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Abstract

The reaction of (7°-CsH;),W, Ir, (CO),, with PhC=CPh has previous been shown
to produce, inter alia, a complex of stoichiometry (7°-CsH;),W, Ir,(CO)((PhCCPh),.
This is shown here to be the dimetalloallyl-benzylidyne complex (7°-CsHj),W,Ir,-
(CO) ,(u-CO), (p;-CPh)(p;-7°-C,Ph;), which crystallizes in the centrosymmetric
monoclinic space group P2, /c (No. 14) with a 14.253(9), b 15.629(4), ¢ 18.731(4) A,
B 96.86(4)°, V 4143(3) A} and Z = 4. Diffraction data were collected with a Syntex
P2, automated four-circle diffractometer (Mo-K, radiation, 26 4.5-45.0°). Sub-
stantial crystal decomposition was observed, but the structure was solved and
refined to R 8.5% for all 4887 data (R 5.8% for those 3395 data with | F, | >
30(| F, |)).

The complex, although a “60-electron” cluster, has a triangulated rhomboidal
skeleton (dihedral angle 170.33°) with W(1) and Ir(1) as the bridgehead atoms.
Metal-metal distances show some irregularities and there are two “semi-bridging”
carbonyl ligands, possibly as a result of the formally “electron-poor” environment
of Ir(1). Metal-metal bond lengths are W(1)-W(2) 3.080(1), Ir(1)-Ir(2) 2.720(1),
W(2)-Ir(1) 2.665(1), W(1)—Ir(1) 2.723(2) and W(1)-Ir(2) 2.852(2) A. The p,-benzyl-
idyne fragment is linked to W(1), W(2) and Ir(1), while the p;-n’-C,Ph, ligand is
o-bonded to W(1) and Ir(1) and is #-bonded (3* mode) to Ir(2). The p,-CPh and
p5-1°-C,Ph, ligands lie on the same surface of the close-to-planar W, Ir, cluster.

* For previous parts, see references 1-7.

0022-328X /89 /803.50 © 1989 Elsevier Sequoia S.A.
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Introduction

The syntheses [8] and structures of (7-CsHs)WIr,(CO);; [4] and (7%°-
CsH;) W, Ir,(CO),, [3] have previously been reported. These mixed-metal clusters
have also been investigated as sources of bimetallic particles on alumina surfaces [8].
A few reactions of (7°-C5H),W,Ir,(CO),, with small organic molecules have been
investigated. The reaction of (n’-CsH,),W,Ir,(CO),, with N,CHCO,Et produces
the bis(alkylidene) complex (7°-CsH),W,Ir,(CO),(CHCO,Et),, a 60-electron te-
trahedral cluster [1,9]. The reaction of (7#°-CsHs),W,Ir,(CO),, with alkynes
(RC=CR) proceeds via two pathways [10]. The predominant reaction is cleavage of
a W-W bond to form (17°-CsHs),W,Ir,(CO)¢(RCCR). However, with PhC=CPh, a
second type of product is obtained of overall stoichiometry (1°-CsH),W,Ir,(CO)-
(PhCCPh),, which we now show to be (7°-CsHy),WoIr,(CO)g(p5-CPh)(p;-13-Cs-
Ph,). This is derived from (7°-CsH;),W,Ir,(CO),, by cleavage of a W-Ir (rather
than W-W) bond along with alkyne cleavage and alkyne-alkylidyne addition. A
brief account of this work has appeared previously [10].

Experimental

Crystals of (nS-CjHj)zwzlrz(CO)G(;L3-CPh)(;g3-n3-C3Ph3), synthesized and char-
acterized (*H and »C NMR, IR, MS(FAB) with m/z 1406 (M +), 1406 — 28x,
x = 1-6) as described previously [10], were supplied to us by Professor J.R. Shapley
and Dr. C.H. McAteer of the University of Illinois at Urbana-Champaign.

