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Abstract 

Tin-119m Miissbauer (80 K) and solution carbon-13 NMR spectra are reported 
for six organotin 3-benzoylpropionates, R,Sn[OC(O)(CH,),C(O)C,H,],_, (n = 2, 
R = CH,, n-C,H,, r&H,; n = 3, R = CH,, r&H,, C,H,). The diorganotin 
bis-3-benzoylpropionates adopt trans-C,SnO, octahedral geometries and the tri- 
organotin 3-benzoylpropionates trans-C, SnO, trigonal bipyramidal geometries in 
the solid state, but the coordination numbers are lower in solution. From the 
variable-temperature Miissbauer decay coefficient, a rigid polymeric structure was 
predicted for the triphenyltin ester, and this configuration was confirmed by an 
X-ray diffraction study at 296 K. Molecules of triphenyltin 3-bfnzoylpropionate 
(space group P2,/n with a 12.881(2), b 11.384(2), c 17.080(2) A, /3 104.06(2)“; 
2 = 4) are carboxylate-bridged into a polymeric chain; the ketonic oxygen is not 
involved in coordination. 

Introduction 

Triorganotin(IV) carboxylates are generally five-coordinate carboxylate-bridged 
polymers whose repeat units are propagated in a zig-zag or helical manner in the 
crystal lattice [l]. A substituent in the carboxylate group carrying a donor atom 
makes possible an alternative bonding to carboxyl bridging, and this option is 
adopted in trimethyltin glycinate, whose tin-nitrogen bridging interaction is ap- 
parently strong enough for the tin-119m Miissbauer effect to be observed at room 
temperature [2]. Although polymeric, triorganotin carboxylates generally do not 
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yield room temperature Miissbauer spectra [3], except for triphenyltin pyruvate [4], 
which has a ketonic group linked to the carboxylate. Variable-temperature 
MSssbauer data on triphenyltin levulinate, which has two methylene carbon atoms 
separating the ketonic and carboxyl oxygen atoms in the ester unit, support the 
assignment of a flexible, helical chain [5] configuration in which the carboxyl 
oxygen, rather than the ketonic oxygen, participates in intermolecular coordination 
to tin. In the infrared spectra of triorganotin levulinates, bands around 1700 cm-’ 
have been ascribed to the uncoordinated ketonic group [6] and a carboxylate-bridged 
distorted helical configuration has been proposed for these esters by analogy with 
the crystallographically authenticated triphenyltin acetate [7]. The triorganotin 
esters of 2-benzoylbenzoic acid are also reported to be carboxylate-bridged [8]. The 
triorganotin acetylacetates, which possess only one methylene carbon separating the 
carboxyl and ketonic carbons, might be expected to be more rigid than the 
levulinates, but their reported infrared spectra [9] are rather similar to those of the 
levulinates. 

We report here, the preparation and spectral properties of di- and tri-organotin 
esters of 3-benzoylpropionic acid, C,H,C(O)(CH,),C(O)OH. The ultimate demon- 
stration of whether or not a ketonic group in the organotin esters of ketocarboxylic 
acids is involved in coordination must come from diffraction studies, and so we 
undertook the X-ray crystal structure determination of triphenyltin 3-benzoylpro- 
pionate. 

Experimental 

3-Benzoylpropionic acid was prepared by a published method [lo]. The organotin 
compounds were .prepared by conventional methods from the organotin chloride, 
hydroxide, or oxide [6,8]. Large crystals of the triphenyltin 3-benzoylpropionate 
were grown from an alcoholic solution of the compound. The tin-119m MZjssbauer 
and carbon-13 NMR spectra were recorded as described previously [6]. The analyti- 
cal data for the six organotin 3-benzoylpropionates are given in Table 1, MSssbauer 

Table 1 

Analytical data for organotin 3-benzoylpropionates 

M.p. (O C) Analysis (Found (calcd.) (%)) 

C H 

(CH,),Sn[oC(O)(CH,>,~O)~H~l~ 74-75 52.30 5.05 

(52.52) (4.77) 

(n-C,H,),sn[oC(o)(CH,)2C(o)C,H,12 92-93 55.84 5.70 

(55.84) (5.73) 

