Journal of Organometallic Chemistry, 385 (1990) C39-C42 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20735PC

Preliminary communication

Komplexe mit sterisch anspruchsvollen Liganden

XIII *. Komplexierung des 1,3-Di-t-butylcyclopentadienyl-Liganden am Eisen, Cobalt und Titan

Jun Okuda

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching (F.R. Germany)

(Eingegangen den 16. Januar 1990)

Abstract

The reaction of di-t-butylcyclopentadienyllithium $\text{Li}[\eta^5-\text{C}_5\text{H}_3(\text{CMe}_3)_2-1,3]$, prepared by addition of methyllithium to 2-t-butyl-6,6-dimethylfulvene, with FeCl₂, CoCl₂, and TiCl₃ has been studied. A barrier to ring rotation of ΔG^{\ddagger} 12.6 kcal mol⁻¹ has been estimated by variable-temperature ¹H NMR spectroscopy for 1,1',3,3'-tetra-t-butylcobaltocenium ion.

An 1,3-Di-t-butylcyclopentadienyl ("Bu₂Cp")-Übergangsmetallkomplexen wurde erstmals NMR-spektroskopisch die Rotationsbehinderung des Fünfringliganden um die Achse Metall-Ringmitte beobachtet. So berichtete Werner et al. über den Nachweis starrer Rotamerer im Fall des Cobalt-Halbsandwich-Komplexes (Bu₂Cp) Co(PMe₃)₂ [2], während die Rotationsbarriere für das 1,1',3,3'-Tetra-t-butylferrocen $Fe(Bu_2Cp)_2$ von Streitwieser und Luke zu ΔG^{\ddagger} 13.1 kcal mol⁻¹ ermittelt wurde [3]. Bemerkenswerterweise sind die erwähnten Komplexe jeweils durch electrophile t-Butylierung des entsprechenden Cyclopentadienyl-Komplexes dargestellt worden, obwohl Di-t-butylcyclopentadien bereits lange bekannt ist [4]. In jüngster Zeit gelang Lemenowskii et al. die Synthese der Titanocen-Derivate (Bu₂Cp)₂TiCl_n (n = 1, 2) [5], aber die Zahl der Übergangsmetallkomplexe mit diesem Liganden ist überraschend gering geblieben [6]. In Zusammenhang mit systematischen Studien zum Komplexierungsverhalten von sperrigen Cyclopentadienyl-Derivaten mit mehr als zwei Trimethylsilyl-Gruppen [7] haben wir zum Vergleich exemplarisch Reaktionen von 1,3-Di-t-butylcyclopentadienyllithium mit Chloriden des Eisens, Cobalts und Titans durchgeführt.

^{*} XII. Mitteilung: Siehe Ref. 1.

Das 1,3-Di-t-butylcyclopentadienyllithium $Li(Bu_2Cp)$ haben wir entweder durch Metallierung von Di-t-butylcyclopentadien mit n-Butyllithium oder durch Addition von Methyllithium an 2-t-Butyl-6,6-dimethylfulven [8] hergestellt und als luftemp-findliches Pulver isoliert.

Eisen(11)chlorid. Wird Li(Bu_2Cp) bei tiefen Temperaturen in THF mit einem Äquivalent FeCl₂(THF)_{1.5} unter CO-Atmosphäre umgesetzt, so erhält man nach Erwärmen auf Raumtemperatur neben Fe(Bu_2Cp)₂ und $[(Bu_2Cp)Fe(CO)_2]_2$ bei Einstellung optimaler Bedingungen als Hauptprodukt in 30–40% Ausbeute (Bu_2Cp)Fe(CO)₂Cl. Letzteres kann als carminrote Plättchen isoliert und durch Elementaranalyse, NMR- und IR-Spektroskopie sowie durch Massenspektrometrie charakterisiert werden. Offensichtlich reicht der sterische Anspruch des Bu₂Cp-Liganden nicht aus, die reaktive Zwischenstufe mit nur einem Ringliganden genügend kinetisch zu stabilisieren. Die analoge Umsetzung vom elektronisch ähnlichen, sterisch aber anspruchsvolleren 2,4-Di-t-butyl-1-trimethylsilylcylopentadienyllithium Li(Bu_2SiCp) Fe(CO)₂Cl [9].

