Journal of Organometallic Chemistry, 394 (1990) 69–75 Elsevier Sequoia S.A., Lausanne JOM 20844

Desilylation and cyclometallation reactions of diphenyl{tris(trimethylsilyl)methyl}phosphine with platinum(II) compounds. Crystal structure of trans-[PtClPPh₂C(SiMe₃)₂SiMe₂CH₂{PPh₂CH(SiMe₃)₂}] *

Salih S. Al-Juaid, Colin Eaborn, Peter B. Hitchcock, J. David Smith *, Livio Zanotto

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (U.K.)

and Pramesh N. Kapoor

Department of Chemistry, University of Delhi, Delhi 110 007 (India) (Received February 16th, 1990)

Abstract

The yellow complex trans-[PtCl₂L₂] (L = PPh₂CH(SiMe₃)₂) has been characterised. An attempt to make a similar complex with the more sterically hindered phosphine PPh₂C(SiMe₃)₃ resulted in the loss of a trimethylsilyl group from one phosphine ligand and activation of a C-H bond in another to give the white complex PtClPPh₂C(SiMe₃)₂SiMe₂CH₂{PPh₂CH(SiMe₃)₂}, the structure of which was established by X-ray diffraction.

Introduction

The bulky tris(trimethylsily)methyl group has now been attached to a range of metals and non-metals [1,2]. Many of the resulting derivatives show enhanced stability compared with the corresponding unsubstituted methyl compounds, especially in reactions involving nucleophilic attack at the metal or metalloid centre. For example, the compound RPCl₂ ($R = C(SiMe_3)_3$) reacts only slowly with ethanol [4], and RSiCl₃ does not react even with boiling methanolic silver nitrate [3]. When however the atom next to the group R can be protonated, the trimethylsilyl-substituted methyl derivatives may be less stable than the corresponding unsubstituted compounds since the positive charge promotes nucleophilic attack at silicon.

^{*} Dedicated to Professor F.G.A. Stone on his 65th birthday in recognition of his outstanding contributions to organometallic chemistry.

This was first observed in the chemistry of the phosphine $RPPh_2$ (1b), which in methanol at room temperature successively loses Me_3Si groups to give the unsubstituted methyl compound $MePPh_2$ [5]. It might be expected that similar cleavage of a trimethylsilyl group could be induced by interactions with Lewis acids other than the proton, for example by complexation with metal ions. Since complexes between phosphines and Pt(II) are particularly well characterised we examined the reactions of the phosphines 1a and 1b with the widely used starting material [PtCl₂(PhCN)₂]. The complexes *trans*-PtCl₂L₂ (2) would, if formed, be highly crowded, so that cyclometallation reactions, which are well established [6,7] in the chemistry of platinum and other late transition metals, could also be expected. In the present paper we show that both trimethylsilyl loss and cyclometallation may be observed.

Experimental

³¹P Chemical shifts are relative to 85% aqueous H₃PO₄.

Reaction of trans-[PtCl₂(PhCN)₂] with (Me₃Si)₂CHPPh₂ (1a)

The phosphine $(Me_3Si)_2CHPPh_2$ (0.42 g, 1.27 mmol) was added to *trans*-[PtCl₂(PhCN)₂] (0.30 g, 0.63 mmol) in toluene (20 cm³) and the yellow brown mixture was heated under reflux for 3 h. A little charcoal was added and after a further 70 min under reflux the mixture was filtered. The filtrate was concentrated to give yellow crystals of *trans*-bis{[bis(trimethylsilyl)methyl]diphenylphosphine}dichloroplatinum (2a) M.p. 248-253°C. Found: C, 48.0; H, 6.3. C₃₈H₅₈Cl₂P₂PtSi₄ calcd.: C, 47.8; H, 6.1%); δ (H) (C₆D₆/CDCl₃, 1:1) -0.04 (18H, s, SiMe₃), 2.77 (1H, t, CH, J(PH) + J(P'H) 15.9 Hz), 7.12, 7.87 ppm (10H, m, Ph); δ (P) 20.0 ppm, ¹J(PtP) 2506 Hz.

