₂	2.55	(p)	[2H]	29.95	
		CH	4.38	(sp)	[1 H]	45.77	
		C(5)				133.51	
		C(6)				147.13	
		C=O				167.70	
3f	211/100	CH ₃	1.07	(t)	[3H]	14.03	47.7
	[211]	B-CH ₂ CH ₃	1.09	(t)	[3H]	8.89	
		CH ₃	1.23	(t)	[3H]	14.13	
		B-CH ₂	1.32	(p)	[2H]	12.8	
		CH ₂	2.57	(p)	[2H]	22.46	
		CH ₂	2.60	(p)	[2H]	30.50	
		$N-CH_3$	3.20	(s)	[3H]	32.13	
		C(5)				132.12	
		C(6)				148.08	
		C=O				167.68	
3g	225/100	CH ₃	1.07	(t)		13.82	48.4
	[225]	$CH(CH_3)_2$	1.10	(d)		19.16	
		CH ₃	1.23	(t)		13.94	
		CH	1.73	(sp)		17.9	
		CH ₂	2.59	(q)		22.26	
		CH ₂	2.60	(q)		30.37	
		$N-NH_3$	3.25	(s)		32.02	
		C(5)				131.72	
		C(6)				147.66	
		C=O				167.60	

^a ⁵J(HH) 0.7 Hz. ^b ⁵J(HH) 0.9 Hz.

In den 13 C-NMR-Spektren von 1a und 2 werden die stark verbreiterten [4,5], noch bei Raumtemperatur registrierbaren Signale den borständigen Kohlenstoffatomen zugeordnet. Die chemische Verschiebung des S-ständigen (C(6)), doppelt gebundenen Kohlenstoffs ändert sich nach Ersatz von Brom durch Methyl um 3.4 (1a \rightarrow 2a) bzw. 4.6 ppm (1c [R¹ = R² = C₂H₅, R³ = Br] \rightarrow 2c) zum hohen Feld. In der Reihe R³ = CH₃, C₂H₅, i-C₃H₇, (H₃C)₃C₆H₂ sinkt diese Hochfeldverschiebung (R¹ = R² = C₂H₅): 4.6; 2.3; 1.0; 0.3.

Die ¹³C-NMR-Spektren der 2,3-Dihydro-4*H*-thiazaborin-4-one 3 zeigen jeweils im Bereich von 120–200 ppm neben einem Signal, welches der Carbonylgruppe zugeordnet wird, die Existenz zweier nicht borständiger Kohlenstoffatome. Bei der Strukturaufklärung der 2,3-Dihydro-4*H*-1,3,2-selenazaborin-4-one [1] war durch das Auftreten von SeC-Kopplungen eine genaue Zuordnung der registrierten Signale möglich. Da der Ersatz von Se durch S keine Umstrukturierung darstellt und Meßdaten gleicher Größenordnung erwarten läßt, ist durch Vergleich auch eine

genauc zaordnung der C-141411C-Daten von 3 mognen.	genaue Zuordnung	der	¹³ C-NMR-Daten	von 3	möglich:
--	------------------	-----	---------------------------	-------	----------

Ausgewählte	¹³ C-NMR-Daten
-------------	---------------------------

R	X	$\delta(^{13}\mathrm{C})$ (ppm)				
		B-CH ₃	C(5)	C(6)	C=O	
CH ₃	S	4.9	132.19	148.22	167.61	
J	Se	7.4	134.33	147.36	168.48	
C ₂ H ₅	S	4.5	132.49	148.05	166.97	
2 3	Se	6.9	134.65	147.07	167.78	
i-C ₃ H ₇	S	5.4	133.51	147.13	167.70	
5 ,	Se	7.4	135.79	145.92	168.83	

Sowohl für B- CH_3 als auch für C(5) und C=0 werden beim Ersatz von Se durch S substituentenabhängige Hochfeldverschiebungen beobachtet. Dagegen verschiebt sich das C(6) (X-ständig) zugeordnete Signal zum tiefen Feld.

