Journal of Organometallic Chemistry, 372 (1989) 295-309 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09959

Reaktionen von Propiolaldehyd-Derivaten mit Dicarbonylbis(trimethylphosphit)eisen-Fragmenten

Christiane Löwe,

Fakultät für Chemie, Universität Konstanz, Postfach 5560, 7750 Konstanz (B.R.D.)

Hans-Ulrich Hund und Heinz Berke *

Anorganisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, 8057 Zürich (CH) (Eingegangen den 6. März 1989)

Abstract

The reaction of a μ -dinitrogenbis(dicarbonylbis(trimethylphosphite)iron) complex (1) with halogenopropinal acetals yields acetylidodicarbonylhalogenobis(trimethylphosphite)iron compounds, $(OC)_2[P(OMe)_3]_2Fe(X)C\equiv CCH(OR)_2$, X = CI, 6; X = Br, 7; X = I, 8; R = Me, a; R = Et, b; $(OR)_2 = O(CH_2)_3O$, c). 1 and propinal acetals react with formation of a dicarbonylbis(trimethylphosphite)(carbaldehydevinylidene)iron complex (9). A { $(OC)_2[P(OMe)_3]_2Fe=C=CHC(H)O(CH_2)_3O$ } species (10) is generated in low yield when 1 is treated with 2-(1-chloroethinyl)-1,3dioxane (3). 8a, 9 and 10 were characterized by X-ray analyses.

Zusammenfassung

Die Umsetzung eines μ -Distickstoffbis(dicarbonylbis(trimethylphosphit)eisen)-Komplexes (1) mit Halogenpropiolaldehydacetalen führt zu Acetylidodicarbonylhalogenobis(trimethylphosphit)eisen-Verbindungen, $(CO)_2[P(OMe)_3]_2Fe(X)C \equiv$ $CCH(OR)_2$ (X = Cl, 6; X = Br, 7; X = I, 8; R = Me, a; R = Et, b; $(OR)_2=O(CH_2)_3$ -O, c). Die Reaktion von 1 mit Propiolaldehydacetalen ergibt durch Deacetalisierung einen Dicarbonylbis(trimethylphosphit)(carbaldehydvinyliden)eisen-Komplex (9). Eine { $(OC)_2[P(OMe)_3]_2Fe=C=CHC(H)O(CH_2)O$ }-Spezies (10) entsteht als untergeordnetes Produkt bei der Umsetzung von 1 mit 2-(1-Chlorethinyl)-1,3-dioxan (3). 8a, 9 und 10 wurden durch Röntgenstrukturanalysen charakterisiert.

Einleitung

Im Rahmen unserer Untersuchungen cumulierte C_3 -Kohlenstoffketten an Organoübergangsmetall-Fragmenten aufzubauen [1-3], kamen für uns Umsetzun-

gen von C₃-Gerüstmolekülen, wie 3,3-Dialkoxyprop-1-in und deren 1-Halogenabkömmlinge, mit Dicarbonylbis(trimethylphosphit)eisen-Einheiten in Betracht. Dieses Komplexfragment lässt sich photochemisch aus einer Tricarbonylbis(trimethylphosphit)eisen-Spezies über eine μ -Distickstoffbis[dicarbonylbis(trimethylphosphit)eisen]-Verbindung 1 leicht bei Raumtemperatur erzeugen [4,5].

Resultate und Diskussion

Die Reaktion von 1 mit den Chlor-, Brom-, oder Iodpropiolaldehyd-Derivaten 2-5 führen gemäss Gl. 1 zu Chloro, Bromo- bzw. lodoacetylid-Verbindungen 6-8.

Die Reaktionsfolge, die zu den orangen und kristallinen Produkten der oxidativen Addition 6-8 führt, verläuft vermutlich über η^2 -Acetyleneisen-Komplexe [5-7], die sich an einer vorübergehenden braunen Einfärbung der Reaktionslösung zwischen -20 °C zu erkennen geben. Die generelle Disposition von Halogenacetylenen sich an pseudocarbenoide Übergangsmetallfragmente zu addieren, konnte durch mehrere Arbeiten bereits dokumentiert werden [8].

Setzt man die Acetylenderivate 2 mit 1 um, so kann man nach säulenchromatographischer Aufarbeitung in allen Fällen den blassgelben, sehr stabilen Dicarbonylbis(trimethylphosphit)-2-carbaldehydvinylideneisen-Komplex 9 isolieren. Diese Verbindung wird auch direkt durch Reaktion von 1 mit Propiolaldehyd erhalten (vgl. Gl. 1). Es ist zu vermuten, dass die Deacetalisierung bei der Umsetzung von 9 mit 1 oder 2 durch den sauren Einfluss der stationären Phase bei der unvermeidlichen chromatographischen Reinigung induziert wird.

Bei der Umsetzung von 1 mit 3 entsteht 10 als untergeordnetes Produkt, dessen Bildung durch einen reduktiven Prozess aus 6 oder aus der Vorstufe, dem Acetylenkomplex, denkbar wäre. Vergleichbare "Dimerisierungen" wurden bei d^6 -Vinylidenruthenium-Verbindungen beobachtet [9].

Der Aufbau der Komplexe 6–10 wurde durch elementaranalytische und spektroskopische Daten sichergestellt. Von 8a, 9 und 10 wurde darüber hinaus eine Röntgenstrukturbestimmungen durchgeführt. IR-spektroskopisch beobachtet man im 5 μ -Bereich für die Spezies 6–8 neben zwei ν (C=O)-Banden, die für 2 *cis*-ständige Carbonylliganden sprechen, eine schwache Absorption um jeweils 2100 cm⁻¹, die den ν (C=C)-Schwingungen der Acetylideinheiten zugeordnet werden (vgl. Tab. 1).

Im ¹H-NMR Spektrum lassen sich für die Derivate 6-8 Resonanzen den $P(OMe)_3$ -Liganden und den intakten Acetalresten zuordnen. Für die Methinprotonen treten Signale im charakteristischen Bereich zwischen 5.1 und 5.5 ppm auf, wobei im Falle von 6, 8a und 8b diese durch Phosphorkopplung aufgespalten sind (vgl. Tab. 1). Die direkte Bindung des Halogenliganden an das Eisenzentrum lässt sich aus den charakteristischen chemischen Verschiebungen der ³¹P-NMR-Resonanzen von 6-8 ableiten, wobei in den Spektren der Iodverbindungen 8 die Phosphorkerne am stärksten Tieffeld-verschoben absorbieren.