(n-C,H,),snIoC(oXCH,)2C(o)C,H,12 65-66 56.84 6.34 
(57.27) (6.14) 

(CH,),SnOWWH,),WJ)GH~ 139-140 46.35 5.18 
(45.79) (5.28) 

(n_C,H,),snoC(oXCH,),C(O)C6H5 56-57 54.25 7.96 
(56.57) (7.71) 

(CsH,),snoc(oXCH,),C(o)C,H, 133-134 63.74 4.59 
(63.79) (4.56) 
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Table 2 

Mbssbauer data for organotin 3-benzoylpropionates at SO K (mm s-l) 

IS QS r, r2 

(CH,),sn[oC(o)(CH,),C(O)C,H,I, 1.16 3.61 1.00 1.04 
(n-C,H,),sn[oC(o)(CH,),C(O)C,H,I, 1.39 3.67 0.97 1.04 
(n-C,H,),sn[oC(o)(CH,)2C(o)C,H,12 1.23 3.31 0.95 0.99 
(CH,),SnOC(OXCH,),C(O)C,H, 1.26 3.77 1.05 1.05 
(n-C,H,),SnOC(OXCH,>,C(O)C,H, 1.42 3.91 1.04 1.06 
(C,H,),SnOC(O)(CH,),C(O)C,H, 1.25 3.70 1.02 1.03 

data in Table 2, and carbon-13 NMR data in Table 3. The slope of the variable-tem- 
perature Miissbauer plot for triphenyltin 3-benzoylpropionate (6 points between 80 
and 130 K) is 0.0126 K-‘. The X-ray data were recorded with a crystal (0.28 X 0.40 
x 0.08 mm) of triphenyltin 3-benzoylpropionate, using an Enraf-Nonius CAD4 
diffractometer and graphite-filtered Cu-K, (X 1.54184 A) radiation at a temperature 
of 23 k lo C. Lorentz polarization, reflection averaging (agreement on I 2.8%) and 
extinction (coefficient 0.0000014) corrections were applied. The maximum 28 angle 
was 120°. Of the 3955 total reflections, 3600 were unique and the 3325 with 
1 F, I* > 3.0a( ) F, I*) were used in the refinements. The structure was solved by 

direct methods and refined on the minimization function zlw( 1 F, 1 - I F, I)*, with 
the least-squares weight set at 4 I F, I */a*( I F, I *)_ The non-hydrogen atoms were 
refined anisotropically and the hydrogen atoms refined isotropically. The final, 
unweighted and weighted agreement factors were 0.034 and 0.050, respectively_ In 
the final difference electron density map, the highest peak was 0.58(8) eAP3 and the 
lowest peak -0.68(8) eAP3. Crystal data for triphenyltin 3-benzoylpropionate are 
listed in Table 4 and the final atomic coordinates for the non-hydrogen atoms in 
Table 5. Selected bond distances and angles are listed in Table 6. Full listings of 
bond dimensions, anisotropic thermal parameters, least-squares planes calculations 
and structure factor tables are available from the authors. 

Discussion 

The organotin 3-benzoylpropionates are sharp-melting white to tan-colored solids. 
The tin-119m Miissbauer isomer shift (IS) and quadrupole splitting (QS) values 
indicate higher-than-four coordination at tin, as reflected in the QS/IS ratio (> 2.1) 
[ll]. The QS values for the dialkyltin derivatives are in the range expected for 
trans-[ SnR 2 ] octahedral geometries and the carbon- tin-carbon angle predicted 
from point-charge model calculations [12] is 146” for the dimethyltin homologue. 
Trigonal bipyramidal geometries with planar R,Sn groups may be inferred for the 
triorganotin derivatives whose QS values are similar to those for the levulinates [6] 
and benzoylbenzoates [8]. In the IR spectrum, all the six 3-benzoylpropionates 
exhibit bands around 1700 cm-‘. In chloroform solution, the time-averaged one- 
bond coupling constant, ‘J( 119Sn-‘3C) recorded for the triorganotin compounds are 
in the normal range for tetrahedral A. Thus, the I.7 values of 358.2 and 646.9 Hz 
found for the tri-n-butyltin and triphenyltin 3-benzoylpropionates, respectively, are 
close to those for tri-n-butyltin acetate (360.7 Hz [13]) and triphenyltin acetate 
(648.2 Hz [14]). The ‘.J values for the diorganotin bis-3-benzoylpropionates are 
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Table 4 