Cobalt(II)chlorid. Die Umsetzung von Li(Bu₂Cp) mit CoCl₂ in THF führt in glatter Reaktion zum 1,1',3,3'-Tetra-t-butylcobaltocen, das in situ mit FeCl₃ zum 1,1',3,3'-Tetra-t-butylcobaltocenium-Kation [Co(Bu₂Cp)₂]⁺ oxidiert werden kann. Das Hexafluorophosphat wird als CH₂Cl₂-Solvat in langen goldgelben Nadeln isoliert und charakterisiert. Die temperaturabhängig aufgenommenen ¹H-NMR-Spektren (400 MHz; CD₃COCD₃) zeigen jeweils ein Koaleszenzverhalten für das Dublett der enantiotopen vicinalen Ringprotonen sowie für die Protonen der beiden t-Butyl-Gruppen, wobei die Koaleszenztemperaturen bei -10.5 bzw. -23.5°C liegen. Die daraus abgeschätzte Rotationsbarriere ΔG^{\ddagger} beträgt 12.7 kcal mol⁻¹ und ist etwas niedriger als der Wert für das isoelektronische Fe(Bu₂Cp)₂, liegt aber im erwarteten Bereich (Tab. 1).

Titan(III)chlorid. Bei der Darstellung des Titanocen-Derivates $(Bu_2Cp)_2TiCl_2$ aus TiCl₄ und Li(Bu₂Cp) ist eine Ausbeute von lediglich 30% erzielt worden [5], was

Tabelle 1

¹H-NMR-spektroskopisch bestimmte Barrieren für die Ringrotation ΔG^{\ddagger} in sterisch aufwendig substituierten Cobaltocenium-Ionen [(Ringligand)₂Co]⁺

Ringligand	ΔG^{\ddagger} (kcal mol ⁻¹)	Lit.	
Bu ₂ Cp	12.7	diese Arbeit	
Si ₂ Cp ^{<i>u</i>}	10.7	11	
BuSi ₂ Cp ^{<i>b</i>}	8.8	7c	
Si ₃ Cp ^c	9.9	11	

 a^{a} 1,3-Bis(trimethylsilyl)cyclopentadienyl. b^{b} 4-t-Butyl-1,2-bis(trimethylsilyl)cyclopentadienyl. c^{c} 1,2,4-Tris(trimethylsilyl)cyclopentadienyl.

auf unkontrollierte Redoxreaktionen zurückzuführen ist. Die Umsetzung von TiCl₃ mit Li(Bu₂Cp) hingegen liefert zunächst grünes (Bu₂Cp)₂TiCl und nach Oxidation mit Salzsäure oder AgCl in etwa 60% Gesamtausbeute orangefarbenes (Bu₂Cp)₂Ti-Cl₂. Vorläufige ¹H-NMR-spektroskopische Studien zeigen keine Temperaturabhängigkeit der Signale im Gegensatz zum analogen 1,1',3,3'-Tetrakis(trimethylsilyl)-titanocendichlorid [10], was jedoch mit der praktisch C_{2v}-symmetrischen Molkülstruktur im Kristall in Einklang ist. Diese Befunde deuten darauf hin, dass das Komplexierungsverhalten von Li(Bu₂Cp) mit dem von Li(Si₂Cp) vergleichbar ist, dass sich aber die Ligandeneigenschaften unter Umständen unterscheiden können.

Experimenteller Teil

Bromodicarbonyl(1,3-di-t-butylcyclopentadienyl)eisen. Zu einer Lösung von 5 mmol 1,3-Di-t-butylcyclopentadienyllithium in 40 ml THF gibt man bei -95°C 1.175 g (5 mmol) FeCl₂(THF)_{1.5} und lässt die Mischung langsam unter Einleiten von CO-Gas auf Raumtemperatur erwärmen. Nach Entfernung der flüchtigen Bestandteile wird mit 3×15 ml Pentan extrahiert, die Extrakte werden eingeengt und an Kieselgel (Aktivität II-III, Säule 1.5×30 cm, 15° C) chromatographiert. Mit Pentan als Eluens erhält man zunächst in einer gelben Bande 100 mg Fe(Bu₂Cp)₂ und dann eine braune Zone, die Spuren [(Bu₂Cp)Fe(CO)₂]₂ enthält. Verwendet man Pentan/Ether (5/1) als Eluens, so gewinnt man aus einer roten Zone nach Einengen und Abkühlen auf -78°C carminrote Kristalle von (Bu₂Cp)Fe(CO)₂Cl. Ausb. 600 mg (1.4 mmol; 29%). Schmp. 107°C (Zers.). ¹H-NMR (C₆D₆; 25°C): 1.04 (s, 18H, CH₃), 4.17 (d, ⁴J(H,H) 1.9 Hz, 2H, C₅H₂), 4.61 (t, ⁴J(H,H) 1.9 Hz, 1H, C₅H). ¹³C{¹H}-NMR (C₆D₆; 25°C): 30.77 (CCH₃), 31.07 (CCH₃), 82.13, 86.58, 111.83 (Ring-C), 214.98 (CO). IR (Pentan): 2042s, 2000s cm⁻¹ (v(CO)). IR (KBr): 2031vs, 1972vs cm⁻¹ (ν (CO)). EI-MS: m/e 324 (M^+ , 3%), 296 (M^+ - CO, 8%), 268 $(M^+ - 2CO, 55\%)$, 253 $(M^+ - 2CO, -CH_3, 100\%)$. Anal. Gef.: C, 55.24; H, 6.46; Cl, 10.11. C₁₅H₂₁ClFeO₂ (324.63) ber.: C, 55.50; H, 6.52; Cl, 10.92%.