Die 13 C-NMR-Spektren von **6–8** stehen mit der Annahme von nicht fluktuierenden pseudooktaedrischen Komplexen im Einklang. Die *trans*-Stellung von Kohlenoxidliganden zu der Acetylid- bzw. Halogenideinheit lässt sich an ihren unterschiedlichen 13 CO-Signalen erkennen (vgl. Tab. 2).

Die Resonanzen für die Acetylid-Kohlenstoffatome in 6-8 erscheinen relativ lagekonstant in einem Bereich der auch für andere Eisen(II)acetylid-Komplexe gefunden wurde [10a].

Nach dem IR-Spektrum von 9, im Bereich von 2200-1500 cm⁻¹, liegen in Lösung nach $\nu(C=0)$, $\nu(C=0)$ und $\nu(C=C)$ -Bandenanzahl zwei Verbindungen vor, die vermutlich Pseudorotamere 9a und 9b darstellen. Nachdem der Vinylidenligand als starker π -Akzeptor in trigonalen Bipyramiden eine starke Bevorzugung für die equatoriale Position besitzen sollte und ausserdem die $\nu(C=0)$ -Banden für beide Isomere 9a und 9b auf *cs*-ständige Dicarbonyleinheiten hinweisen, ist folgendes rasches Umlagerungsgleichgewicht plausibel:

Im ¹H-NMR Spektrum bei Raumtemperatur aufgenommen findet man ein cha-

Tabelle	1
---------	---

IR-, ¹H-, ³¹P-NMR-Spektren der Verbindungen 6-10

Verb.	IR in n-Hexan	¹ H-NMR, CDCl ₃ rel. TMS	· · · · · · · · · · · · · · · · · · ·	³¹ P { ¹ H}-NMR
	(cm ^{-'}) ν(CO) ν(CC) (Intensität)	δ (ppm) (Gruppierung)	Multiplizität (J(P,H–H) (Hz) Integral)	CDCl ₃ , δ (ppm) rel. H ₃ PO ₄
6	2124s 2060st	5.38 (CH)	t (2, 1H)	
	2014st	$3.93(P(OCH_3)_3)$	t (5.4, 18H)	141.69
		4.28 (OCH ₂ CH ₂ CH ₂ O)	m (2H)	
		3.78 (OCH, CH, CH, O)	m (2H)	
		1.67 (OCH ₂ CH ₂ CH ₂ O)	m (2H)	
7a	2135s	5.15 (CH)		
	2060st	3.95 (P(OCH ₃) ₃)	t (5, 18H)	141.64
	2014st	3.35 (OCH ₃)		
7b	2123s	5.26 (CH)		
	2057st	$3.95 (P(OCH_3)_3)$	t (5, 18H)	141.56
	2016st	3.89 (OCH ₂ CH ₃)	m (2H)	
		$3.79 (OCH_2CH_3)$	m (2H)	
		$1.18 (OCH_2 CH_3)$	t (7, 6H)	
7e	2125s	5.36 (CH)		
	2057st	$3.91 (P(OCH_3)_3)$	t (5, 18H)	141.64
	2011st	4.27 (OCH ₂ CH ₂ CH ₂ O)	m (2H)	
		$3.71 (OCH_2CH_2CH_2O)$	m (2H)	
		$1.66 (\text{OCH}_2\text{CH}_2\text{CH}_2\text{O})$	m (2H)	
8a	2147s	5.12 (CH)	t (1, 1H)	
	2053st	$3.93 (P(OCH_3)_3)$	t (5, 18H)	144.26
	2012st	3.34 (OCH ₃)		
8b	2140s	5.45 (CH)	t (2, 1H)	
	2061st	$3.72 (P(OCH_3)_3)$	t (5, 24H)	144.25
	2025st	$3.72 (OCH_2CH_3)$		
		1.15 (OCH ₂ CH ₃)	t (7, 6H)	
8c	2135s	5.32 (CH)		
	2054st	$3.88 (P(OCH_3)_3)$	t (5, 18H)	144.41
	2011st	$4.21 (OCH_2CH_2CH_2O)$	m (2H)	
		$3.69 (OCH_2CH_2CH_2O)$	m (2H)	
		$1.62 (OCH_2CH_2CH_2O)$	m (2H)	
9	2015st 2007st	9.65 (CHO)	d (7, 1H)	
	1958st	5.68 (=CH)	d,t (7, 14, 1H)	172.16
	1948st		(c	
	1 666 m	$3.69 (P(OCH_3)_3)$	t (6, 18H)	
	1578m 1524m			
10	1077at 9	5 02 (CH)		
10	1977St = 1010st	3.03 (CT) 3.69 (P(OCH))	+/6 1911	
	191951	$3.07 (\Gamma(U \subset \Pi_3)_3)$ $3.08 - 3.87 (O \subset U \subset U \subset U \subset U$	(0, 18H) m (2H)	
	10/23	$3.82 - 3.67$ (UC Π_2 C Π_2 C Π_2 C) $3.48 - 3.41$ (OC Π_2 C Π_2 C Π_2 O)	m (2H)	
		1.29 - 1.15 (OCH CH CH CH O)	m (2H)	
		$1.2011_{2}(11_{2}(11_{2}(11_{2})))$		

^a IR in CCl₄.

Verb.	δ (CO) (Multipli	δ (C=C-C) izität, J(P-C)	δ (CH) (Hz))	ð (Fe-C)	δ (P(OCH ₃) ₃)	8 (OR)2	Lösungsmittel
6	207.41 (t, 35) 203.97 (t, 27)	111.57	90.89	98.27 (t, 51)	54.79	64.03 25.74	CDCl3
7a	210.30 (t, 34) 205.55 (t, 28)	113.48	94.40	95.92 (t, 53)	55.01	51.86	C ₆ D ₆
7ъ	210.35 (t, 35) 205.58 (t, 28)	114.39	92.82	94.74 (t, 53)	55.05	60.08 15.60	C ₆ D ₆
7с	208.84 (t, 34) 204.01 (t, 27)	112.35	90.90	96.53 (t, 51)	55.03	64.02 25.82	CDCI,
8a	210.28 (t, 33) 205.55 (t, 28)	113.48	94 .42	95.92 (t, 58)	55.02	51.69	C ₆ D ₆
8b	209.19 (t, 35) 204.20 (t, 28)	113.50	92.13	94.54 (t, 53)	54.93	59.84 15.17	CDCI,
8c	211.73 (t, 33) 206.26 (t, 27)	114.88	91.99	92.75 (t, 53)	55.45	64.80 26.35	C ₆ D ₆
9	208.84 (t, 30)	129.27	191.72	328.41	52.93		CDCl ₃

Tabelle 2

¹³C-NMR-Daten der Verbindungen 6-9 (δ(ppm) rel. TMS)

rakteristisches Signal bei 5.68 ppm, das auf Grund seiner chemischen Verschiebung und seines Phosphor- und Wasserstoff-Kopplungsmusters (siehe Tab. 1) dem Vinylidenproton zugeordnet werden muss.