Reaction of trans- $[PtCl_2(PhCN)_2]$ with $(Me_3Si)_3CPPh_2$ (1b)

A solution of $(Me_3Si)_3CLi$, made from $(Me_3Si)_3CH$ and MeLi in a mixture of tetrahydrofuran (THF) and ether [5], was added slowly to a solution of Ph₂PCl in THF and the mixture was heated under reflux for 3 h. After removal of solvent the brown residue was extracted with pentane and the pentane was evaporated from the extract to leave a brown solid, which was shown by ³¹P NMR spectroscopy to be mainly $(Me_3Si)_3CPPh_2$ containing a very small amount of $(Me_3Si)_2CHPPh_2$. A sample of the solid (0.53 g, 1.2 mmol) was added to a refluxing solution of *trans*-[PtCl₂(PhCN)₂] (0.30 g, 0.62 mmol) in toluene (20 cm³). After 3 h charcoal was added to the brown solution and after a further 0.5 h the solution was filtered and the solvent removed. The brown, spongy residue was washed with pentane to

remove traces of the phosphine 1b, and the remaining solid was dissolved in benzene and the solution passed through a neutral alumina column. The pale yellow eluate was concentrated to deposit a colourless solid. This was recrystallised from benzene-pentane to give crystals (0.06 g), which were shown by X-ray diffraction to be chloro[[bis(trimethylsilyl)methyl]diphenylphosphine][3-diphenylphosphino-2,2,4,4-tetramethyl-3-trimethylsilyl-2,4-disilapentyl-*CP*]platinum (3). M.p. 259-261°C. Found: C, 49.6; H, 6.5. C₄₁H₆₅ClP₂PtSi₅ calcd.: C, 49.6; H, 6.6%; δ (H) (C₆D₆/CDCl₃ 1:1) 0.17 (18H, s, SiMe₃), 0.19 (18H, s, SiMe₃), 0.16 (6H, s, SiMe₂), 7.0-7.2, 8.1-8.2, 8.6-8.7 ppm (20H, m, Ph) (signals from the CH and CH₂ protons could not be unambiguously identified); δ (P) 42.7 ppm, dt, ¹J(PtP) 3006, ²J(PP) 469 Hz, P(1) (Fig. 1); 27.7 ppm ¹J(PtP) 2868 Hz, dt, P(2). The ³¹P spectrum was like that of *trans*-[PtCl₂(Buⁿ₃P)(Et₃P)] [8]; it was first order at 145.8 MHz.

Crystal structure determination

Crystal data: C₄₁H₆₅ClP₂PtSi₅, M = 990.9, monoclinic, space group $P2_1/n$, a 14.550(3), b 14.128(4), c 23.166(3) Å, β 99.74(1)°, U = 4693.6 Å³, Z = 4, D_c 1.40 g cm⁻³, F(000) = 2024, Mo- K_a radiation, $\lambda = 0.71069$ Å, μ 32.96 cm⁻¹.

Data were collected on an Enraf-Nonius CAD 4 diffractometer with a crystal of size $0.4 \times 0.4 \times 0.2$ mm. Intensities for h, $k, \pm l$ reflections with $2 < \theta < 25^{\circ}$ were measured by a $\theta/2\theta$ scan with $\Delta\theta = (0.8 + 0.35 \tan \theta)^{\circ}$. Two standard reflections monitored every 30 min showed no significant variation. Data were corrected for

Table 1

Fractional atomic coordinates ($\times 10^4$) for (3) with estimated standard deviations in parentheses