The crystal selected for the X-ray diffraction study was a rather irregular
dark-green fragment approximating to a needle of dimensions 0.15 X 0.2 X 0.4 mm.
This was sealed, in a dry, purified argon atmosphere, into a 0.2 mm-diameter
thin-walled glass capillary, which was mounted on a eucentric goniometer on a
Syntex P2, four-circle diffractometer. Crystal alignment, determination of Laue
group (2/m, monoclinic system), orientation matrix and cell dimensions (based
upon 24 reflections with 26 25-30° and well dispersed in reciprocal space) were all
carried out in a manner described previously [11]. Unit cell dimensions and details
of data collection appear in Table 1.

All data were corrected empirically for the effects of absorption (p(Mo-K,) 127
cm™!) by interpolation in both 28 and ¢ between a series of normalized transmis-
ston curves based upon y-scans of close-to-axial reflections. It proved necessary also
to correct all data for the effects of decay. Analysis of the three standard reflections
showed a steady monotonic decrease of intensity throughout data collection, finish-
ing with intensities approximately 72% of their initial values. A linear correction was
made to scale up all intensity measurements. Corrections for Lorentz and polariza-
tion factors were applied and data were merged to a unique set of | F, | values. Any
reflection with I(net) < 0 was assigned the value | F, | = 0; none was eliminated. All
data were placed upon an approximately absolute scale by means of a Wilson plot.

The systematic absences (h0/ for /=2n+ 1 and 0kO for k=2n+ 1) are con-
sistent only with the pervasive centrosymmetric monoclinic space group P2, /c [12].

All crystallographic calculations were performed on a CDC Cyber 173 computer
using the programs MULTAN76 [13] and SHELX76 [14). The positions of the four
metal atoms were determined from an “E-map.” (Distinction between tungsten
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Table 1

Experimental data for the X-ray diffraction study of (7°-C5Hs) W, I, (CO) 4 (p-CO), (2 5-CPhY p3m-
C,Ph,)

(A} Crystal parameters at 24°C

Cryst. system: monoclinic Space group: P2, /c (C3,; No. 14)

a 142539)A Formula:  CuqH0Ir,0W,

b 15.629(4) A Mol. wt: 1406.7

c 18.731(H A Z= 4

B 96.86(4)° D(caled): 2.26gcm™ >

vV 4143(3) A?

(B) Collection of diffraction data

Diffractometer: Syntex P2,

Radiation: Mo-K, (A 0.710730 A)

Monochromator: Highly oriented (pyrolytic) graphite, equatorial mode, 28,, 12.2°, assumed 50%
perfect /50% ideally mosaic for polarization correction.

Scan type: Coupled @(crystal) —28(counter) at 2.5 deg/min in 26.

Scan width: Symmetrical, [2.0 + A(a; — &;)] °

Reflections measd: +h, +k, £1 and 28 4.5-45.0°; 6151 total yielding 4887 unique data.

Bkgd. measurement: Stationary crystal and counter at each end of the 28 scan; each for one-half of
total scan time.

Standard reflections: 3 approximately mutually orthogonal reflections measured after each 97 reflec-
tions; decay to 72% of initial values observed and corrected by a linear method.

Absorption coeff.: #(Mo-K,) 127.0 cm™'; empirical correction applied.

(Z =74) and iridium (Z = 77) atoms was not possible at this stage and was made
later on the basis of chemical connectivity, based particularly upon the assumption
that the #°-CsH, ligands remained associated with the tungsten atoms.) All remain-
ing non-hydrogen atoms were located from difference-Fourier syntheses. Least-
squares refinement of positional and thermal parameters (anisotropic for metal
atoms, isotropic for all others) led to convergence with R(F) 8.5% and R(wF) 8.5%
for 237 parameters refined against all 4887 data. The residuals for those 3395 data
with | F,| > 30(| F,|) were R(F) 58% and R(wF) 5.8%. (Contributions from
hydrogen atoms were not included in the calculations.) These rather high values
may be related to crystal decomposition. A final difference-Fourier synthesis
showed no significant features other than peaks of height 1.2-1.5 ¢ /A’ in the
vicinity of the metal atoms’ locations. Final positional and thermal parameters are
collected in Table 2.