Beschreibung der Versuche

C-, H-Bestimmungen: Mikroanalytisches Labor Beller, Göttingen. NMR-Spektren in CDCl₃ (Standard): ¹H (TMS int.): Bruker WP 80 SY; ¹¹B ((H₅C₂)₂O·BF₃ ext.); ¹³C (TMS int.): Bruker AM 250. Massenspektren: 70 eV, Varian-MAT-CH5 Spektrometer. Molekülpeaks sind durch Feldionisation gesichert.

Alle Reaktionen wurden in N₂-Atmosphäre und getrockneten Lösungsmitteln ausgeführt.

Die präparativen Daten der Verbindungen sind in Tabelle 2 zusammengefaßt.

Ausgangsverbindungen. 3,5-Dibrom-1,2,4-trithia-3,5-diborolan [6] und 3-Brom-4,5-diethyl-1,2,3-dithiaborol [7] wurden nach Literaturangaben hergestellt.

3-Brom-4,5-dimethyl-1,2,3-dithiaborol (1a). In einem Monelzylinder (300 ml) wurde eine Reaktionsmischung aus 27.76 g 3,5-Dibrom-1,2,4-trithia-3,5-diborolan (0.1 mol), 10.82 g 2-Butin (0.2 mol) und 150 ml CCl₄ für 3 d auf 80°C erhitzt. Nach Abtrennung des Solvens folgte die Produktdestillation im Hochvakuum.

3,4,5-Trimethyl- (2a), 3,4-Dimethyl-5-n-propyl- (2b), 4,5-Diethyl-3-methyl- (2c), 3,4,5-Triethyl- (2d), 4,5-Diethyl-3-i-propyl- (2e), 4,5-Diethyl-3-(2,4,6)-trimethylphenyl- (2f)-1,2,3-dithiaborol. Eine Grignard-Lösung, bereitet aus 1.22 g Mg-Spänen (50 mmol) und 4.75 g Methylbromid (50 mmol, für 2a-c), 5.45 g Ethylbromid (50 mmol, für 2e) bzw. 9.95 g Brommesitylen (50 mmol, für 2f) und 150 ml Diethylether, wurde in eine auf -80°C gekühlte Lösung von 10.45 g 1a (50 mmol, für 2a), 11.85 g 3-Brom-4-methyl-5-n-propyl (50 mmol, für 2b) bzw. 11.85 g 3-Brom-4,5-diethyl-1,2,3-dithiaborol (50 mmol, für 2c-f) in 500 ml n-Hexan getropft. Nach langsamem Auftauen folgten Abdekantieren von ausgefallenen Salzen, Abtrennung des Solvens und Produktdestillation im Hochvakuum.

Reindarstellung von 2d, e. Eine auf 0°C gekühlte Lösung von 30 mmol des jeweiligen Rohproduktes (5.58 g 2d bzw. 6.01 g 2e (berechnet auf 2d, e)) in 150 ml n-Hexan wurde mit 2.5 g festem Lithiohexamethyldisilazan (15 mmol) versetzt. Es folgten langsames Auftauen auf Raumtemperatur und 2 h Kochen am Rückfluß. Aufarbeitung: Abdekantieren der erkalteten Reaktionsmischung von ausgefallenen Salzen, Abtrennung des Solvens und Produktdestillation im Hochvakuum.