Crystal data for triphenyltin 3-benzoylpropionate 

Molecular formula 

Molecular weight 

Cell constants 

Space group 

Density (calcd) 

Absorption coefficient 

527.19 

a 12.881(l), b 11.384(2), c 17.080(2) A 

/3104.06(2) o ; V 2429.4 A3; Z = 4 

P2, /n 
1.44 g crnm3 

87.6 cm-’ 

larger than the value of 419.9 Hz found for the four-coordinate di-n-butyltin 
dichloride, but smaller than that of 673.8 Hz reported for the di-n-butyltrichloros- 
tannate anion [15]. The ‘.I values for the three diorganotin esters are tentatively 

Table 5 

Positional coordinates and isotropic thermal parameters 

Atom 

& 
o(2) 
o(3) 
C(l) 
C(2) 
C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

C(8) 

C(9) 

C(10) 

c(ll) 

C-02) 

C(l3) 

c(14) 

C(l5) 

C(l6) 

C(l7) 

C(l8) 

C(l9) 

c(20) 

c(21) 

C(22) 

~(23) 
C(24) 

~(25) 
C(26) 

C(27) 

C(28) 

x Y 

0.7662q2) 0.19903(2) 

0.779q2) 0.5177(2) 

0.8117(2) 0.3716(2) 

0X604(5) 0.7053(3) 

0.9009(3) 0.2042(3) 

0.9391(4) 0.3095(3) 

1.0267(4) 0.3133(4) 

1.0770(4) 0.2103(4) 

1.0387(4) 0.104q5) 

0.9513(4) 0.1015(4) 

0.6144(3) 0.2679(3) 

0.6018(3) 0.3330(3) 

0.502q3) 0.3815(4) 

0.4168(4) 0.3661(5) 

0.4268(4) 0.3025(4) 

0.5253(3) 0.2513(4) 

0.7916(3) 0.1246(3) 

O-8729(3) 0.1695(4) 

O-8925(4) 0.1208(5) 

0.8337(4) 0.0267(5) 

0.7545(4) - 0.0179(4) 

0.7317(3) 0.0314(4) 

0.X611(3) O-5666(4) 

0.8752(3) O-6536(5) 

0.X839(4) 0.6527(6) 

0.X775(5) 0.5113(7) 

0.8619(6) 0.4255(6) 
0.X535(4) 0.4512(5) 

0.8015(3) 0.4797(3) 

0.8226(3) 0.5655(3) 

0.8341(3) O-5103(3) 

0.8510(3) 0.6030(4) 

,? Bi, (P) a 
0.21759(l) 2.837(6) 
0.2474(l) 3.48(5) 

0.1716(l) 3.92(5) 
0.0051(2) 9.5(l) 

0.3198(2) 3.23(8) 
0.3543(3) 4.15(9) 

0.4198(3) 5.4(l) 
0.4508(3) 6.3(l) 

0.4187(3) 7.00) 
0.3526(3) 5.6(l) 

0.2213(2) 3.30(7) 
0.2872(2) 3.78(8) 

0.2878(3) 5.2(l) 

0.2252(3) 6.1(l) 

0.1601(4) 6.2(l) 

0.1566(2) 4.55(9) 

0.1097(2) 3.20(7) 

0.0762(3) 4.76(9) 
0.0072(3) 6.1(l) 

- 0.0286(3) 6.561) 
0.0012(2) 5.6(l) 
0.0704(2) 4.10(8) 

- O-0949(2) 4.51(9) 
-O-1494(3) 5.6(l) 
-O-2242(3) 7.5(l) 
-O-2479(3) 9.3(2) 
- 0.1977(3) 9.2(2) 
- 0.1200(3) 6.3(l) 

O-1848(2) 3.33(7) 
O-1233(2) 4.40(9) 
0.0448(2) 3.92(8) 