¹³C- und ³¹P-NMR-Daten belegen den Aufbau von 8 weiterhin. Im besonderen sind die Lagen der ¹³C-Resonanzen der C_{Vinyliden}-Atome im Einklang mit bislang beobachteten Werten in Eisenkomplexen [10,11]. Vergleichbar mit 9 zeigt das IR-Spektrum der Verbindung 10 zwei ν (C=O)-Banden, die die Anwesenheit von nicht koppelnden chemisch äquivalenten Fe(CO)₂-Einheiten belegen. Eine Bande bei 1872 cm⁻¹ ordnen wir einer Schwingung des Diferrahexatetraen-Systems zu. Das ¹H-NMR-Spektrum von 10 ist, was die Resonanzen der Phosporliganden und der Dioxanyleinheit betrifft, vergleichbar mit denjenigen von 7c und 8c (vgl. Tab. 1).

Geeignete Kristalle für eine Röntgenstrukturuntersuchung wurden von 8a, 9 und 10 durch langsames Abkühlen von Lösungen in Pentan auf -80 °C erhalten. Die Kristall- und Molekülstrukturen von 8a, 9 und 10 konnten auf einem Syntex-P3-Diffraktometer [13] ermittelt werden. Die Kristallparameter und die Messbedingungen sind in Tab. 3 wiedergegeben.

Die Atomkoordinaten und äquivalenten isotropen Temperaturfaktoren von 8a, 9 und 10 sind jeweils den Tabellen 4, 6 und 7 zu entnehmen.

Kristalle von **8a** wurden einer Röntgenstrukturanalyse unterzogen, weil Übergangsmetallacetylid-Komplexe mit monohapto-Acetylideinheiten bislang nur selten strukturell charakterisiert sind [14–17]. Die engere Koordinaten um das Eisenzentrum von **8a** is annähernd oktaedrisch, wobei sich die Phosphitliganden in *trans*-Position zueinander befinden und das Iodatom, der Acetylidrest und die $(CO)_2$ -Einheit "equatorial" angeordnet sind (siehe Fig. 1).

Tabelle 3

Mess-, Kristall- und Verfeinerungsdaten der Verbindungen 8a, 9 und 10

	8a	9	10
Formel	C ₁₃ H ₂₆ FeIO ₁₀ P ₂	C ₁₁ H ₂₀ FeO ₉ P ₂	C ₂₈ H ₅₀ Fe ₂ O ₂₀ P ₄
Kristallsystem	triklin	triklin	monoklin
Raumgruppe	$P\overline{1}$	PĨ	$P2_1/c$
a (Å)	8.507(4)	7.242(1)	15.355(7)
b (Å)	10.963(6)	7.745(1)	12.167(4)
c (Å)	13.446(7)	16.662(2)	34.89(1)
α (°)	99.81(4)	100.28(1)	
β(°)	102.55(4)	99.31(1)	106.95(3)
δ(°)	111.55(4)	93.21(1)	
V (Å ³)	1094(1)	904.1(2)	6235(4)
Ζ	2	2	6
ρ (calc) (g cm ⁻³)	1.78	1.52	1.51
Temp. (°C)	41	- 43	- 40
Kristall-			
abmessung (mm)	$0.2 \times 0.2 \times 0.05$	$0.2 \times 0.2 \times 0.1$	$0.1 \times 0.05 \times 0.3$
Strahlung	Mo- K_{α} , $\lambda = 71.069$ g	om, Graphit-Monochron	nator
Absorp.			
Koeff. (cm^{-1})	22.7	10.4	9.2
Scan-Geschwin-			
digkeit (° min ^{-1})	$1.9 \leq \dot{\omega} \leq 20.0$	$1.9 \le \dot{\omega} \le 29.3$	$2.4 \leq \dot{\omega} \leq 29.3$
2 θ -Scan			
Bereich (°)	$4.0 \le 2\theta \le 50.0$	$4.0 \le 2\theta \le 52.0$	$4.0 \le 2\theta \le 46.0$
Scan-Technik	ω-scan	ω-scan	ω-scan
$\Delta \omega(°)$	1	1	1
Gesammelte			
Reflexe	4153	3848	8686
Gesammelte			
Refl. m. $I > 1.5\sigma$	3809	2787	5949
LS-Parameter	226	226	604
Lösung (SHELXTL)	Patterson	Patterson	direkte Methoden
R _F	0.033	0.050	0.074
R_{F^2}	0.037	0.057	0.081

Aufgrund der ungefähren sp-Hybridisierung an C3 findet man einen relativ kurzen Fe-C3-Abstand (vgl. Tab. 5).

Der Fe1-C3-C4 Winkel erscheint mit 170.7° im Vergleich zu früheren Strukturbestimmungen [14] signifikant verengt, während der C3-C4-Acetylidabstand demjenigen in Acetylenverbindungen oder in Acetylidkomplexen sehr nahe kommt, so dass die Verzerrung des Winkels an C3 keine offensichtliche Ursache besitzt.

Die Verbindungen 9 und 10 wurden strukturell untersucht, weil zum einen aus den verfügbaren spektroskopischen Daten ihr Aufbau nicht völlig zweifelsfrei abgeleitet werden konnte, und zum andern weil trigonal bipyramidale d^8 -Komplexe mit Vinylidenliganden bisher nicht bekannt sind.

Die Komplexe 9 und 10 stehen in enger chemischer und struktureller Verwandtschaft zueinander. Sie erlauben daher einen eingehenden Vergleich ihrer Bindungsverhältnisse. Im Kristall von 10 beobachtet man zwei kristallographisch unabhängige Moleküle. Molekül 2 befindet sich auf einem kristallographischen Inversionszentrum. Die Eisenzentren in 9 und 10 (beide Moleküle) sind in erster Näherung trigonal bipyramidal koordiniert, besitzen jedoch Verzerrungskoordinaten in Richtung auf eine quadratische Pyramide, wobei in 9 C101, in 10 an Fe1C202, an Fe2C16O12 und an Fe3C30O22 den jeweils apicalen CO-Liganden einer quadratischen Pyramide darstellen würden (vgl. Fig. 2).