	x	у	Z		x	у	Z
Pt	1536.9(2)	2490.9(4)	1261.8(2)	C(17)	-1603(8)	3447(8)	536(5)
Cl	1736(2)	2053(2)	2277(1)	C(18)	- 2320(9)	3243(10)	77(6)
P(1)	83(2)	3109(2)	1288(1)	C(19)	-2210(11)	2541(10)	- 292(6)
P(2)	3025(2)	2002(2)	1181(1)	C(20)	-1425(10)	2006(9)	- 212(5)
Si(1)	2773(2)	1446(2)	-130(1)	C(21)	-701(8)	2163(8)	259(5)
Si(2)	4563(2)	2714(2)	373(2)	C(22)	3884(7)	2485(8)	1779(4)
Si(3)	2522(2)	3485(2)	334(1)	C(23)	3647(8)	3278(8)	2090(5)
Si(4)	- 809(3)	1488(3)	1934(2)	C(24)	4281(9)	3656(9)	2536(6)
Si(5)	-1399(2)	3619(3)	2167(2)	C(25)	5139(10)	3230(10)	2712(6)
C(1)	3319(7)	2371(7)	463(4)	C(26)	5371(9)	2412(10)	2440(6)
C(2)	- 501(7)	2787(8)	1908(4)	C(27)	4734(8)	2040(9)	1971(5)
C(3)	1378(7)	3021(9)	410(4)	C(28)	2574(6)	4135(6)	-417(3)
C(4)	329(7)	4384(7)	1325(4)	C(29)	2790(9)	4509(8)	858(5)
C(5)	932(8)	4685(8)	1815(4)	C(30)	5520(8)	1863(10)	609(6)
C(6)	1227(9)	5605(9)	1875(5)	C(31)	4627(8)	2941(10)	-418(6)
C(7)	936(9)	6232(9)	1428(6)	C(32)	4975(9)	3831(9)	759(6)
C(8)	338(10)	5949(8)	925(6)	C(33)	1850(9)	686(9)	99(5)
C(9)	44(8)	5011(8)	879(5)	C(34)	3682(9)	623(10)	- 345(6)
C(10)	3216(7)	717(7)	1293(4)	C(35)	2182(9)	1965(10)	- 838(5)
C(11)	3968(8)	258(8)	1110(5)	C(36)	- 191(11)	716(9)	1466(6)
C(12)	4122(9)	- 715(8)	1220(5)	C(37)	- 483(14)	1063(12)	2708(7)
C(13)	3538(9)	-118 8(8)	1517(5)	C(38)	-2060(11)	1268(12)	1691(9)
C(14)	2800(9)	- 733(8)	1705(5)	C(39)	- 1546(12)	3244(13)	2897(6)
C(15)	2639(8)	206(8)	1587(5)	C(40)	- 1047(12)	4898(10)	2248(7)
C(16)	-814(7)	28 96 (8)	643(4)	C(41)	- 2607(10)	3637(15)	1732(8)

Table 2

Intramolecular distances (Å) and angles (°) in 3 with estimated standard deviations in parentheses

a.	Bonds
а.	Rouge

Pt-Cl	2.402(3)	Pt-P(1)	2.299(3)
Pt-P(2)	2.310(3)	Pt-C(3)	2.087(10)
P(1)-C(2)	1.845(11)	P(1)-C(4)	1.835(11)
P(1)-C(16)	1.835(10)	P(2)-C(1)	1.862(11)
P(2)-C(10)	1.848(10)	P(2)-C(22)	1.833(10)
Si(1)-C(1)	1.963(10)	Si(1)-C(33)	1.865(14)
Si(1)-C(34)	1.890(14)	Si(1)-C(35)	1.868(12)
Si(2)-C(1)	1.918(11)	Si(2)-C(30)	1.850(13)
Si(2)-C(31)	1.878(14)	Si(2)-C(32)	1.863(14)
Si(3) - C(1)	1.948(10)	Si(3)-C(3)	1.825(12)
Si(3)-C(28)	1.980(9)	Si(3)-C(29)	1.888(12)
Si(4) - C(2)	1.893(11)	Si(4)-C(36)	1.87(2)
Si(4)-C(37)	1.88(2)	Si(4)-C(38)	1.84(2)
Si(5)-C(2)	1.927(11)	Si(5)-C(39)	1.82(2)
Si(5)-C(40)	1.88(2)	Si(5)-C(41)	1.873(15)

Mean C-C in phenyl rings 1.38(2) Å.