- 0.0136(2) 4.66(9) 

u The B isotropic equivalent displacement parameter is defined as B = 4/3[0’B,,, + b’B,,, + cZB3,, + 
ab cos yB,., + UC cos /3B,., + bc cos c&?~,~]. 
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Table 6 

Selected bond distances (A) and bond angles (O ) 

Sn-O(1)’ 2.2658(6) Sn-q2) 2.2460(6) Sn-C(1) 2.1422(S) 

Sn-C(7) 2.1223(8) Sn-C(13) 2.1242(S) 0(1)X(25) 1.250(l) 
O(2)-C(25) 1.263(l) q3kC(28) 1.206(l) 

O(l)‘-Sn-q2) 174.63(2) 
O(l)‘-Sn-C(7) 91.63(3) 
O(2)-Sn-C(1) 91.89(3) 
O(2)-Sn-C(13) 86.41(3) 

C(l)-Sn-C(l3) 116.95(3) 

Sn-O(l)‘-C(25)’ 132.00(5) 

Sn-C(l)-C(2) 120.54(7) 
Sn-C(7)-C(8) 120.68(6) 
Sn-C(13)-C(14) 119.65(7) 

O(l)-C(25)-o(2) 123.05(S) 
O(2)-C(25)-C(26) 117.58(S) 
O(3)-C(28)-C(27) 121.43(9) 

ql)‘-Sn-C(1) 91.19(3) 
0(l)‘-Sn-C(13) 88.27(3) 

q2)-Sn-C(7) 90.44(3) 
C(l)-Sn-C(7) 122.35(3) 
C(7)-Sn-C(13) 120.69(3) 

Sn-0(2)X(25) 137.94(5) 

Sn-C(l)-C(6) 120.83(7) 

Sn-C(7)-C(12) 120.80(7) 

Sn-C(13)-C(18) 122.75(6) 
o(l)-C(25)-C(26) 119.30(S) 

o(3)-C(28)-C(19) 119.5(l) 

interpreted in terms of an equilibrium mixture of four- and six-coordinate tin in 
solution. The 13C resonances of the 3-benzoylpropionate group appear at roughly 
the same positions for all the six organotin derivatives. 

C(23) 

Fig. 1. Structure of triphenyltin 3-benzoylpropionate. Two 2, screw-related molecules are drawn 
(symmetry transformation: 1.5- x, 0.5 + y, 0.5 - z) to illustrate the coordination of the Sn atom. 
Hydrogen atoms are omitted. 
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Fig. 2. Stereoview of the unit cell contents of triphenyltin 3-benzoylpropionate. 

The crystal structure of triphenyltin 3-benzoylpropionate is shown in Fig. 1 and 
2. The tin is five-coordinate, with the axial positions of the trigonal bipyramid being 
occupied by oxygen atoms, one being the ester oxygen, and the other the carbonyl 
oxygen from the adjacent symmetry-related molecule. The sum of the 
carbon-tin-carbon angles in the trigonal plane (116.95(3), 120.69(3), 122.35(3) o ) is 
359.99(9)O. The three tin-bonded phenyl groups are tilted at 9.0(5), 60.2(2) and 
123.2(1)O with respect to this plane. The apical angle subtended at tin is 174_64(2)O. 
The tin-oxygen distances are almost identical (2.2460(6), 2.2658(6) A). 