Bei Betrachtung von 9 und 10 mit jeweils trigonal bipyramidal koordinierten Eisenzentren nimmt die Vinylideneinheit eine equatoriale Position ein. In bezug auf die beiden CO-Gruppen liegt eine asymmetrische Anordnung vor. Ohne dass eine signifikante Winkelung am metallgebundenen Kohlenstoffatom erkennbar wäre,

Atom	x	у	Z	U
Fe1	640(1)	2067(1)	2147(1)	19(1)
11	159(1)	2000(1)	4034(1)	30(1)
C1	-1375(6)	523(4)	1594(4)	26(2)
01	-2646(4)	- 445(3)	1238(3)	39(1)
C2	1021(6)	2138(4)	911(4)	26(2)
02	1293(5)	2231(4)	143(3)	38(2)
C3	2731(6)	3802(4)	2712(3)	26(2)
C4	3926(6)	4913(5)	2931(4)	32(2)
C5	5377(7)	6275(5)	3219(4)	35(2)
O3	4639(5)	7243(3)	3327(3)	40(1)
C6	5958(8)	8625(5)	3736(5)	49(2)
04	6356(5)	6446(4)	2488(3)	40(2)
C7	5323(8)	6263(6)	1443(4)	48(3)
P1	- 781(2)	3386(1)	1971(1)	23(1)
O5	- 2839(4)	2492(3)	1406(3)	33(1)
C8	- 4057(7)	3101(6)	1118(4)	41(2)
O6	-157(5)	4309(3)	1223(3)	33(1)
C9	-2(10)	5681(6)	1323(5)	54(3)
07	- 857(4)	4378(3)	2946(3)	32(1)
C10	666(7)	5413(5)	3786(4)	40(2)
P2	2208(2)	853(1)	2440(1)	34(1)
O8	2609(5)	367(4)	1404(3)	42(2)
C11	3541(8)	- 498(6)	1317(5)	49(3)
09	898(7)	- 745(5)	2458(4)	35(1)
O9F	2234(12)	21(9)	3174(7)	28(2)
C12	764(10)	- 1199(6)	3261(6)	73(4)
O10	3684(7)	1139(5)	3459(4)	38(1)
010F	4549(12)	1923(9)	2932(7)	25(2)
C13	5284(8)	2524(7)	3925(5)	56(3)

Atomkoordinaten und äquivalente isotrope Temperaturfaktoren $[10^3 \text{ Å}^2]$ mit Standardabweichungen der Verbindung 8a

Tabelle 5

Bindungslängen (Å) und Bindungswinkel (°) mit Standardabweichungen der Verbindung 8a

-				
Fe1-I1	2.665(1)	I1-Fe1-C1	87.1(2)	· · · ·
Fe1-C2	1.770(5)	C1-Fe1-C2	94.3(2)	
Fe1–P1	2.211(2)	C1-Fe1-C3	176.2(3)	
C1-O1	1.133(5)	I1-Fe1-P1	90.1(1)	
C3C4	1.201(6)	C2-Fe1-P1	90.4(2)	
C5-O3	1.421(8)	I1Fe1-P2	87.4(1)	
O3-C6	1.434(5)	C2-Fe1-P2	92.0(2)	
Fel-Cl	1.800(4)	P1-Fe1-P2	175.7(1)	
Fe1–C3	1.948(4)	C3-C4-C5	178.8(6)	
Fe1-P2	2.227(2)	C4-C5-O4	113.2(4)	
C2-O2	1.119(6)	I1-Fe1-C2	178.5(1)	
C4-C5	1.464(6)	I1-Fe1-C3	93.7(1)	
C5-04	1.414(7)	C2-Fe1-C3	85.0(2)	
O4-C7	1.423(7)	C1-Fe1-P1	93.0(2)	
		C3-Fe1-P1	83.3(2)	
		C1-Fe1-P2	90.4(2)	
		C3-Fe1-P2	93.3(2)	
		Fe1-C3-C4	170.7(5)	
		C4-C5-O3	107.8(4)	
		O3-C5-O4	111.5(5)	

findet man die equatorial angeordnete und mit der equatorialen Ebene coplanare C_2R_2 -Gruppierung stets näher auf einen CO-Liganden ausgelenkt. Die andererseits verursachte Aufweitung des Winkels (C2Fe1C3 in 9; C1Fe1C2, C15Fe2C17, C29Fe3C31 in 10) sorgt für den Freiraum, den Elektronendichte eines entstehenden freien Elektronenpaares beim Übergang zu einer quadratischen Pyramide mit d^8 -konfiguriertem Metallzentrum beansprucht (vgl. Tab. 8, siehe vor allem Interplanarwinkel).

Die beobachtete Substitutions- und Orientierungspräferenz des Vinylidenliganden in 9 und 10 ist in Übereinstimmung mit den theoretischen Aussagen über "single faced" π -Akzeptoren in trigonalen Bipyramiden [18]. Der jeweilige Fe-C_{Vinvliden}-Abstand in 9 und 10 spricht für einen sehr starken Kontakt, da er in 304

Atom	x	у	Z	U
Fel	6648(1)	9759(1)	7659(1)	22(1)
C1	5624(8)	8327(7)	8239(3)	35(2)
01	4879(7)	7455(6)	8592(3)	58(2)
C2	9074(7)	9322(6)	7821(3)	28(2)
02	10622(5)	9083(5)	7926(2)	41(1)
C3	5334(7)	11177(6)	7137(3)	26(1)
C4	4281(7)	12202(7)	6722(3)	31(2)
C5	2292(8)	12113(7)	6664(3)	37(2)
03	1205(6)	12864(5)	6229(3)	52(2)
P1	6133(2)	7878(2)	6495(1)	23(1)
04	4262(5)	6569(5)	6269(2)	38(1)
C6	2458(7)	7135(8)	6324(4)	43(2)
O5	7636(5)	6465(4)	6444(2)	29(1)
C7	7600(7)	5186(7)	5690(3)	33(2)
O6	6014(5)	8591(4)	5651(2)	31(1)
C8	7507(8)	9785(8)	5552(4)	40(2)
P2	7410(2)	11952(2)	8688(1)	30(1)
07	5946(6)	13260(5)	8977(3)	51(2)
C9	4121(11)	12618(12)	9093(5)	74(3)
08	8392(6)	11306(5)	9490(2)	43(1)
C10	9167(11)	12520(8)	10251(3)	55(2)
09	9022(6)	13400(5)	8610(2)	43(1)
C11	8794(10)	14370(7)	7955(3)	45(2)

Atomkoordinaten und äquivalente Temperaturfaktoren $[10^3 \text{ Å}^2]$ mit Standardabweichungen des Komplexes 9

der Grössenordnung der Eisenabstände zu den Kohlenoxidliganden liegt (vgl. Tab. 6, 7). Terminale Vinylideneinheiten sind im allgemeinen sehr fest an Übergangsmetallzentren koordiniert. Man findet die Abstände solcher carbenoider Liganden zu leichten Übergangselementen im Bereich zwischen 1.684 und 1.784 Å [10,11,19,20]. Vergleichbar mit Literaturdaten übereinstimmend sind auch die (C=C)_{Vinyliden}-Bindungslängen von 9 und 10 zwischen 1.295 und 1.337 Å.

