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Abstract 

Kinetic data from reactions which are more complicated than simple first order 
processes can give linear plots of In 1 M, - M, 1 against time (where M is a physical 
property of the reacting solution, such as absorbance or conductance). It is shown 
how these linear plots arise, and how the correct rate coefficients for complex 
reactions can be calculated from the pseudo-first-order rate coefficients, together 
with reagent concentrations and related information. This approach is useful for 
organometallic reactions, where there are often severe limitations on the experimen- 
tal data that can readily be obtained. 

Introduction 

Kinetic work with organometallic systems can be difficult. Side reactions, and 
reactions with the atmosphere can lead to ‘noisy’ concentration-time data. Although 
experiments over a wide range of concentrations are desirable, the availability of 
reactants and limitations of solubility or of sensitivity of monitoring equipment may 
severely limit this range. Often kinetic work is hurried in order to minimize 
deterioration of the solutions, and the results of one experiment are not processed 
fully before the next is attempted. This paper presents a new quick way of 
processing kinetic data from such experiments. 

Reaction kinetics in solution are often studied under conditions in which the 
reaction can be treated as a first-order process, as represented by eq. 1 and 2. 

A&P, + P2 + .._& 

d[Q]/dt = -d[A],‘dt = k,[A] 

0) 

(2) 
There are good reasons for this. The reaction progress is commonly monitored by 
measurement of some physical property M (such as absorbance or conductance) 
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which is linearly proportional to the concentrations of reactant A and products Pi at 
any time (eq. 3). 

M, = K+ a[A] +xbi[e.] (3) 

The concentration of a product e. at any time t is given by eq. 4 where kO, M,, 
and M, are the values of M at the start, end, and at time t respectively. 

[PiI = [Al,@& - W,)/@L -MO) (4) 

Integration of rate equation 2 and expression of the concentrations in terms of M 
gives eq. 5. 

ln(M,-M,)= -k,t+ln(M,-MO) (5) 

A plot of In 1 A4, - M, 1 against time is a straight line of slope -k,. The value of M,, 
is not needed to get k,. This is convenient, since M,, is often difficult to measure 
because mixing of solutions and thermostatting after initiation of the reaction can 
take some time. Even if M, is not known there are several well documented ways of 
deriving k, [l-5]. All in all, the simple treatment of data together with this 
flexibility towards M,, and M, makes kinetic studies of reactions under first-order 
conditions very popular. In particular, stopped-flow absorbance-time data is often 
directly analysed with an ‘on-board’ microprocessor to give ‘first-order’ rate coeffi- 
cients. 

Consider a simple second-order reaction, eq. 6a. 

A+B%C+D (6a) 

If the reaction is studied under pseudo-first-order conditions ([B], X= [A],) the true 
second-order rate coefficient is calculafed from the pseudo-first-order rate coeffi- 
cient, klobs, by use of the relationship k, = k, “b”/[B]o. If the k, values obtained 
from a series of experiments at different concentrations are not constant, one 
possibility is that there may be an equilibrium, as in eq. 6b. 

A+B&+D (6b) 
k-z 

Can k, be simply calculated from kybs to check on the existence of this equi- 
librium? This paper demonstrates that reaction schemes where there are first- or 
second-order rate laws, and which may involve equilibria lead to experimental data 
which give linear plots of ln 1 M, - M, 1 against time. It shows how to convert the 
‘first-order’ rate coefficients into the rate coefficients appropriate to these other rate 
laws. 

First-order with equilibrium 

(a) Single product formed 
A first-order reaction going to a position of equilibrium can be represented by eq. 

7and8. 

AZB 
k-1 

(7) 

d[B]/dt = k,[A] - k_,[B] (8) 
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As is well known, plots of In 1 A4, - M, 1 against time give straight lines of slope 
- kybs, where kpbs = k, + k_,. If we define a function 19 to be the fraction of 
reaction at equilibrium, i.e. /? = [B],/[A],, then it is easy to calculate k, as 
k, = fikpbs. 

(b) Two products formed 
When the reverse reaction is second order, we get eq. 9 and 10. 

