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Abstract 

N-Alkoxycarbonyl alkyldiphenyl-X5-phosphazenes react with acetylene esters 
yielding stabilized phosphonium ylides. Subsequent metalation with KH leads to 
azaphosphinines. 

Introduction 

It is well known that X5-phosphazenes were first synthesised as early as the 
beginning of this century [l]. However, only recently has a real interest been shown 
in this type of compounds owing to their widespread application in the preparation 
of organic semiconductors [2], backbone polymer precursors [3] and as ligands in 
transition metal complexes [4]. Moreover, they are versatile key intermediates in the 
synthesis of natural products [5] and in the preparation of acyclic [6] and hetero- 
cyclic nitrogen derivatives [7] by means of the aza-Wittig reaction. However, 
applications of these species for synthesis of phosphorus containing heterocycles has 
hitherto hardly been explored [&lo], in spite of their usefulness in the preparation 
of the potentially biological active six-membered heterocycles containing both 
phosphorus and nitrogen atoms [11,12]. 

We recently reported [9] that the reaction of N-arylalkyldiphenyl-AS-phos- 
phazenes with dimethyl acetylenedicarboxylate (DMAD) yields conjugated phos- 
phonium ylides. Subsequent treatment of the adduct with potassium hydride leads 
to phosphole derivatives (Scheme 1). 

On the other hand, although a new synthetic method for N-functionalised 
X5-phosphazenes was recently reported [13], very little is known about their reactiv- 
ity. In fact, the reactivity of the P=N double bond is considerably reduced when 

* Dedicated to Prof. G. Wilke on the occasion of his 65th birthday. 
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electron-withdrawing groups are attached to the nitrogen atom of A5-phosphazenes 

U41. 
Continuing our interest in the chemistry of phosphorus containing heterocycles, 

we report here the reaction of N-functionahzed Xs-phosphazenes with dialkyl 
acetylenedicarboxylates as well as the first synthesis of 1 -aza-2-oxo-4A5-phos- 

phinines. 

Results 

Reaction of conjugated phosphonium ylides [15] with acetylene esters proceeds 
via [2 + 21 cyclization leading to stabilised phosphonium ylides, in a similar way to 
that outlined in Scheme 1. However, the related isoelectronic N-ethoxycarbonyl-h5- 
phosphazenes derived from triphenylphosphine do not react with acetylene esters 

V41. 
This limitation can be overcome by increasing the reactivity of the hs-phos- 

phazenes through replacement of the phenyl group attached to the phosphorus atom 
by an alkyl group. This effect has been observed on the isoelectronic phosphonium 
ylides [16]. 

Thus, when N-alkoxycarbonylalkyldiphenyl-~s-phosphazenes (1) react with di- 
methyl (DMAD) and diethyl acetylenecarboxylate (DEAD) (2) in methylene chlo- 
ride at room temperature, stabilized phosphonium ylides (3) are formed in excellent 
yields (see Table 1). Formation of these compounds, by analogy with simple 
h5-phosphazenes [9] and phosphonium ylides [lS], could be explained through 
[2 + 21 cyclization of the P=N linkage of 1 to the carbon-carbon triple bond of 
acetylene esters followed by an electrocyclic ring opening. Compounds 3 were 
characterised on the basis of their spectroscopic data and mass spectrometry (Table 
2). The proposed structure was confirmed by hydrolytic cleavage of 3 with 1.5 M 
sulfuric add, leading to methyldiphenylphosphine oxide and enamide 4 (see Scheme 
2). On the other hand, derivatives 3 were alternatively prepared by a similar reaction 
starting from N-trimethylsilyl-X5-phosphazenes (5) and DMAD giving rise to the 
corresponding N-silylated l/l adduct 6. Subsequent reaction of these compounds 
with alkyl chloroformate yields the target derivatives 3. 

Metallation of 3e-3i (R2 = R3) with potassium hydride in tetrahydrofuran at 
70 o C followed by aqueous work-up affords the l-aza-2-oxo-4As-phosphinines (7) 
with excellent yields (see Table 1). Spectroscopic data support the proposed struc- 
ture. On the other hand, the metallation of 3a-3c, where R’ = ti., gives rise to a 
mixture of heterocycles. These compounds were probably formed from the trans- 
esterification processes between the potassium ethoxide produced in the cyclocon- 
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Table 1 

Some physical data for the compounds prepared. 

Compound 0 R’ R3 M.p. 

(“C) 

Yield 

@I 

3a H CH3 

3b -3 CH3 

3c CH,=CH CH3 

3d GH, CH3 

3e H CH3 

3f CH, CH3 

3g CH,=CH CH3 

3h H C2H5 

3i CH3 C2H5 

7a H CH3 

7b CH, CH3 

7c CH,=CH CH3 

7d H C2H5 

7e CH, C2% 

C2H5 

C2H5 

C2H5 

C2H5 

CH3 

CH3 

CH3 

C2% 

C2H5 

138-139 85 

115-116 89 

125-126 86 

114-115 84 

182-183 87 

155-156 88 

158-159 85 

130-131 84 

109-110 88 

230-231 86 

208-209 88 

211-212 84 

209-210 85 

198-199 89 

Q All new compounds reported gave satisfactory elemental analysis. 

densation reaction and the methoxycarbonyl substituents. In the case of P-benzyl- 
A5-phosphazenes (3d), however, no reaction products were observed, probably due to 
the lower reactivity of the corresponding anion. 