Experimenteller Teil

Alle Arbeiten wurden mit getrockneten Lösungsmitteln unter Luft- und Feuchtigkeitsausschluss unter Schutzgasatmosphäre durchgeführt. Die μ -Distickstoffbis-[dicarbonylbis(trimethylphosphit)eisen]-Verbindung 1 wurde nach Lit. 5a erhalten.

Die Propargylaldehyddialkoxyacetal-Verbindungen 2 [21] und 1-Halogen-3,3-dialkoxyprop-1-in-Derivate 3-5 wurden analog der Literatur [21c,22] in guten Ausbeuten dargestellt. Die Verbindung 3c wurde aus 1,2-Dibrompropiolaldehyd durch Kondensation mit 1,3-Propandiol/p-Toluolsulfonsäure (Wasserabschneider) und anschliessender HBr-Abspaltung mit KOH gewonnen. Die Chlorierung erfolgte analog zur Literaturvorschrift [22b]. Die Konstitution der Verbindungen 2-5 wurde durch ¹H-, ¹³C- und IR-Daten sichergestellt. Der verwendete Petrolether siedete im Bereich von 40-80°C. Chromatographische Aufarbeitung der Reaktionsgemische erfolgte auf Säulen vom Durchmesser 3 cm mit 20-25 cm Füllhöhe unter Schutzgas-

Tabelle 7

Atomkoordinaten und äquivalente Temperaturfaktoren [10³ Å²] mit Standardabweichungen von 10

Atom	x	у	Z	U
Fe1	3212(1)	2364(1)	2165(1)	26(1)
C1	3999(7)	2745(8)	2641(3)	36(4)
01	4485(5)	2949(7)	2946(2)	54(3)
C2	3373(7)	3402(8)	1829(3)	36(4)
02	3415(5)	4041(6)	1597(2)	51(3)
C3	2424(6)	1270(7)	2001(2)	22(3)
C4	1873(6)	407(7)	1868(3)	22(3)
C5	1678(6)	- 360(7)	2165(2)	24(3)
O3	2487(4)	-625(6)	2458(2)	46(3)
04	1079(5)	182(6)	2348(2)	49(3)
C6	814(7)	- 549(11)	2616(3)	59(5)
C7	1664(9)	- 950(11)	2936(3)	61(5)
C8	2322(8)	- 1399(10)	2737(4)	56(5)
P1	2117(2)	3259(2)	2292(1)	32(1)
O5	1722(5)	2851(6)	2642(2)	47(2)
C9	2258(8)	2252(10)	2975(3)	51(3)
O6	1178(5)	3455(6)	1953(2)	52(2)
C10	471(8)	2678(10)	1825(4)	53(3)
07	2364(5)	4519(6)	2391(2)	44(2)
C11	1740(8)	5284(10)	2483(4)	56(3)
P2	4165(2)	1202(2)	2050(1)	29(1)
O 8	3957(4)	723(5)	1611(2)	34(2)
C12	3757(8)	- 420(9)	1506(3)	45(3)
09	4363(4)	71(5)	2292(2)	37(2)
C13	4541(7)	43(9)	2719(3)	38(2)
O10	5148(4)	1723(5)	2114(2)	39(2)
C14	5873(8)	1069(10)	2044(4)	54(3)
Fe2	230(1)	- 1863(1)	1158(1)	27(1)
C15	- 183(7)	- 2643(9)	709(3)	45(4)
011	- 406(7)	- 3114(7)	411(2)	76(4)
C16	- 103(6)	- 2613(8)	1530(3)	37(4)
012	- 288(6)	- 3058(7)	1784(3)	66(4)
C17	893(7)	-665(8)	1298(3)	30(3)
C18	1451(6)	201(7)	1433(3)	25(3)
C19	1755(6)	920(7)	1147(3)	23(3)
O13	1122(4)	1808(5)	1014(2)	32(2)
014	1832(4)	318(5)	814(2)	32(2)
C20	2227(8)	992(9)	574(3)	44(4)
Ç21	1647(8)	1974(9)	432(3)	44(4)
C22	1474(7)	2562(8)	785(3)	39(4)
P3	- 964(2)	- 832(2)	979(1)	33(1)
015	-1021(4)	287(5)	1216(2)	35(2)
C23	- 918(8)	215(10)	1629(3)	49(3)
O16	-1221(5)	- 330(6)	536(2)	45(2)
C24	- 545(7)	151(9)	388(3)	42(3)
017	-1880(5)	- 1452(6)	960(2)	44(2)
C25	- 2749(9)	- 888(11)	852(4)	67(4)
P4	1519(2)	- 2687(2)	1278(1)	33(1)
018	2105(4)	- 2631(5)	1733(2)	35(2)
C26	3002(8)	3080(10)	1882(3)	53(3)
019	2261(5)	- 2251(6)	1072(2)	46(2)
C27	1 996(8)	- 2091(10)	650(3)	47(3)

Atom	x	у	Z	U
020	1532(5)	- 3950(7)	1144(2)	54(2)
C28	954(9)	-4738(12)	1251(4)	67(4)
Fe3	6518(1)	2966(1)	543(1)	24(1)
C29	7057(6)	2489(8)	1042(3)	35(4)
O2 1	7377(6)	2192(7)	1364(2)	57(3)
C30	6836(7)	1976(8)	236(3)	33(4)
O22	7021(5)	1334(5)	30(2)	44(3)
C31	5782(6)	4095(7)	369(2)	24(3)
C32	5208(6)	4894(7)	224(3)	23(3)
C33	4873(7)	5658(8)	491(3)	37(4)
O23	5623(5)	5972(7)	820(2)	53(3)
024	4231(5)	5126(6)	632(2)	43(3)
C34	3856(8)	5888(11)	857(4)	61(5)
C35	4581(8)	6278(11)	1209(3)	55(5)
C36	5337(9)	6767(12)	1057(4)	75(6)
P5	5279(2)	2080(2)	499(1)	32(1)
025	5479(5)	801(6)	560(2)	44(2)
C37	4757(9)	-1(11)	510(4)	63(4)
O26	4494(5)	2059(6)	83(2)	48(2)
C38	3697(7)	2764(9)	- 20(3)	47(3)
O27	4687(5)	2343(6)	788(2)	52(2)
C39	5008(9)	2944(11)	1150(4)	60(3)
P6	7589(2)	4076(2)	503(1)	29(1)
O28	7608(4)	4191(5)	54(2)	36(2)
C40	8206(8)	4946(10)	- 64(4)	53(3)
O29	7602(4)	5332(5)	623(2)	37(2)
C41	7735(8)	5623(10)	1036(3)	49(3)
O30	8612(5)	3792(6)	749(2)	41(2)
C42	8977(8)	2715(9)	711(3)	49(3)