AzB+C 
k-1 

-d[A],‘dr = k,[A] - k_,[B][C] (10) 

This often arises in studies of solvolyses when the solvent is in large excess. If the 
initial concentrations of A, B, and C are [A],, 0, and 0 respectively, the integrated 
rate equation for this reaction is given in eq. 11, where [A], is the equilibrium 
concentration of A. 

[Ali - iAl, [A], [Alo + [Ale 
In ([Al, - [A]&% = k1 [Alo - [Ale ’ 

Plots of the left-hand side of eq. 11 against time will give a straight line, the slope 
of which when multiplied by ([A],, - [A],)/([A], + [A],) gives k,. This is quite a 
tedious calculation, especially if [A] is calculated from a physical property, M, such 
as absorbance or conductance, when good measurements of M,, and M, are 
required for each kinetic run. If we define /3 to be the fraction of reaction at 
equilibrium, i.e. j3 = [B],/[A], = [C],/[A],, and reaction is followed until [B] reaches 
a fraction $I of its final concentration [B],, plots of In 1 M, - M, 1 against time are 
good straight lines (correlation coefficient r > 0.999 for 20 data points at equally 
spaced times) provided j3 and Q lie in the unshaded area in Fig. 1. The slope of 

I I 1 I I I 
o-2 0.1 0.6 0.8 

/ (=[Ble I [Alo) 

Fig. 1. A + B+C. Clear area shows which values of + (fraction of reaction followed) and /I ([B],/[A],) 
would lead to linear plots of In 1 M, - M, 1 against time with correlation coefficients, r, > 0.999 (20 data 
pairs); light shading 0.999 Z- r > 0.998; heavy shading r -Z 0.998. 



Table 1 

Values of I (see eq. 13) for different fractions of reaction followed, +. 

Fraction of 

reaction, $I 
z 

0.25 0.131 

0.3 0.159 

0.4 0.217 

0.5 0.279 

0.6 0.345 

0.75 0.459 

0.85 0.552 

these plots give a pseudo-first-order rate coefficient ki’“‘. To calculate the value of 
k, from this it is necessary to use eq. 12 and 13. 

k ca’c = /3klob"/[ 1 + ~(1 - fl)] (12) 

z=l++/hl(l-+) 03) 

Table 1 shows values of z for various fractions of reaction. Examples of the 
accuracy of this approach are shown in Table 2. This compares values of the true 
rate coefficient k, with those calculated from the appropriate plots of “first-order” 
In 1 M, - A4,I against time. It can be seen that resultant rate coefficients, kCalc, 
calculated from kpbs using eq. 12 and 13 are within 1% of the correct value. Values 
of kpbs depend only slightly on C#L This leads to a very quick way of processing sets 
of results from kinetic experiments, e.g. from stopped-flow measurements. For a 
particular set of concentrations the In 1 M, - M, 1 plots are drawn and kfbS calcu- 
lated for each run. These are averaged for a set and k, calculated using eq. 12 and 
13. The derivation of eq. 12 and 13 is given in the appendix. 

Table 2 

Correlation coefficients and rate coefficients for reaction A + B f C calculated from In 1 M, - hi, 1 Plots. 

B r ho&/k, k,==‘=/k, 
1 1 1 1 Reaction 

0.8 5 0.999 1.366 1.001 followed 

0.6 > 0.999 1.970 0.999 until 

0.4 0.999 3.170 0.994 + = 0.75 

0.2 0.998 6.760 0.989 

0.1 0.998 13.93 0.986 

0.05 0.998 28.27 0.984 

1 1 1 1 Reaction 

0.8 > 0.999 1.320 1.000 followed 

0.6 > 0.999 1.850 0.999 until 

0.4 > 0.999 2.096 0.996 #a = 0.5 

0.2 0.999 6.069 0.993 

0.1 0.999 12.39 0.991 

0.05 0.999 25.03 0.990 
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Second-order reactions going to completion 

Second-order reactions going to completion are described by eq. 14 and 15. 