1,1',3,3'-Tetra-t-butylcobaltocenium-hexafluorophosphat. Die Synthese erfolgt analog zu 1,1',3,3'-Tetrakis(trimethylsilyl)cobaltocenium-hexafluorophosphat [11] und ergibt bei der Umkristallisation aus CH₂Cl₂/Ether in 60% Ausbeute goldgelbe Nadeln des Mono-CH₂Cl₂-Solvats, die nur sehr langsam verwittern. Schmp. 285°C, ¹H-NMR (CD₃COCD₃; 0°C); 1.39 (s, 18H, CH₃), 5.61 (s, 2H, CH₂Cl₂), 5.78 (t, ⁴J(H,H) 1.8 Hz, 1H, C₅H), 5.88 (d, ⁴J(H,H) 1.8 Hz, 2H, C₅H₂). ¹H-NMR (CD₃COCD₃; -90°C): 1.28 (s, 9H, CH₃), 1.34 (s, 9H, CH₃), 5.79 (s, 2H, CH₂Cl₂), 5.89 (s, 1H, C₅H), 5.95 (s, 1H, C₅H₂), 6.10 (s, 1H, C₅H₂). ¹³C{¹H}-NMR (CD₃COCD₃; 25°C): 30.33 (CCH₃), 30.62 (CCH₃), 54.86 (CH₂Cl₂), 78.83, 78.76, 120.57 (Ring-C). IR (KBr): 2970m, 1489s, 1372ms, 840vs, 557s cm⁻¹. Anal. Gef.: C, 50.67; H, 6.99; Co, 9.30. C₂₇H₄₄Cl₂CoF₆P (643.46) ber.: C, 50.40; H, 6.89; Co, 9.16%.

Dank. Der Volkswagen-Stiftung und dem Bund der Freunde der TU-München sind wir für finanzielle Unterstützung zu Dank verpflichtet. Herrn Prof. Dr. W.A. Herrmann danken wir für seine wohlwollende Förderung; Hernn Prof. Dr. K. Hafner, TH-Darmstadt, sowie Herrn Dr. E.W. Casserly, Pennzoil Products Company, Texas, für Informationen über die Synthese von 1,3-Di-t-butylcyclopentadien.

Literatur

- 1 J. Okuda, J. Organomet. Chem., 384 (1990) C21.
- 2 W. Hofmann, W. Buchner und H. Werner, Angew. Chem., 89 (1977) 836; Angew. Chem Int. Ed. Engl., 16 (1977) 795; H. Werner und W. Hofmann, Chem. Ber., 114 (1981) 2681.
- 3 W.D. Luke und A. Streitwieser, Jr., J. Am. Chem. Soc., 103 (1981) 3241; T.E. Bitterwolf, A.C. Ling, J. Organomet. Chem., 141 (1977) 355.
- 4 R. Riemschneider, Z. Naturf. B, 18 (1963) 641.
- 5 I.F. Urazowski, V.I. Ponomaryov, O.G. Ellert, I.E. Nifantev und D.A. Lemenovskii, J. Organomet. Chem., 356 (1988) 181.
- 6 Hauptgruppen-Komplexe: P. Jutzi, W. Leffers, S. Pohl und W. Saak, Chem. Ber., 122 (1989) 1449; S.T. Abu-Orabi und P. Jutzi, J. Organomet. Chem., 347 (1988) 307; P. Jutzi und R. Dickbreder, ibid., 373 (1989) 301.
- 7 (a) J. Okuda und E. Herdtweck, Chem. Ber., 121 (1988) 1899; (b) idem, J. Organomet. Chem., 373 (1989) 99; (c) J. Okuda, Chem. Ber., 122 (1989) 1075.
- 8 O. Helmling und K. Hafner, unveröffentlicht; vgl. auch S. Gutmann, P. Burger, H.-U. Hund, J. Hofmann und H.-H. Brintzinger, J. Organomet. Chem., 369 (1989) 343.
- 9 J. Okuda, unveröffentliche Ergebnisse.
- 10 J. Okuda, J. Organomet. Chem., 356 (1988) C43.
- 11 J. Okuda, J. Organomet. Chem., 367 (1989) C1.