Tabelle 7 (continued)

atmosphäre bei ca. -20°C. Als stationäre chromatographische Phase wurde Kieselgel 60 der Firma Merck verwendet. Bestrahlungen wurden mit einer Philips HPK-125-Quecksilberhochdrucklampe bzw. Hanau-Quecksilber-Hochdrucktauchlampe TQ 718 durchgeführt.

Die spektroskopischen Daten wurden auf folgenden Geräten ermittelt. IR-Spektren: Mattson Polaris FT-IR-Spektrometer. ¹H-NMR-Spektren: JEOL FX 90Q; Bruker WM 250; JEOL JNM-GX 400 FT. ³¹P-NMR-Spektren: JEOL JNM-GX 400 FT. ¹³C-NMR-Spektren: JEOL FX 90 FT; Bruker WM 2250; JEOL JNM-GX 400 FT. Massenspektren: Varian MAT 112; Finnigan MAT 112 S/312.

3,3-Dialkoxypropinyldicarbonylhalogenbis(trimethylphosphit)eisen-Verbindungen (6-8)

3 g (7.7 mmol) Tricarbonylbis(trimethylphosphit)eisen werden entsprechend der Literaturvorschrift [5a] bestrahlt. Zu der kalten Etherlösung gibt man 10 mmol der Verbindungen 3-5 und lässt unter Rühren auf Raumtemperatur erwärmen. Anschliessend wird das Lösungsmittel im Hochvakuum vollständig abgezogen. Der Rückstand wird mit Petrolether extrahiert und der Petroletherextrakt chromatographiert. Mit Petrolether/Ether (1/1) kann jeweils eine orangefarbene Zone eluiert werden, die aus Pentan bei -80°C umkristallisiert wird.

Tabelle 8

Gegenüberstellung äquivalenter Bindungslängen (Å), Bindungswinkel (°) (Standardabweichungen in Klammern) und Interpfanarwinkel (°) der Verbindungen 9 und 10

6		10						
		Molekül 1		Molekül 1		Molekül 2		
Fel-Cl	1.799(6)	Fe1-C1	1.807(9)	Fe2-C15	1.78(1)	Fe3-C29	1.80(1)	I I
Fe1-C3	1.749(5)	Fe1-C3	1.778(9)	Fe2-C17	1.763(9)	Fe3-C31	1.771(9)	
Fel-P2	2.163(1)	Fel-P2	2.155(3)	Fe2-P4	2.148(3)	Fe3-P6	2.164(3)	
C2-02	1.137(6)	C2-02	1.14(1)	C16-012	1.14(1)	C30-022	1.15(1)	
C4-CS	1.425(8)	C4-C3	1.49(1)	C18-C19	1.50(1)	C32-C33	1.51(1)	
Fel-C2	1.794(5)	Fel-C2	1.79(1)	Fe2-C16	1.78(1)	Fe3-C30	1.77(1)	
Fe1-P1	2.174(1)	Fel-Pl	2.155(3)	Fe2-P3	2.158(3)	Fe3-P5	2.154(3)	
C1-01	1.139(8)	C1-01	1.13(1)	C15-011	1.15(1)	C29-021	1.15(1)	
C3-C4	1.335(7)	C3-C4	1.34(1)	C17-C18	1.35(1)	C31-C32	1.31(1)	
C5-03	1.225(7)	C4-C18	1.49(1)	C19-013	1.44(1)	C32-C32A	1.54(1)	
C1-Fe1-C2	102.6(2)	C-1-Fe1-C2	103.8(4)	C15-Fe2-C16	105.3(5)	C29-Fe3-C30	103.8(5)	
C2-Fe1-C3	135.1(2)	C2-Fel-C3	121.9(4)	C16-Fe2-C17	119.2(5)	C30-Fe3-C31	125.4(4)	
C2-Fe1-P1	90.4(1)	C2-Fe1-PI	92.5(4)	C16-Fe2-P4	96.3(3)	C30-Fe3-P5	90.6(3)	
C1-Fe1-P2	95.4(2)	C1-Fe1-P2	91.8(3)	C15-Fe2-P4	89.7(4)	C29-Fe3-P6	97.0(3)	
C3Fe1-P2	87.4(1)	C3-Fe1-P2	83.4(3)	C17-Fe2-P4	84.6(3)	C31-Fe3-P6	85.1(3)	
Fe1C101	176.1(5)	Fe1-C1-01	177.4(9)	Fe2-C15-011	176.0(1)	Fe3-C29-021	178.0(1)	
Fel-C3-C4	177.6(4)	Fel-C3-C4	176.1(8)	Fe2-C17-C18	174.8(7)	Fe3-C31-C32	176.8(7)	
C4-C5-O3	126.0(6)	C3-C4-C18	121.7(8)	C4-C18-C19	117.0(7)	C31-C32-C32A	124.0(1)	
CI-Fel-C3	122.4(2)	C1-Fe1-C3	134.3(4)	C15-Fe2-C17	135.3(5)	C29-Fe3-C31	130.7(5)	
C1-Fe1-P1	95.5(2)	C1-Fe1-P1	91.9(4)	C15-Fe2-P3	90.0(4)	C29-Fe3-P5	93.2(3)	
C3-Fel-Pl	87.1(1)	C3-Fe1-P1	86.9(3)	C17-Fe2-P3	88.5(3)	C31-Fe3-P5	84.3(3)	
C2-Fel-P2	86.9(1)	C2-Fe(1)-P2	96.3(4)	C16-Fe2-P4	93.6(3)	C30-Fe3-P6	92.1(4)	
P1-Fe1-P2	169.2(1)	P1-Fe1-P2	169.4(1)	P3-Fe2-P4	169.8(1)	P5-Fe3-P6	168.6(1)	
Fe1-C2-02	178.5(4)	Fe1-C2-02	175.0(8)	Fe2-C16-012	176.4(9)	Fe3-C30-022	178.4(7)	
C3-C4-C5	121.8(5)	C3-C4-C5	119.1(7)	C4-C18-C17	122.0(8)	C31-C32-C33	122.1(8)	
		C5-C4-C18	119.2(7)	C17-C18-C19	120.7(8)	C33-C32-C32A	114.3(9)	
P1-Fe1-P2		PI-Fel-P2		P3-Fe2-P4		P5-Fe3-P6		
C3-Fe1-P1	59.4	C3-Fel-Pl	23.8	C17-Fe2-P3	47.6	C31-Fe3-P5	21.7	
P1-Fe1-P2		P1-Fe1-P2		P3-Fe2-P4		P5-Fc3-P6		
C3-Fel-P2	59.5	C3-Fe1-P2	24.0	C17-Fe2-P4	47.9	C31-Fe3-P6	21.7	
C3-Fel-Pl		C3-Fe1-P1		C17-Fe2-P3		C31-Fe3-P5		
C3-Fe1-P2	9.3	C3-Fe1-P2	4.8	C17-Fe2-P4	7.5	C31-Fe3-P6	4.2	