In conclusion, substitution of phenyl substituents by alkyl groups at the phos- 
phorus atom of N-alkoxycarbonyl-X5-phosphazenes increases their reactivity and 
enables these systems to react with acetylene esters thus, yielding stabilized phos- 
phonium ylides 3. These compounds 3 are starting materials for the synthesis of a 
new type of phosphorus and nitrogen containing heterocycles, l-aza-2-oxo-4X5- 
phosphazenes (3), through metalation with KH followed by a cyclocondensation 
reaction. 

(conrimed on p. 66) 
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Experimental 

All manipulations were carried out in freshly distilled solvents and under 
nitrogen. NMR spectra were recorded on a Varian FT-80A or a Bruker 300AC 
instrument; chemical shifts are reported in ppm downfield from internal SiMe, for 
‘H and 13C NMR or from 85% H,PO, in the case of 3’P NMR. IR spectra were 
recorded in KBr on a Perkin-Elmer model 240 instrument and mass spectra were 
obtained using a Hewlett-Packard 5930A spectrometer. 

Reaction of N-alkoxycarbonyl-A-‘-phosphazenes 1 with dialkyl acetylenedicarboxy- 
late. A general procedure for the synthesis of phosphonium glides (3). Dimethyl 
(DMAD) or diethyl acetylenedicarboxylate (DEAD) (5.0 mmol) was added to a 
solution of the X5-phosphazenes (1) (5 mmol) in dry dichloromethane (20 ml) at 
room temperature and the mixture was stirred for 6 h. The solvent was removed by 
evaporation. The residue was taken up in ether (10 ml) until a crystalline solid 
formed. which was recrystallised from hexane/ dichloromethane to give compounds 
3 (see Table 1). Analytical data of 3a are as follows: 

1-Aza-4-phospha-l-ethoxycarbonyl-4,4-diphenyl-2,3-dimethoxicarbonyl-l-penta- 
1,3-diene (3a). (m.p. 138-139°C). Anal. Found: C: 61.34; H, 5.63: N, 3.26. 
C,,H,,NO,P calcd.: C. 61.34; H, 5.56: N, 3.45%. Spectroscopic data are found in 
Table 2. 

Synthesis of phosphonium y/ides 3a from N-trimethylsilyl-P-methyldiphenyl-hs-phos- 
phazenes (5). To a solution of iV-trimethylsilyl-P-methyldiphenyl-~’-phosphazene 
(5) [18] (1.45 g, 5 mmol) in tetrahydrofuran (20 ml) was added DMAD (0.7 g, 6 
mmol) with stirring at room temperature. After 5 h the reaction is complete as 
indicated by 31P NMR. Evaporation of the solvent leads to the N-silylated phos- 
phonium ylides 6. Acylation of the crude product without further purification with 
ethyl and methyl chloroformate (5.5 mmol) in tetrahydrofuran (10 ml) and work-up 
as described above yields 3a (1.76 g, 82%) and 3e (1.86 g, 84%) respectively. 
Spectroscopic data for compound 6. ‘H NMR (6, 80 MHz, CDCl,): 0.21(s, 9H, 
CH,Si), 2.38(d, 3H, J(HH) 12.7 Hz., CH,P), 3.48(s, 3H, OCH,), 3.71(s, 3H, 
OCH,). 7.5-8.1(m, lOH, ArH) ppm. 3’P NMR (6, 32.3, MHz, CDCI,): + 15.0 ppm. 

Hydrolysis of phosphonium ylide 3a. Fragmentation products. A solution of 3a 
(2.1 g, 5 mmol) in a mixture of tetrahydrofuran (40 ml) and 1.5 M sulfuric acid (20 
ml) was stirred at room temperature 3h. After aqueous work-up and extraction with 
methylene chloride, the organic phase afforded methyldiphenylphosphne oxide (0.8 
g) m.p. ill-112°C (Lit. [17] 111-112°C) and dimethyl ethoxycarbamoyl fumarate 
(4) (0.8 g) isolated by vacuum distillation b.p. 130-131”C/O.l Torr. Anal. Found: 
C, 46.57; H, 5.60; N, 4.34. C,H,3N06 calcd.: C, 46.57; H, 5.67: N, 4.15. MS (60 ev) 
m/z 213 (M+, 3%) 154 (100). IR Y (neat) 3320, 1760, 1700, 1640, 1300, 1110, 700 
cm -l. ‘H NMR (8, 80 MHz, CDCI,): 1.28(t, 3H, CH,), 3.71(s, 3H, OCH,), 3.83(s, 
38, OCH,), 5.39(s, lH, =CH), 9.51(s, YH, NH) ppm. ‘“C NMR (6, 20 MHz, 
CDCl,): 11.8(CH,), 49.4(OCH,), 50S(OCH,), 60.2(OCH,). 97.4(=CH). 142.l(=C), 
150.8(NCO), 161.6(CO), 165.8(CO) ppm. 

Metalation of phosphonium ylides (3) with KH. Synthesis of 1 -aza-2-oxo-4h’-phos- 
phinines (7). General procedure. To a suspension of KH (240 mg, 6 mmol) in 
tetrahydrofuran (30 ml) was added dropwise compounds 3 (5 mmol) in THF (10 ml) 
at room temperature. When no more gas evolution was observed, the mixture was 
heated for 6 h at 70” C. After aqueous work-up and extraction with methylene 
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chloride (100 ml), the extract was evaporated to give crystalline compounds 7, that 
were recrystallized from hexane/methylene chloride. 

Analytical data of 1-aza-4,4-diphenyl-5,6-dimethoxycarbonyl-2-oxo-4A5-phos- 
phinine (7a) (m.p. 231-232°C). Anal. Found: C, 62.48; H, 4.62; N, 3.81. 
C,,H,,NO,P c&d.: C, 62.66; H, 4.73; N, 3.65%. Selected spectroscopic data are 
given in Table 2. 
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