Discussion

The crystal consists of discrete ordered molecular units of (#°-CsHs),W,Ir,-
(CO) 4(#-CO) (1 5-CPh)(p ;-7°-C5Ph ), which are mutually separated by normal Van
der Waals’ distances; there are no abnormally short intermolecular contacts. Each
molecule is chiral, but the crystal contains an ordered racemic mixture of the two
enantiomers by virtue of the inversion centers and c-glide planes present in the
centrosymmetric monoclinic space group P2,/c. The (7°-Cs),W,Ir,(CO) ,( u-CO),-
(#3-C-C)(p3-1*-C;(ipso-C),) core of the molecule is shown in Fig. 1; the labelling
scheme for all atoms in the molecule is shown in Fig. 2 and a stereoscopic view of
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Table 2
Final positional parameters (with esd’s) for (°-CsHs); W, Ir;(CO) 4 (u-CO), (15-CPh)(#3-1°-C5Ph;)

Atom x y z U (AY)
Ir(1) 0.1611(1) 0.750(1) 0.2211(1)

Ir(2) 0.2141(1) 0.7638(1) 0.3650(1)

w() 0.0652(1) 0.8655(1) 0.2938(1)

W(2) 0.0113(1) 0.8092(1) 0.1367(1)

O5) 0.2402(18) 0.5761(17) 0.1939(13) 0.1011(76)
o(6) 0.2749(18) 0.7720(17) 0.5250(14) 0.1054(78)
o(7) 0.2394(22) 0.5726(22) 0.3739(17) 0.1359(104)
0G8) 0.0111(14) 0.6804(13) 0.3448(10) 0.0696(53)
O9) 0.0853(15) 0.6445(14) 0.0737(11) 0.0773(58)
0(10) —0.1204(16) 0.7001(14) 0.2220(12) 0.0826(63)
CG5) 0.2094(19) 0.6488(18) 0.2023(14) 0.0560(69)
C(6) 0.2523(25) 0.7732(23) 0.4643(20) 0.0871(101)
) 0.2314(38) 0.6513(38) 0.3721(29) 0.1460(183)
C(8) 0.0555(16) 0.7465(15) 0.3337(12) 0.0426(55)
co) 0.0736(19) 0.7061(18) 0.1103(14) 0.0577(68)
C(10) —0.0644(19) 0.7420(18) 0.1908(14) 0.0597(69)
c) 0.2127017) 0.9025(16) 0.3360(13) 0.0493(62)
can 0.2201(18) 0.9750(17) 0.3919(14) 0.0546(66)
C(12) 0.2017(19) 0.9632(17) 0.4633(14) 0.0555(68)
C(13) 0.2179(21) 1.0378(20) 0.5101(16) 0.0677(81)
C(14) 0.2515(20) 1.1113(19) 0.4880(15) 0.0647(75)
C(15) 0.2747(18) 1.1206(17) 0.4167(14) 0.0530(66)
c(16) 0.2643(17) 1.0524(16) 0.3678(13) 0.0463(59)
c@) 0.2935(17) 0.8705(16) 0.3130(13) 0.0444(59)
c@) 0.3857(21) 0.9096(19) 0.3309(16) 0.0654(77)
C(22) 0.4293(24) 0.9086(22) 0.4010(18) 0.0765(92)
C(23) 0.5207(25) 0.9423(24) 0.4196(19) 0.0904(103)
c(24) 0.5678(30) 0.9864(28) 0.3653(23) 0.1097(129)
C(25) 0.5248(28) 0.9865(25) 0.2938(21) 0.0965(114)
C(26) 0.4331(21) 0.9512(19) 0.2781(16) 0.0654(78)
c3) 0.1140(20) 0.8811(18) 0.1982(15) 0.0612(72)
c(31) 0.1740(18) 0.9440(17) 0.1645(14) 0.0531(67)
C(32) 0.2287(18) 0.9197(17) 0.1135(14) 0.0553(66)
C(33) 0.2807(23) 0.9820(21) 0.0795(17) 0.0742(90)
C(34) 0.2726(21) 1.0711(20) 0.0944(16) 0.0686(81)
C(35) 0.214124) 1.0927(22) 0.1467(18) 0.0839(94)
C(36) 0.1692(18) 1.0313(16) 0.1828(13) 0.0492(63)
C(4) 0.2920(18) 0.7930(16) 0.2670(13) 0.0537(64)
c4n) 0.3824(19) 0.7532(18) 0.2554(15) 0.0609(71)
C(42) 0.4428(26) 0.7202(23) 0.3076(19) 0.0894(103)
C(43) 0.5311(31) 0.6917(28) 0.2933(23) 0.1088(131)
C(44) 0.5587(32) 0.6942(30) 0.2210(25) 0.1168(142)
C(45) 0.491331) 0.7228227) 0.1670(22) 0.1111(127)
C(46) 0.3986(29) 0.7552(27) 0.1801(22) 0.1080(121)
Cp() 0.0199(21) 0.9985(20) 0.3424(16) 0.0703(80)
Cp2) ~0.0072(21) 0.9287(19) 0.3886(16) 0.0673(18)
Cp(3) —0.0806(23) 0.8818(21) 0.3509(17) 0.0773(90)
Cp(4) —0.0918(24) 0.9150(22) 0.2777(18) 0.0770(92)
Cp(5) —0.0357(21) 0.9874(19) 0.2775(16) 0.0665(79)
Cp(6) —0.0338(26) 0.9371(24) 0.0729(20) 0.0923(105)
Cp(7) 0.0088(28) 0.8835(26) 0.0258(21) 0.1012(115)
Cp(8) —0.0525(26) 0.8111(24) 0.0163(19) 0.0888(103)
Cp(9) —0.1234(28) 0.8157(26) 0.0527(21) 0.0980(113)