A+B%P 04) 

-d[A],‘dt= -d[B]/dt=d[P]/dt=k,[A][B] 05) 

Integrated rate equations can be found for the two conditions [A],, = [B],, or 

WI, < PI,, (b% and [B], are the initial concentrations of A and B). For the latter 
conditions the integrated rate expression is eq. 16. 

k2t = [BIO t [A],, In 
[Alo[Bl t 
[A]t[B]o 

(16) 

When [A], and [B], are expressed in terms of M we get a complicated function to 
calculate and plot. If the ratio of initial concentrations [B],/[A], = (Y, and reaction 
is studied up to the time when [P] = +[A], good linear plots of In 1 M, - M, 1 

against time are found (r > 0.999 for 20 points) for the range of values of cy and C$ 
shown in Fig. 2. A similar analysis to that above shows that the value of k, can be 
calculated from kpb” by eq. 17, where z is given by eq. 13. 

k fal= = kFbs/{ [A],( (Y - z)} 07) 

Table 3 shows how second-order rate coefficients, kylc, calculated from “first-order” 
plots using eq. 17 and 13 compare with the correct value k,. If data points are taken 
over the first half of reaction, ( C#I = 0.5), there is less than 1% error introduced 
provided [B], is greater than 2[A],. 

1 

1 234567 8 9 10 

-cl=[Blo I [Alo) 

Fig. 2. A+B * products. Clear area shows which vaks of a ([B],/[A),) and + (fraction of reaction 
followed) would lead to linear plots of In 1 M, - h4,j against time with correlation coefficients, r, 
> 0.999 (20 data pairs); light shading 0.999 > r > 0.998; heavy shading r -z 0.998. 
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Table 3 

Correlation coefficients and rate coefficients calculated from In 1 M, - M, 1 against time plots for 

second-order reactions A+ B -+ products. 

50 > 0.999 49.52 1LKKl 
10 =- 0.999 9.520 0.998 

7 > 0.999 6.519 0.997 

5 > 0.999 4.516 0.994 

3 ) 0.999 2.507 0.987 

2.5 0.999 2.003 0.981 

2.0 0.998 1.495 0.970 

50 =- 0.999 49.72 l.ooO 

10 > 0.999 9.714 0.999 

7 > 0.999 6.713 0.999 

5 > 0.999 4.711 0.998 

3 > 0.999 2.708 0.995 

2.5 > 0.999 2.206 0.993 

2.0 > 0.999 1.703 0.989 

1.6 0.999 1.300 0.983 

1.4 0.998 1.096 0.977 

Reaction 

followed 

until 

ql = 0.75 

Reaction 

followed 

until 

$J = 0.5 

Second-order with equilibrium 

(a) Single product formed 

This is described by eq. 18 and 19. The integrated rate equations are complex and 
given by Espenson [6]. They are not easy to use. For reaction 18 if [A], # [B], the 

A+B% 
k-1 

(18) 

d[C]/dt = k,[A][B] - k_,[C] 09) 

kinetic case can be represented by two variables; (i) the fraction of reaction, fi, 
which has taken place at equilibrium, i.e. j? = [C],/[A],; (ii) the ratio of initial 
concentrations, (r, = [B],/[A],. Good straight line plots (r > 0.999 for 20 points) of 
In 1 M, - M, 1 against time are found for a wide ranges of Q[ and /3. Figure 3 shows 
the limits of (Y and p values where such linear plots are found when reaction is 
followed up to the time [C] = 0.75[C], (i.e. + = 0.75). The required k, values can be 
found -from kpbs using eq. 20 and 13. 

ob 

k, talc = 

[A],,Lkz z/3’) 
(20) 

Table 4 shows how second order rate coefficients, kylc, calculated from “first- 
order” plots using eq. 20 and 13 compare with the correct value for the conditions 

Pul = PI,. 
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A+B +C 

2 L 6 8 

~(=[Bl,l[Al,) 
Fig. 3. A+ B + C. Clear area shows range of values for a ([B],/[A],) and /3 ([C]./[A],) where plots of 
In ] M, - M, ] against time over the first two half-lives are straight lines with correlation coefficients, r, 
1 0.999; light shading 0.999 z=- r ) 0.998; heavy shading r < 0.998. 