Structural data [5,16-271 for seventeen other carboxylate-bridged triorganotin 
esters are shown for comparison in Table 7. As noted previously [l], the repeat 
distance of a carboxylate-bridged triorganotin polymer is the axial length parallel to 
the direction of propagation of the polymer divided by 2 (or 4). The repeat distance 
for the title compound is 5.692 A, which is at the higher limit associated with the 
average of 5.19 A [l]. A particularly large repeat distance of 5.704 A has been 
observed in triphenyltin 2-chlorobenzoate [27], which, unlike triphenyltin benzoate 
[28] and most other triphenyltin arylcarboxylates [29] is polymeric. The difference in 
tin-oxygen bond distances is largest, at 0.51 A, for tribenzyltin acetate.[25], and for 
this compound the deviation of the tin atom from the equatorial plane is also the 
largest, at 0.206 A. In the structures listed in Table 7, the 0-Sn-0’ angle is not 
sensitive to the nature of substituents on the tin or the carboxylate group as is the 
Sn-O-C angle. The latter angle has the sp2 value of 120” for most of the 
compounds, except for the 2-chlorobenzoate and the title compound. The angle 
most sensitive to substituent changes is the Sn-0’-C’ angle, which has values 
ranging from 123 to 157”. Thus, there is considerable sp character on this 
ether-type oxygen, the hybridization of which, has not as far as we are aware, ever 
been rigorously explained in the literature_ The Sn-0’-C’ angle is believed to open 
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up in response to steric bulk on the carboxylate. Angles of 123.1 and 125.5 o are 
found in triphenyltin formate, which has two crystallographically independent 
asymmetric molecules in the unit cell [26]. The angles probably represent the 
smallest possible for a carboxylate, since the steric requirement of the hydrogen in 
the formate is minimal. 

Triphenyltin pyridine-3-carboxylate, on the other hand, is bridged through the 
pyridyl nitrogen rather than the carboxyl oxygen. A characteristic feature of this 
structure is the near coplanarity of the pyridyl rings of adjacent molecules [30]. In 
contrast, triphenyltin 2chlorobenzoate is carboxylate-bridged, but the carboxylate 
group has to twist by some 60 o out of the plane of the benzene ring to facilitate this 
bridging mode [27]. 

Returning to the title compound, we note that in the unit cell, the x atomic 
coordinates (0.77 to 0.81) of the principal atoms of the repeat unit, Sn, O(l), O(2) 
and C(25), are close to the x = 0.75 plane (which contains one of the screw axes). 
The 1.5 - x symmetry translation brings little change in the x coordinates of these 
four atoms in the adjacent asymmetric unit, and the polymer backbone is therefore 
almost flat. The entire 3-benzoylpropionate unit is also relatively flat. In contrast, in 
tri-n-butyltin 3-indolylacetate, the x coordinates of the four principal atoms of the 
repeat unit range from 0.78 to 0.84 in the P2,/n unit cell, which has an a-axis 
13.388 A long [24]; the 3-indolylacetate group is bent at the methyl carbon and the 
polymer backbone is more helical. The effect of steric bulk of the 3-indolylmethyl 
substituent is also seen in the different tin-oxygen bond distances (2.199, 2.524 A 
[24]) and the deviation (0.194 A) of the tin atom from the equatorial plane (Table 7). 
In the title compound, the tin atom is displaced by 0.015(l) A in the direction 
opposite to the covalently-bonded oxygen, so that the configuration at tin can be 
considered as being “slightly past the half-way point in the S,2 displacement 
profile” [19,31]. This position along the pathway is also reflected in the symmetrical 
arrangement of the three phenyl rings of the trigonal girdle: instead of an ideal 
propeller-like configuration for the rings, one ring is approximately coplanar, the 
second is tilted at 60 O, and the third at about 120° with respect to the trigonal 
plane. 

The temperature coefficient of the Miissbauer recoil-free fraction, a, as derived 
from variable-temperature studies [32], provides a measure of the tightness with 
which the tin atom is bound into the lattice, and hence, the degree of molecular 
association. The a values for triphenyltin acetate (0.0191 K-’ [7]) and trimethyltin 
acetate (0.0162 K-’ [26]) are consistent with stretched helical and flat conforma- 
tions, respectively, for the polymer backbone. (In the crystal lattice of trimethyltin 
acetate, the tin and the carboxylate atoms are located at the y = 0.25 plane in the 
Pnma unit cell [16].) The a value for the title compound, triphenyltin 3-benzo- 
ylpropionate, is 0.0126 K-‘. This value is small compared to the u value for 
triphenyltin levulinate (0.0217 K- ’ [ 5]), which is probably a helical polymer. 
Replacement of the methyl group of the levulinate by a phenyl ring seems to pose 
steric problems for a helical arrangement of the molecules of triphenyltin 3-benzo- 
ylpropionate in the crystal lattice, and the molecules stack instead in a chain 
configuration, with the 3-benzoylpropionate groups in an approximately coplanar 
array. 
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