Cp(10) ©—0.120329) 0.8927(27) 0.0908(22) 0.1084(124)
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Table 2 (continued)
Anisotropic thermal parameters (with esd’s) for the metal atoms“

Atom Uy, Uy, Uss Uy, Uiy U,

Il)  00922(8)  00336(5)  00320(5) _ —0.0004() _ 0.0076(5) 0.0016(5)
1r(2) 0.0927(9)  004326)  0.0326(5) 0.0086(5)  0.0070(5) 0.0024(6)
w(1) 0.0824(8) 0.0402(6) 0.0278(5) 0.0004(4) 0.0081(5) 0.0022(6)
W(2) 0.0985(9) 0.0423(6) 0.0271(5) 0.0031(5) 0.0026(5) —0.0052%6)

“ These values are in standard SHELX76 format.

the molecule appears as Fig. 3. Intramolecular distances and angles are provided in
Tables 3 and 4.

Interestingly, the reaction of (7°-CsH ) W, Ir,(CO),, with two moles of PhC=CPh
is shown to give rise to a product in which the two alkyne ligands have undergone
reorganization to produce a p;-CPh ligand (formally a 3-electron donor) and a
p3-1°-C5Ph; ligand (formally a 5-clectron donor). These two fragments lie on the
same surface of a triangulated thomboidal W,Ir, cluster. The metal atom core is
close to planar with a dihedral angle of 170.33° between the W(1)-Ir(1)-Ir(2) and
W(1)-W(2)-Ir(1) triangles.

Fig. 1. The (1°-Cs),W;1r,(C0O) 4 (1-CO) 2 (11 3-C-C)(pt 3-1°-C; (ipso-C); core of the molecule.
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Fig. 2. Labelling of atoms in the (1;5-C5 H;),W,Ir,(CO), (1-CO)(p5-CPh) (1 3-1°-C,Ph,) molecule.
Hydrogen atoms are omitted. :

Planar triangulated rhomboidal clusters and the electronically equivalent “but-
terfly” clusters are usually associated with 62 outer valence electrons whereas
tetrahedral clusters typically have 60 outer valence electrons. The present close-to-

Fig. 3. A stereoscopic view of the molecule.
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Table 3
Interatomic distances (A), with esd’s, for (°-C5Hs),W, Ir;(CO), (7-CO), (45-CPhY p5-1>-C4Ph3)

Atoms Distance Atoms Distance
(A) Metal - Metal distances

W(D-W(2) 3.080(1) Ir(1)-1r(2) 2.720(1)
W(1)-Ir(1) 2.723(2) W(2)-Ir(1) - 2.665(2)
W(1)-Ir(2) 2.852(2)