(b) Two products formed 
When two products are formed (eq. 21 and 22), we note that if the equilibrium 

A+B:C+D 
k--2 

(21) 

-d[A]/dt = -d[B]/dt = d[C],‘dt = d[D]/dt = ~,[A][B] - k_,[C][D] (22) 

constant K (= k2/k_-2) for eq. 21 is equal to unity (eq. 23): 

1 = ([Alo - [Cle)(~J% - [Cl.)/[Cl. (23) 

Table 4 

Correlation coefficients and rate coefficients for reaction A+ B + C calculated from In 1 M, - M, 1 
plots a 

0.7 ) 0.998 1.076 0.971 Reaction 
0.6 =- 0.999 1.370 0.985 followed 
0.5 > 0.999 1.756 0.992 until 
0.3 > 0.999 3.190 0.998 $a = 0.75 
0.1 > 0.999 9.925 1.000 

0.9 0.998 0.834 0.969 Reaction 
0.8 0.999 1.009 0.982 followed 
0.7 > 0.999 1.221 0.990 until 
0.5 > 0.999 1.855 0.997 + = 0.5 
0.3 > 0.999 3.248 0.999 
0.1 > 0.999 9.972 1.000 

a Equal concentrations of A and B. 
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lj 0.6 _ / 
: 

. j 
0) A+B +C*D 

z 
x 0.L - 

Y _ 

Fig. 4a and 4b. A+ B T= C+ D. Clear area shows range of values for a ([B],/[a],) and /? ([C],/[A],,) 
where plots of ln 1 M, - M, 1 against time over the first two half lives are straight lines with correlation 

coefficients, r, > 0.999; light shading 0.999 > r > 0.998; heavy shading r < 0.998. Dotted line shows 
where K = 1, and kinetics show perfect first-order behaviour (see text). In Fig. 4a + ( = fraction of 

reaction studied) = 0.5; in Fig. 4b + = 0.75. 

we can show that (Y and j3 are related by eq. 24. 

p = a/(1 + (Y) (24) 

Under these conditions eq. 22 becomes eq. 25 and plots of In 1 M, - M, 1 against 
time will be perfect straight lines. The slope of the lines will be k,[A],(l + cu), which 

d[CI/dt = ([Cl, - [CIk[AI& + (~1 (25) 

can be written as kZ~[A],,/j3 (from eq. 24). It is found that over wide ranges of the 
parameters cr and /3 plots of In 1 M, - M, 1 against time are good straight lines 
(I- > 0.999 for 20 points). kylc can be calculated from eq. 26 and 13. 

talc _ k, - 
pk,ObS 

[Al,[a:-~bB+b-~)l 
(26) 

Figures 4a and 4b show the ranges over which these straight line plots are found. 
They have been calculated for reactions followed until [C] = 0.5[C], (Fig. 4a) and 
0.75[C], (Fig. 4b) (i.e. #J = 0.5 and 0.75, respectively). The cases when j3 = 1 
correspond to a second-order reaction going to completion. This has been treated 
above. 

Example. The kinetics of hydrolysis of triphenylchlorogermane can be followed 
by stopped-flow conductance measurements [7]. A first-order plot of data over the 
first two half lives from the reaction of triphenylchlorogermane (2.47 x low3 mol 
dmP3) in aqueous ether/acetone ([H,O] = 6 mol dme3) gives a good ‘first-order’ 
plot with kpbs = 3.35 s-l. However these hydrolyses are incomplete, and equilibrium 
conductance measurements show that for these concentrations j3 = 0.166. For the 
reaction scheme represented by eq. 9 and 10, the true first-order rate coefficient is 
given by eq. 12. For a reaction followed for two apparent half-lives, + = 0.75 and 
z = 0.459 (eq. 13). Thus k, = 0.166 X 3.35/[1 + 0.459(1 -0.166)] which comes to 
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0.402 s-l. This agrees well with the figure of 0.405 s-’ obtained by the full data 
treatment using eq. 11. It is much simpler to obtain the true rate coefficients from 
kybs by eq. 12 than to use eq. 11 on the kinetic measurements. 