b .	Ang	les
------------	-----	-----

$\begin{array}{c} Cl-Pt-P(1) & 91.8(1) & Cl-Pt-P(2) & 92.4(1) \\ Cl-Pt-C(3) & 173.9(3) & P(1)-Pt-P(2) & 174.2(1) \\ P(1)-Pt-C(3) & 86.2(3) & P(2)-Pt-C(3) & 89.2(3) \\ Pt-P(1)-C(2) & 118.3(3) & Pt-P(1)-C(4) & 101.6(3) \\ Pt-P(1)-C(16) & 116.6(4) & C(2)-P(1)-C(4) & 108.6(5) \\ C(2)-P(1)-C(16) & 103.6(5) & C(4)-P(1)-C(16) & 107.7(5) \\ Pt-P(2)-C(1) & 110.4(3) & Pt-P(2)-C(10) & 110.4(5) \\ C(1)-P(2)-C(22) & 100.9(4) & C(1)-P(2)-C(10) & 110.4(5) \\ C(1)-P(2)-C(22) & 109.9(5) & C(10)-P(2)-C(22) & 101.1(5) \\ C(1)-Si(1)-C(33) & 114.3(5) & C(1)-Si(1)-C(34) & 116.9(6) \\ C(33)-Si(1)-C(35) & 115.1(5) & C(33)-Si(1)-C(34) & 116.9(6) \\ C(33)-Si(1)-C(35) & 103.2(6) & C(34)-Si(1)-C(35) & 104.4(6) \\ C(1)-Si(2)-C(30) & 118.7(5) & C(1)-Si(2)-C(31) & 110.6(5) \\ C(1)-Si(2)-C(32) & 113.3(6) & C(30)-Si(2)-C(31) & 103.9(6) \\ C(30)-Si(2)-C(32) & 103.0(5) & C(1)-Si(3)-C(28) & 113.5(4) \\ C(1)-Si(3)-C(29) & 107.8(6) & C(28)-Si(3)-C(28) & 115.0(4) \\ C(3)-Si(3)-C(29) & 107.8(6) & C(28)-Si(3)-C(29) & 100.1(4) \\ C(2)-Si(4)-C(36) & 114.1(6) & C(2)-Si(4)-C(37) & 107.5(7) \\ C(2)-Si(4)-C(38) & 105.8(8) & C(37)-Si(4)-C(38) & 108.4(9) \\ C(2)-Si(4)-C(4) & 114.0(6) & P(1)-C(2)-Si(3) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 113.9(6) & Pt-C(3)-C(6) & 121(1) \\ C(5)$	0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl-Pt-P(1)	91.8(1)	Cl-Pt-P(2)	92.4(1)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl-Pt-C(3)	173.9(3)	P(1)-Pt-P(2)	174.2(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1) - Pt - C(3)	86.2(3)	P(2)-Pt-C(3)	89.2(3)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pt-P(1)-C(2)	118.3(3)	Pt-P(1)-C(4)	101.6(3)	
$\begin{array}{ccccc} C(2)-P(1)-C(16) & 103.6(5) & C(4)-P(1)-C(16) & 107.7(5) \\ Pt-P(2)-C(1) & 110.4(3) & Pt-P(2)-C(10) & 113.8(4) \\ Pt-P(2)-C(22) & 109.9(5) & C(10)-P(2)-C(22) & 101.1(5) \\ C(1)-P(2)-C(22) & 109.9(5) & C(10)-P(2)-C(22) & 101.1(5) \\ C(1)-S(1)-C(33) & 114.3(5) & C(1)-S(1)-C(34) & 112.1(5) \\ C(1)-S(1)-C(35) & 115.1(5) & C(33)-Si(1)-C(34) & 106.9(6) \\ C(33)-Si(1)-C(35) & 103.2(6) & C(34)-Si(1)-C(35) & 104.4(6) \\ C(1)-Si(2)-C(30) & 118.7(5) & C(1)-Si(2)-C(31) & 103.9(6) \\ C(30)-Si(2)-C(32) & 104.1(6) & C(31)-Si(2)-C(31) & 103.9(6) \\ C(30)-Si(2)-C(32) & 104.1(6) & C(31)-Si(2)-C(32) & 105.0(6) \\ C(1)-Si(3)-C(29) & 117.9(5) & C(3)-Si(3)-C(28) & 113.5(4) \\ C(1)-Si(3)-C(29) & 107.8(6) & C(28)-Si(3)-C(28) & 115.0(4) \\ C(2)-Si(4)-C(36) & 114.1(6) & C(2)-Si(4)-C(37) & 108.5(6) \\ C(2)-Si(4)-C(38) & 112.4(6) & C(36)-Si(4)-C(37) & 107.5(7) \\ C(2)-Si(4)-C(38) & 105.8(8) & C(37)-Si(6)-C(40) & 115.5(7) \\ C(2)-Si(4)-C(38) & 105.8(8) & C(37)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & P1-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 113.9(6) & P1-C(3)-Si(3) & 105.3(4) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & P1-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 113.9(6) & P(1)-C(4)-C(6) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C$	Pt-P(1)-C(16)	116.6(4)	C(2) - P(1) - C(4)	108.6(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-P(1)-C(16)	103.6(5)	C(4)-P(1)-C(16)	107.7(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(2)-C(1)	110.4(3)	Pt-P(2)-C(10)	113.8(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(2)-C(22)	110.9(4)	C(1) - P(2) - C(10)	110.4(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - P(2) - C(22)	109.9(5)	C(10)-P(2)-C(22)	101.1(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Si(1) - C(33)	114.3(5)	C(1)-Si(1)-C(34)	112.1(5)	