(B) Metal -3’ -C; Ph; distances

1Ir(2)-C(1) 2.233(25) W1)-CQ) 2231249
In(2)-C(4) 2.302(26) Ir(1)-C(4) 2.069(24)
Ir(2)-C(2) 2.296(25)

(C) Metal —p ;-CPh distances

WwW(1)-C(3) 2.012(29) I{1)-C(3) 2.180(28)
W(2)-C(3) 2.081(27)

(D) Selected of distances within the p;-3°-C; Ph; ligand

C(D)-CA1) 1.539(36) C(1)-C(2) 1.370(36)
C(2)-C(21) 1.452(37) C(2)-C(4) 1.486(35)
C(4)-C(41) 1.470(38)

(E) Distances within the p ;-CPh ligand

C(3)-C(31) 1.492(40) C(34)-C(35) 1.401(48)
C(31)-C(32) 1.356(39) C(35)-C(36) 1.376(44)
C(32)-C(33) 1.420(43) C(36)-C(31) 1.411(37)
C(33)-C(34) 1.428(45)

(F) Metal — carbon (carbonyl) distances

Ir(1)-C(5) 1.780(28) W(1)-C(8) 2.016(23)
Ir(2)-C(6) 1.880(36) Ir(2) - - - C(8) 2.282(22)
Ir(2)-C(7) 1.778(58) W(2)-C(9) 1.932(28)
W(2)-C(10) 1.886(28) Ir(1) - - C(9) 2.391(25)
(G) Carbon — oxygen (carbonyl) distances

C(5)-0(5) 1.235(38) C(8)-0O(®) 1.242(31)
C(6)-0(6) 1.144(44) C(9H-0(9) 1.205(35)
C(NH-T) 1.236(68) C(10)-0(10) 1.232(36)
(H) Metal—n’-C;H; ligand distances

W(1)-Cp(1) 2.389(31) W(2)-Cp(6) 2.377(37)
W1)-Cp(2) 2.373(31) W(2)-Cp(T) 2.376(39)
W(1)-Cp(3) 2.461(34) W(2)-Cp(8) 2.328(35)
W(1)-Cp(4) 2.354(33) W(2)-Cp(9) 2.335(37)
W(1)-Cp(5) 2.384(30) W(2)-Cp(10) 2.362(41)
W(1)-Cp*® 2.066 W(2)-Cp“ 2.032

¢ Cp is the centroid of the appropriate 7°-CsH, ligand

planar triangulated rhomboidal cluster has a total of only 60 outer valence electrons.
(With a neutral atom, neutral ligand counting system we have two d° W(0) atoms,
two d° Ir(0) atoms, 12e~ from the six carbonyl ligands, 10e~ from the two 7°-CsH;
ligands, 5e~ from the p,-7,-C,Ph, ligand and 3e~ from the u,-CPh ligand.)
Electron counts for the individual metal atoms (with electrons of the two “semi-
bridging” carbonyl ligands associated formally with the most tightly bound metal
atom) are 18¢™ at W(1), W(2) and Ir(2) and 16e~ at Ir(1).
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Table &
Selected interatomic angles (deg) for (7°-CsH ), W,Ir,(CO) 4 (p-CO), (15-CPhY p5-n°-C3Phy)

Atoms Angle Atoms Angle
(A) Intermetallic angles

W(1)-Ir(1)-Ir(2) 63.2(0) I(2)-W(1)-Ir(1) 58.4(0)
W(2)-Ir(1)-Ir(2) 132.0(1) W(2)-W(Q1)-Ir(1) 54.2(0)
W(2)-Ir(1)-W(1) 69.7(0) W(2)-W(Q)-Ir(2) 112.0(0)
W(QQ)-1r(2)-Ir(1) 58.5(0) W(Q1)-W(2)-Ir(1) 56.0(0)
(B) Metal — metal — carbon angles involving the (3 -v’-C '3 Ph ;) and (u 3-CPh) ligands
In(1)-1r(2)-C(1) 80.9(6) W(1)-Ir(2)-C(1) 50.3(6)
Ir(1)-In(2)-C(2) 74.3(6) W()-Ir(2)-C(4) 85.4(6)
Ir(1)-1(2)-C(4) 47.8(6) W()-Ir(2)-C(3) 46.9(8)
Ir(1)-W(1)-C(1) 80.8(7) W()-Ir(1)-C(4) 93.4(7)
Ir(1)-W(1)-C(3) 52.2(8) W(1)-W(2)-C(3) 40.4(8)
Ir(1)-W(Q2)-C(3) 53.0(8) W(2)-Ir(1)-C(3) 49.6(7)
Ir(2)-W(1)-C(1) 50.3(6) W(2)-Ir(1)-C(4) 138.9(7)
Ir(2)-W(Q1)-C(3) 99.6(8) W(2)-W(1)-C(1) 122.0(6)
In(2)-1Ir(1)-C(3) 99.5(7) W@)-W(1)-C(3) 42.0(8)
Ir(2)-1r(1)-C(4) 55.5(7)