307

6: Ausbeute 400 mg (14%). Gef.: C, 33.07; H, 5.13. $C_{14}H_{25}ClFeO_{10}P_2$ (506.95) ber.: C, 33.19; H, 4.97%. MS: $m/e = 507 [M]^+$, 451 $[M - 2CO]^+$, 415 $[M - Cl, 2CO]^+$ (FAB-Spektrum).

7a: Ausbeute 350 mg (8.5%). Gef.: C, 28.97; H, 4.67. $C_{13}H_{25}BrFeO_{10}P_2$ (539.03) ber.: C, 28.96; H, 4.67%. MS: $m/e = 539 [M]^+$, 508 $[M - OCH_3]^+$, 481 $[M - 2CO]^+$, 450 $[M - 2CO, OCH_3]^+$, 428 $[M - Br, OCH_3]^+$, 403 $[M - 2CO, Br]^+$ 384 $[M - 2CO, C=CCHCOCH_3)_2]^+$.

7b: Ausbeute 620 mg (14%). Gef.: C, 31.47; H, 5.18. $C_{15}H_{29}BrFeO_{10}P_2$ (567.07) ber.: C, 31.77; H, 5.15%. MS: $m/e = 567 [M]^+$, 539 $[M - CO]^+$, 511 $[M - 2CO]^+$, 466 $[M - 2CO, OC_2H_5]^+$, 431 $[M - Br, 2CO]^+$, 387 $[M - 2CO, P(OCH_3)_3]^+$, 356 $[M - 2CO, P(OCH_3)_3, OCH_3]^+$, 342 $[M - 2CO, P(OCH_3)_3, OCH_2CH_3]^+$, 307 $[M - 2CO, P(OCH_3)_3, Br]^+$.

7c: Ausbeute 730 mg (17%). Gef.: C, 30.34; H, 4.50. $C_{14}H_{25}BrFeO_{10}P_2$ (551.04) ber.: C, 30.51; H, 4.57%. MS: $m/e = 551 [M]^+$, 523 $[M - CO]^+$, 495 $[M - 2CO]^+$, 415 $[M - 2CO, Br]^+$, 291 $[M - 2CO, Br, P(OCH_3)_3]^+$.

8a: Ausbeute 1.20 g (23%). Gef.: C, 26.07; H, 4.13. $C_{13}H_{25}FeIO_{10}P_2$ (586.02) ber.: C, 26.64; H, 4.29%. MS: $m/e = 586 [M]^+$, 555 $[M - OCH_3]^+$, 530 $[M - 2CO]^+$, 499 $[M - 2CO, OCH_3]^+$, 459 $[M - CO, C=CCH(OCH_3)_2]^+$, 403 $[M - 2CO, I]^+$, 372 $[M - 2CO, I, OCH_3]^+$.

8b: Ausbeute 1.25 g (26%). Gef.: C, 29.36; H, 4.70. $C_{15}H_{29}FeIO_{10}P_2$ (614.07) ber.: C, 29.33; H, 4.75%. MS: $m/e = 614 [M]^+$, 558 $[M - 2CO]^+$, 513 [M - 2CO, $OC_2H_5]^+$, 386 $[M - 2CO, OC_2H_5, I]^+$, 307 $[M - 2CO, P(OCH_3)_3, C=CCH(OC_2H_5)_2]^+$.

8c: Ausbeute 0.95 g (20%). Gef.: C, 27.99; H, 4.17. $C_{14}H_{25}FeIO_{10}P_2$ (598.03) ber.: C, 28.11; H, 4.21%. MS: $m/e = 598 [M]^+$, 570 $[M - CO]^+$, 542 $[M - 2CO]^+$, 415 $[M - 2CO, I]^+$, 291 $[M - 2CO, I, P(OCH_3)_3]^+$.

2-Carbaldehydvinylidendicarbonylbis(trimethylphosphit)eisen (9)

Entsprechend der Darstellung der Komplexe 6-8 wird die kalte Etherlösung von 1 mit 10 mmol der Liganden 2 versetzt und analog aufgearbeitet (gelbe Zone Petrolether/Ether (1/1) bei der Chromatographie). Nach Umkristallisieren aus Pentan bei - 80°C fällt die Verbindung 9 als gelbes Kristallpulver an.

9: Ausbeute 0.8 g (37%). Gef.: C, 32.11; H, 4.83. $C_{11}H_{20}O_9P_2Fe$ (414.06) Ber.: C, 31.90; H, 4.86%. MS: $m/e = 414 [M]^+$, 386 $[M - CO]^+$, 358 $(M - 2CO]^+$, 304 $[M^+ - 2CO, C=CHCHO]^+$.

μ -[2,3-Bis(1,3 dioxan-2-yl)-1,3-butadien-1,1,4,4-tetrayl]bis[dicarbonylbis(trimethyl-phosphit)eisen(0)] (10)

Bei der Aufarbeitung der Reaktion von 1 mit 3 kann bei der Chromatographie mit Petrolether/Ether (4/1) eine gelbe Zone eluiert werden, in der hauptsächlich $(CO)_2[P(OCH_3)_3]_3$ Fe enthalten ist. Nach Kristallisation bei -80° C werden wenige mg orange Kristalle der Verbindung 10 isoliert.