Calculation. For each kinetic case the time, t,, at which the product reaches 
fraction 9 of its concentration at the end of reaction, ([PI,), was calculated from 
the appropriate integrated rate equation, assuming arbitrary values for the con- 
centrations and rate coefficients. Then the concentration of product was calculated 
at 20 equally-spaced times from 0 to t+. These concentration-time pairs together 
with [PI,, were used to calculate a pseudo-first-order rate coefficient, kybs, from the 
slope of a plot of ln([P], - [PI,) against time. Such plots are equivalent to plots of 
In 1 M, - Ill, 1 against time, as A4 is related linearly to [P] (eq. 4). Suitable computer 
programs were written to perform these calculations. 

Conclusions 

Plots of In 1 i&f, - A4,I against time are usually only used to obtain rate coeffi- 
cients for first-order reactions. Surprisingly, perhaps, such plots give good straight 
lines for many other common reaction schemes. This leads to a simple method of 
getting rate coefficients from time-concentration data for a variety of reaction 
schemes which have complicated integrated rate equations. It is especially useful if 
kinetic studies have been made and it is later realised that another rate law may be 
appropriate. The equations are summarised in Table 5. This novel treatment comes 
about because the integrated rate equations can be partitioned into an exponential 
part and a modifier. The surprising feature is the wide range of conditions over 
which the exponential part is approximately the same as for a first-order reaction. 

Table 5 

Summary of equations needed to calculate rate coefficients from kpb”, 
In 1 M I- M,, against time 

obtained from plots of 

Reaction scheme LI B To obtain k, multiolv kPbS bv 

First order 

AL3 VG’M, B 

AGB+C [Bl,/[% P/D + I(1 - I91 

~Cl,/‘L% 
To obtain k, multiply kpb” by 

Second order 

A + B 2 products [W,/[Al, l/Wlo(a-2)) 

A+B& IW,/IAl, Fk’L-% B/Wlo(~ - d*)l 

A+B%+D P%/b% P2,/‘L% B/([Alo[a-r(aS+B-a)l) 

Pl,AAl, 

z = 1+ +/ln(l - $) where + = fraction of reaction studied ( = xtlas, poin,j/~cc) 
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Appendix - Derivation 

Consider the equilibrium described by eq. 9 and 10. Let a = [A], , x = [B] f = [C] t, 
and x, = [B], = [Cl,. When straight line “first-order” plots of In ( M, - M, 1 against 
time are found we can write eq. Al. 

d(ln 1 M, - M, ])/dr = - ,pbs (Al) 

Using eq. 4 this leads to eq. A2. 

d[ln( x, - x)] /dt = kFbs 642) 

This can be rewritten as eq. A3. 

dbbe -x)1 dx kobs 

dx *dt= 1 (A31 

When /3a is substituted for x, and the first term differentiated we obtain eq. A4. 

1 1 dx 
,a'(l-x/ap)'dt= 

obs 
k, 644) 

Now for equilibrium 9 dx/dt can be obtained from eq. 10. As k,/k_, = ~,*/(a - 
x,) we can substitute for k_, in eq. 10 to get get eq. AS. 

dx/dt = ak, I1 - (x/aP)l [I + (I - @(x/@)l (A5) 

When combined with eq. A4 this gives eq. A6. 

[I + (1 - P)(xM)l k,,‘P = Gbs (A6) 

This rearranges to eq. A7. 

k, = M’bs/[l + (1 - P)(x/aB)l (A7) 

The concentration-time curve can be written as eq. A8. 

x = afl[l - exp( -ky”V)] W3) 

If reaction is studied until x = 9x, the value of x to use in eq. A7 is an average x 
value up to the time when x = +x,. This can be written as eq. A9 where r+ is the 
time when x = 4x,. 

I (A9) 

After integration we get xaV as a/?[1 + +/ln(l - +)I_ When this is substituted into 
eq. A7 we get eq. 12 and 13. 

Equations 17, 20, and 26 can be obtained similarly by substitution of the 
appropriate dx/dt, eq. 15, 19 or 22, into eq. A4. 
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