(C) Metal — carbon - oxygen angles

Ir(1)-C(5)-O(5) 175.2(25) W(1)-C(8)-0(8) 152.6(18)
In(2)-C(6)-O(6) 174.6(32) Ir(2) - - - C(8)-0O(8) 124.417)
In(2)-C(7)-O(7) 176.5(42) W(2)-C(9)-0(9) 155.6(21)
W(2)-C(10)-0(10) 174.422) Ir(1) - - C(9)-0(D) 129.1(19)
(D) M —C-C angles involving the (i3 -nJ-C_;Phj) and (i 3-CPh) ligands

Ir(1)-C(3)-C(31) 121.5(19) Ir(1)-C(4)-C(2) 117.0(17)
Ir(1)-C(4)-C(41) 124.4(18) Ir(2)-C(1)-C(2) 74.9(15)
Ir(2)-C(1)-C(11) 123.5(17) In(2)-C(2)-C(1) 69.9(15)
In(2)-C(2)-C(21) 133.3(18) I(2)-C(2)-C(4) 71.4(14)
Ir(2)-C(4)-C(41) 123.2(18) In(2)-C(4)-C(2) 70.9(14)
WwW(1)-C(1)-C(11) 114.6(17) W(1)-C(1)-C(2) 125.9(18)
W(1)-C(3)-C(31) 137.2(20)

W(2)-C(3)-C(31) 121.5(18)

Metal-metal bond lengths in (7°-CsHs),W,Ir,(CO),(p-CO),(pt,-CPh) p4-n’-
C,Ph,;) may be compared to those in the isonuclear tetrahedral clusters (7°-
CsH;) W, Ir,(CO)yo (A) [3,8] and (nS-CsHs)%WZII'Z(CO)7(CHC02Et)2 (B [1,9].
Thus, thCOW(l)—W(Z) bond length of 3.080(1)A is significantly longer than W-W
2.991(1) A in A and 2.995(1) A in B. The Ir(1)-Ir(2) bond length of 2.720(1) is
similar to that of 2.722(1) A in A; both are longer than the value of 2.653(1) AinB.
Tungsten—iridium distances in the present complex are, in increasing order,
W(2)-Ir(1) 2.665(2) A, W(1)-Ir(1) 2.723(2) A and W(1)-Ir(2) 2.852(2) A. Those in
A range from 2.796(1) through 2.863(1) A; those in B lie in the range
2.781(1)-2.825(1) A. The anomalous feature appears to be that the two W-Ir
distances involving the formally electron-poor atom Ir(1) in the present structure are
shorter than in all other cases.

Each metal atom is in a different chemical environment from the others. Atom
W(1) is linked to the three other metal atoms, an 7°-CsH, ligand, via a o-bond to
C(1) of the p,-n*>-C,;Ph, ligand, to C(3) of the u,-CPh ligand and to the carbonyl
ligand C(8)-O(8) (which also interacts more weakly with Ir(2)). Atom W(2) is linked
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to two metal atoms (W(1) and Ir(1)), an n°-CsH; ligand, to C(3) of the u,-CPh
ligand and two carbonyl ligands, C(10)-O(10) and C(9)-O(9) (the latter of which
also interacts weakly with Ir(1)). Atom Ir(1) is linked to the three metal atoms, via a
o-bond to C(4) of the u;-1°-C;Ph, ligand, to C(3) of the p;-CPh ligand and to the
carbonyl ligand C(5)-O(5). Atom Ir(2) is linked to two metal atoms (W(1) and
Ir(1)), is linked via an %-linkage to the allylic system C(1)-C(2)-C(4) in the
p3-1°-C5Ph ligand and to two terminal carbonyl ligands, C(6)-0O(6) and C(7)-O(7).

