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Abstract 

Reaction of dimesityl(fluorenylidene)germene, 1, with diazomethane leads, de- 
pending on the experimental conditions, to the gerrnapyrazoline 3 or 4. Thermal 
decomposition of 4 gives an unstable germirane 14, which was identified from its 
[3] 4 [2 + l] d ecomposition products, viz. 9-methylenefluorene 12 and dimesityl- 
germylene 15. 

Introduction 

Three-membered ring germylated derivatives such as germiranes 2a are still 
unknown, in contrast to their silicon analogues 2b [l]. 
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( 

2%: M=Ge 
2b: M=Si 

Because of their very severe internal strain they should be very reactive, and 
probably behave as valuable synthons in organometallic chemistry. Since 
dimesityl(fluorenylidene)germene 1, recently synthesized in our group [2,3], is very 
active in cycloaddition reactions (we have described its [2 + 21, [2 + 31 and (2 + 41 
cycloadditions, respectively, with aldehydes and ketones (41, nitrones [2] and con- 
jugated dienes [2]), its reaction with diazomethane appeared to us likely to be very 
promising, and to involve initial formation of a five-membered ring germapyrazo- 
line, followed by elimination of nitrogen to give a germirane: 
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The formation of three-membered rings has been observed in the reaction of 
diazomethane with other doubly-bonded Main Group elements such as disilenes 
> Si=Si< [5], digermenes >Ge=Ge< [6], diphosphenes -P-P- [7], and diarsenes 
-As=As- [8]. 

Results and discussion 

The outcome of the reaction between germene and diazomethane 1 proved to be 
very dependent on experimental conditions. When a large excess of an ethereal 
solution of diazomethane, dried over potassium pellets, was added to a solution of 1 

in Et 2O at - 78” C, the only observable product was the five-membered ring species 
3 (Scheme 1). When the reaction was carried out with a solution of distilled 
diazomethane (thus free of traces of KOH), the 4-germa-l-pyrazoline 4 was ob- 
tained. 

Compound 3 was identified from its spectral data. Thus its ‘H NMR spectrum 
exhibits a very low field chemical shift for the CH proton (8.45 ppm), characteristic 
of an imine function. In the 13C NMR spectrum the signal from the carbon 
doubly-bonded to nitrogen also appears at low field (154.13 ppm), as a doublet of 
doublets as a result of ‘J(CH) and >(CN.NH) couplings; addition of D,O im- 
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mediately converts this signal into a simple doublet, confirming unambiguously the 
existence of coupling between this carbon and the NH. (Such coupling is rarely 
observed.) Compound 3 is insensitive toward oxygen and moisture; 4 was shown to 
be identical to the compound obtained by Krebs et al. [9]. Addition of traces of a 
base (KOH) to 4 immediately generates 3, owing to a 1,3migration of hydrogen: 
such a prototropy is well known and has already been observed in other five-mem- 
bered rings containing the CH,-N=N linkage [lo]. This 4 + 3 rearrangement 
confirms unuambiguously the structure of 3 with the nitrogen bound to the 
fluorenyl group, and excludes the possibility that reverse addition of diazomethane 
has given 5. 
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The polarity , Ge = C , of the germene accounts for this direction of addition 

of diazomethane. 
The first step in these reactions is probably the formation of the dipolar 

intermediate 6; with distilled diazomethane, cyclisation of 6 leads to the expected 4. 
When the diazomethane contains traces of KOH, two pathways are possible: route 
a, involving preliminary formation of 4 and prototropy, or route b, involving the 
formation of intermediate 7 followed by its cyclisation. 

When diazomethane was added to an excess of germene 1 at - 78”C, the 
formation of the dipolar intermediates 6 or 7 was revealed by trapping with germene 
1 itself, leading to the seven-membered ring 8. Compound 8 is very stable as 
crystals, but slowly decomposes in solution at room temperature to give germene 1 
and germapyrazoline 3 in a [7] + [5 + 21 cycloreversion. Thus 8 can be considered as’ 
a store for germene 1. Species 1 was quantitatively trapped by methanol to give 9. 

We note that we have observed a completely different type of reaction between 
germene 1 and other diazo compounds, such as diphenyldiazomethane and diazof- 
luorene. In these cases we have never obtained a five-membered ring germapyrazo- 
line, but exclusively the four-membered ring cyclodigermazane 11, probably via a 
germanimine intermediate 10 [ll]. 
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As reported previously [9], thermolysis of 4 (l/2 h at 60 o C or ca. 3 days at room 
temperature in ethereal solution) results in its decomposition with formation of 
9-methylenefluorene 12 [12] and (Mes,Ge),, 13. Formation of 12 and 13 can only be 
accounted for in terms of the initial formation of germirane 14, followed by its rapid 
[3] + [2 + l] decomposition to give 12 and dimesitylgermylene 15 (Scheme 2). 
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Scheme 2 

Similar chemical behaviour is observed for siliranes; for example, hexamethyl- 
silirane gives dimethylsilylene and 2,3-dimethyl-2-butene at 60 o C [lb]. Attempts to 
trap the three-membered ring derivative 14 with methanol or sulfur were unsuccess- 
ful, probably because this germirane has a very short life. In the decomposition 
reaction in methanol only the germylene trapping derivative 16 was observed, along 
with alkene 12. In contrast, germapyrazoline 3 is thermally stable, and loss of 
nitrogen to afford germirane 14 has not been observed. Attempts to stabilize such 
three-membered ring derivatives sterically by use of suitably-substituted diazo 
compounds are in progress. 

Experimental 

General procedures 
Since solutions of germene 1 are highly air- and moisture-sensitive, all the 

experiments were performed under argon or nitrogen with carefully dried and 
deoxygenated solvents. ‘H NMR spectra were recorded on a Bruker AC 80 at 80 
MHz or on a Bruker AM 300 WB at 300.1 MHz, and 13C NMR spectra on a Bruker 
AC 200 at 50.3 MHz (TMS internal standard). Mass spectra were obtained with a 
Nermag RlO 010 spectrometer (EI). Melting points were determined with a 
Reichert apparatus. Elemental analyses were performed by the “Service de micro- 
analyse de l’Ecole de Chimie”, Toulouse (France). 

Germene i was prepared in near quantitative yield as previously described [2] by 
addition of an equivalent of tert-butyllithium (1.7 N in pentane) to a solution of 
dimesitylfluorenylfluorogermane in Et ,O at - 50°C. Crude, orange solutions of 
germene 1 were used without further purification 

Synthesis of 4germa-2-pyrazoiine, 3 
To a solution of 1 (0.90 g, 1.9 mmol) in Et,0 (30 ml) cooled at -7S” C was 

added an ethereal solution of diazomethane (excess) prepared from N-methyl-N- 
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reaction mixture, but was unambiguously identified from its ‘H NMR spectrum (by 
comparison with a pure sample prepared from dimesitylchlorogermane Mes,GeHCl, 
methanol, and triethylamine [13]): ‘H NMR (CDCl,): 2.00 (s, 6H, p-Me), 2.35 (s, 
12H, o-Me), 3.23 (s, 3H, OMe), 6.20 (s, lH, GeH), 6.52 (s, 4H, arom. Mes). 
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