Tabelle 2
Präparative Daten

Verb.	Ausbeute	Sdp. bei	Summenformel		Analysen ((Gef. (ber.) (%))
	(g/%)	10^{-2} mbar	Molmasse		C	Н
		(°C)	Вег.	Gef. (MS)		
1a	13/62	44	C ₄ H ₆ BBrS ₂		23.63	3.50
	•		208.94	210	(22.99)	(2.89)
2a	3/42	28	$C_5H_9BS_2$		42.45	6.20
	·		144.07	144	(41.69)	(6.30)
2b	4/46	48	$C_7H_{13}BS_2$		49.28	8.08
			172.12	172	(48.85)	(7.61)
2c	4.7/55	42	$C_7H_{13}BS_2$		47.66	7.40
	•		172.12	172	(48.85)	(7.61)
2d	$6/65^{a}$	58	$C_8H_{15}BS_2$		51.47	8.32
	3.1/56 b		186,15	186	(51.62)	(8.12)
2e	$6.2/62^{a}$	65	$C_9H_{17}BS_2$		53.71	8.46
	3.0/50 b		200.17	200	(54.00)	(8.56)
2f	4.8/35	132	$C_{15}H_{21}BS_2$		66.33	7.74
			276.27	276	(65.21)	(7.66)
3a	1.4/41	50 °	C ₇ H ₁₂ BNOS		49.79	7.34
	•		169.05	169	(49.74)	(7.16)
3b	1.5/38	68	C ₉ H ₁₆ BNOS			
			197.11	197		
3c	2/51	56	C ₉ H ₁₆ BNOS		54.91	7.91
			197.11	197	(54.84)	(8.18)
3d	2.1/50	69	$C_{10}H_{18}BNOS$		56.01	8.74
	,		211.13	211	(56.89)	(8.59)
3e	1.8/40	72	$C_{11}H_{20}BNOS$		58.66	8.83
			225.16	225	(58.68)	(8.95)
3f	1.9/48	57	$C_{10}H_{18}BNOS$		56.07	8.25
	•		211.13	211	(56.89)	(8.59)
3g	2/44	82	C ₁₁ H ₂₀ BNOS		58.88	8.86
-			225.16	225	(58.68)	(8.95)

^a Rohausbeute, gem. Gl. 3. ^b Ausbeute, gem. Gl. 4. ^c Sublimationstemp., Schmp.: 62 ° C.

2,3,5,6-Tetramethyl- (3a), 2,3,6-Trimethyl-5-n-propyl- (3b), 5,6-Diethyl-2,3-dimethyl- (3c), 3,5,6-Triethyl-2-methyl- (3d), 5,6-Diethyl-2-methyl-2-i-propyl- (3e), 2,5,6-Triethyl-3-methyl- (3f), 5,6-Diethyl-3-methyl-2-i-propyl- (3g)-2,3-dihydro-4H-1,3,2-thiazaborin-4-on. Auf 20 mmol des jeweiligen 1,2,3-Dithiaborols (2.88 g 2a für 3a, 3.44 g 2b für 3b, 3.44 g 2c für 3c-e, 3.72 g 2d für 3f, 4.00 g 2e für 3g) wurden bei -196°C 1.14 g Methylisocyanat (20 mmol, für 3a-c, f, g), 1.42 g Ethylisocyanat (20 mmol, für 3d) bzw. 1.70 g i-Propylisocyanat (20 mmol, für 3e) aufkondensiert. Nach langsamem Auftauen auf Raumtemperatur wurde für 14 h auf 120°C erhitzt. Produktisolierung durch Destillation im Hochvakuum.

Dank

Für die Förderung dieser Arbeit danke ich der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie, die entsprechende Mittel über Herrn Prof. A. Meller zur Verfügung gerstellt haben.

Literatur

- 1 C. Habben und A. Meller, Chem. Ber., 119 (1986) 1189.
- 2 C. Habben und A. Meller, Chem. Ber., 117 (1984) 2531.
- 3 H. Nöth und B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Springer, Berlin-Heidelberg-New York 1978.
- 4 J.D. Odom, T.F. Moore, R. Goetze, H. Nöth und B. Wrackmeyer, J. Organomet. Chem., 173 (1979) 15.
- 5 B.R. Gragg, W.J. Layton und K. Niedenzu, J. Organomet. Chem., 132 (1977) 29.
- 6 M. Schmidt und W. Siebert, Chem. Ber., 102 (1969) 2752.
- 7 C. Habben, W. Maringgele und A. Meller, Z. Naturforsch. B, 37 (1982) 43.