The p,-1°-C,Ph; system participates in a dimetalloallyl system. It is o-bonded to
W(1) and Ir(1) with W(1)-C(1) 2.231(24) A and Ir(1)-C(4) 2.069(24) A and it is is
a7-bonded to Ir(2) with Ir(2)-C(1) 2.233(25), Ir(2)-C(2) 2.296(25) and Ir(2)-C(4)
2.302(26) A.

The p;-CPh (benzylidyne) ligand forms o-bonds to three metal atoms with
W(1)-C(3) 2.012(29), W(2)—C(3) 2.081(27) and Ir(1)-C(3) 2.180(28) A. The p,-n’-
C;Ph; and p,-CPh ligands lie on the same surface of the rhomboidal W,Ir, cluster;
it is possibly the interaction between these systems that causes the slight non-planar-
ity of the metal core.

Four of the carbonyl ligands are clearly terminal and are close to colinear with
the metal atom viz. Ir(1)-C(5) 1.780(28) A with angle Ir(1)-C(5)-0O(5) 175.2(25)°,
Ir(2)-C(6) 1.880(36) A with angle Ir(2)—C(6)-0(6) 174.6(32)°, Ir(2)-C(7) 1.778(58)
A with Ir(2)-C(7)-0(7) 176.5(42)°, and W(2)-C(i0) 1.886(28) A with angle
W(2)-C(10)-0(10) 174.4(22)°. The remaining two are clearly in “semi-bridging”
positions. The ligand C(8)-O(8) is associated with metal-carbon distances of
W(1)-C(8) 2.016(23) A and Ir(2)---C(8) 2.282(22) A and with the angles
W(1)-C(8)-0O(8) 152.6(18)° and Ir(2):--C(8)-O(8) 124.4(17)°. This system is
associated with an a-value (defined by (d, — d,)/d; [15] of 0.13 and a “partially-
corrected a-value” [1], defined by [(d, — r(M,)) — (d, — r(M,))]/d, of 0.22. The
latter value, based on internal radii of r(W) 1.54 A and r(Ir) 1.36 A, is more useful
and confirms the semi-bridging rather than symmetrically bridging nature of this
system.

The ligand C(9)-0O(9) has W(2)-C(9) 1.932(28) A, Ir(1) - - - C(9) 2.391(25) A,
< W(2)-C(9)-0(9) 155.6(21)°, and Ir(1) - - - C(9)-0O(9) 129.1(19)°; this system is
associated with an a-value of 0.24 and a “partially-corrected a-value” of 0.33.

While it can be claimed that the second system allows electrons to be transferred
to the electron-poor atom Ir(1l), there is no clear electronic rationale for the
existence of the first, more symmetrical, semi-bridging carbonyl.

The most interesting feature of the molecule is that it is an anomalous
“60-electron” triangulated rhomboidal cluster. (This is probably due to steric
effects; the p;-CPh and p;-1>-C;Ph; ligands contribute a total of only eight
electrons, yet effectively block one entire surface of the W, Ir, cluster; potential axial
sites for a carbonyl ligand on Ir(1) are blocked by phenyl rings on one side and by
C(7)-O(7) on the other side.) This phenomenon is not unique; the complex
Os;Rh(p-H),(acac)(CO),, [16] also is rhomboidal with only 60 electrons. Also, a
number of “64-electron™ clusters are known which incorporate a planar trangulated
rhomboidal skeleton. The simplest of these is probably FeRu;(CO),;(p-PPh,),
[17]. The anomalous species usually exhibit expanded or contracted M—M bonds in
distinct contrast to the regular geometry observed in such archetypal “62-electron”
planar triangulated rhomboidal species as Re,(CO),s~ [18,19] and HOs;Re(CO), 5
[20].
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Additional material

A table of observed and calculated structure factor amplitudes is available upon

request (from M.R.C)).
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