10 MS: $m/e = 942 [M]^+$, 790 $[M - CO, P(OCH_3)_3]^+$, 666 $[M - CO, 2P(OCH_3)_3]^+$, 638 $[M - 2CO, 2P(OCH_3)_3]^+$, 610 $[M - 3CO, 2P(OCH_3)_3]^+$, 486 $[M - 3CO, 3P(OCH_3)_3]^+$, 458 $[M - 4CO, 3P(OCH_3)_3]^+$.

Literatur

- 1 H. Berke, P. Härter, G. Huttner und L. Zsolnai, Z. Naturforsch. B, 36 (1981) 1277.
- 2 H. Berke, P. Härter, G. Huttner und L. Zsolnai, Chem. Ber., 115 (1982) 695.
- 3 H. Berke, U. Grössmann, G. Huttner und O. Orama, Z. Naturforsch. B, 39 (1984) 1759.
- 4 R. Birk, H. Berke, G. Huttner und L. Zsolnai, Chem. Ber., 121 (1988) 1557.
- 5 (a) H. Berke, G. Huttner, W. Bankhardt, J. v. Seyerl und L. Zsolnai, Chem. Ber., 114 (1981) 2754; (b)
 H. Berke, R. Birk, G. Huttner und L. Zsolnai, Z. Naturforsch. B, 39 (1984) 1380.
- 6 R. Birk, H. Berke, G. Huttner und L. Zsolnai, Chem. Ber., 121 (1988) 471.
- 7 (a) K.H. Pannell und G.M. Crawford, J. Coord. Chem., 2 (1973) 251; (b) D.L. Reger, S.A. Klaeren und L. Lebioda, Organometallics, 7 (1988) 189.
- 8 (a) J. Burgess, M.E. Howden, R.D.W. Kemmitt und N.S. Sridhara, J. Chem. Soc., Dalton Trans., (1978) 1577; (b) B. Cetinkaya, M.F. Lappert, J. McMeeking und D.E. Palmer, J. Chem. Soc., Dalton Trans., (1973) 1202; (c) M.I. Bruce, D.A. Harbourne, F. Waugh und F.G.A. Stone, J. Chem. Soc. A, (1968) 356; (d) M.I. Bruce, M.G. Humphrey, J.G. Matisons, S.K. Roy und A.G. Swincer, Aust. J. Chem., 37 (1984) 1955.
- 9 M.I. Bruce, M.P. Cifuentes, M.R. Snow und E.R.T. Tiekink, J. Organomet. Chem., 359 (1989) 379.
- 10 (a) A. Davidson und J.P. Selegue, J. Am. Chem. Soc., 100 (1978) 7763; (b) R.D. Adams, A. Davidson und J.P. Selegue, J. Am. Chem. Soc., 101 (1979) 7232; (c) J.P. Selegue, J. Am. Chem. Soc., 104 (1982) 119.
- 11 M.I. Bruce und A.G. Swincer, Adv. Organomet. Chem., 22 (1983) 59.
- 12 Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53712, des Autors und des Zeitschriftenzitates angefordert werden.
- 13 G. Sheldrick, Programmsystem SHELXTL, Revision 4, Göttingen 1983.
- 14 R. Nast, Coord. Chem. Rev., 47 (1982) 89.
- 15 (a) J.M. Wisner, T.J. Bartczak und J.A. Ibers, Inorg. Chim. Acta, 100 (1985) 115; (b) M.I. Bruce, M.G. Humphrey, M.R. Snow und E.R.T. Tiekink, J. Organomet. Chem., 314 (1986) 213.
- 16 M.I. Bruce, K.R. Grundy, M.J. Liddell, M.R. Snow und E.R.T. Tiekink, J. Organomet. Chem., 344 (1988) C49.
- (a) Nor. A. Buang, D.L. Hughes, N. Kashef, R.L. Richards und A.J.L. Pombeiro, J. Organomet. Chem., 323 (1987) C47; (b) M.H. Kowalski, A.M. Arif und P.J. Stang, Organometallics, 7 (1988) 1227; (c) A. Hill, D.L. Hughes, N. Kashef, R.L. Richards, M. Amelia, N.D.A. Lemos und A.J.L. Pombeiro, J. Organomet. Chem., 350 (1988) C4; (d) C. Bianchini, C. Mealli, M. Peruzzuini, F. Vizza und F. Zanobi, J. Organomet. Chem., 346 (1988) C53.
- 18 A.R. Rossi und R. Hoffmann, Inorg. Chem., 14 (1975) 365.
- 19 H. Berke, G. Huttner und J. von Seyerl, J. Organomet. Chem., 218 (1981) 193.
- 20 (a) H. Umland und U. Behrens, J. Organomet. Chem., 273 (1984) C39; (b) N.E. Kolobova, O.S. Zhvanko, L.L. Ivanov, A.S. Batsanov und Yu.T. Struchkov, J. Organomet. Chem., 302 (1986) 235.
- 21(a) L. Claisen, Chem. Ber., 31 (1898) 1010; Chem. Ber., 31 (1898) 1021; Chem. Ber., 36 (1903) 3664; Chem. Ber., 40 (1907) 3907; (b) F. Reitzenstein und G. Bönitsch, J. Prakt. Chem., 36 (1912) 34; (c) M. Grard, Ann. Chim., 13 (1930) 336; (d) J.C. Sheehan und C.A. Robinson, J. Am. Chem. Soc., 71 (1949) 1436; (e) O.H. Johnson und J.R. Holum, J. Org. Chem., 23 (1958) 738; (f) J.P. Ward und D.A. van Dorp, Rec. Trav. Chim. Pays-bas, 85 (1966) 117; (g) A. Gorgues und A. Le Coq, Tetrahedron Letters, 51 (1976) 4723; (h) A. Gorgues, A. Le Coq, G. Saucy und P.S. Manchand, Org. Synth., 59 (1979) 10; (i) Synthesis of Acetylenes, Allenes and Cumulenes Studies in Organic Chemistry 8, Elsevier Scientific, Publishing Company, Amsterdam 1981; L. Brandsma und H.D. Verkruijsse (Hrsg); (j) M.M. Kreevoy, H.B. Charman und D.R. Vinard, J. Am. Chem. Soc., 83 (1961) 1978.
- 22 (a) A. Gorgues, C.R. Acad. Sc. Paris C, 265 (1967) 1130; (b) E. Lagset, P. Klaboe, E. Klosters-Jensen, S.J. Cyvin und F.M. Nicolaisen, Spectrochim. Acta, 29A (1973) 17; (c) L.I. Zhakarin, Dokl. Akad. Nauk USSR, 105 (1955) 95.