$\begin{array}{cccccc} C(33)-Si(1)-C(35) & 103.2(6) & C(34)-Si(1)-C(35) & 104.4(6) \\ C(1)-Si(2)-C(30) & 118.7(5) & C(1)-Si(2)-C(31) & 110.6(5) \\ C(3)-Si(2)-C(32) & 113.3(6) & C(30)-Si(2)-C(31) & 103.9(6) \\ C(30)-Si(2)-C(32) & 104.1(6) & C(31)-Si(2)-C(32) & 105.0(6) \\ C(1)-Si(3)-C(3) & 103.0(5) & C(1)-Si(3)-C(28) & 113.5(4) \\ C(1)-Si(3)-C(29) & 117.9(5) & C(3)-Si(3)-C(28) & 115.0(4) \\ C(3)-Si(3)-C(29) & 107.8(6) & C(28)-Si(3)-C(29) & 100.1(4) \\ C(2)-Si(4)-C(36) & 114.1(6) & C(2)-Si(4)-C(37) & 108.5(6) \\ C(2)-Si(4)-C(38) & 112.4(6) & C(36)-Si(4)-C(37) & 107.5(7) \\ C(36)-Si(4)-C(38) & 105.8(8) & C(37)-Si(4)-C(38) & 108.4(9) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(5) & 113.9(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(1)-C(1)-S(1) & 119.7(8) \\ \end{array}$	C(1)-Si(1)-C(35)	115.1(5)	C(33)-Si(1)-C(34)	106.9(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)-Si(1)-C(35)	103.2(6)	C(34) - Si(1) - C(35)	104.4(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Si(2) - C(30)	118.7(5)	C(1)-Si(2)-C(31)	110.6(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-Si(2)-C(32)	113.3(6)	C(30) - Si(2) - C(31)	103.9(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30) - Si(2) - C(32)	104.1(6)	C(31) - Si(2) - C(32)	105.0(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Si(3) - C(3)	103.0(5)	C(1)-Si(3)-C(28)	113.5(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Si(3) - C(29)	117.9(5)	C(3)-Si(3)-C(28)	115.0(4)	
$\begin{array}{cccccccc} C(2)-Si(4)-C(36) & 114.1(6) & C(2)-Si(4)-C(37) & 108.5(6) \\ C(2)-Si(4)-C(38) & 112.4(6) & C(36)-Si(4)-C(37) & 107.5(7) \\ C(36)-Si(4)-C(38) & 105.8(8) & C(37)-Si(4)-C(38) & 108.4(9) \\ C(2)-Si(5)-C(39) & 107.7(7) & C(2)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & 119.7(8) \\ \end{array}$	C(3)-Si(3)-C(29)	107.8(6)	C(28) - Si(3) - C(29)	100.1(4)	
$\begin{array}{cccccccc} C(2)-Si(4)-C(38) & 112.4(6) & C(36)-Si(4)-C(37) & 107.5(7) \\ C(36)-Si(4)-C(38) & 105.8(8) & C(37)-Si(4)-C(38) & 108.4(9) \\ C(2)-Si(5)-C(39) & 107.7(7) & C(2)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & \\ \end{array}$	C(2) - Si(4) - C(36)	114.1(6)	C(2)-Si(4)-C(37)	108.5(6)	
$\begin{array}{cccccccc} C(36)-Si(4)-C(38) & 105.8(8) & C(37)-Si(4)-C(38) & 108.4(9) \\ C(2)-Si(5)-C(39) & 107.7(7) & C(2)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) &$	C(2) - Si(4) - C(38)	112.4(6)	C(36) - Si(4) - C(37)	107.5(7)	
$\begin{array}{cccccccc} C(2)-Si(5)-C(39) & 107.7(7) & C(2)-Si(5)-C(40) & 115.5(7) \\ C(2)-Si(5)-C(41) & 117.6(7) & C(39)-Si(5)-C(40) & 105.1(8) \\ C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) &$	C(36)-Si(4)-C(38)	105.8(8)	C(37)-Si(4)-C(38)	108.4(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-Si(5)-C(39)	107.7(7)	C(2)-Si(5)-C(40)	115.5(7)	
$\begin{array}{ccccccc} C(39)-Si(5)-C(41) & 104.9(8) & C(40)-Si(5)-C(41) & 104.8(8) \\ P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(6)-C(7)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & \end{array}$	C(2)-Si(5)-C(41)	117. 6(7)	C(39)-Si(5)-C(40)	105.1(8)	
$\begin{array}{ccccc} P(2)-C(1)-Si(1) & 108.2(5) & P(2)-C(1)-Si(2) & 122.1(5) \\ P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(6)-C(7)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & \end{array}$	C(39)-Si(5)-C(41)	104.9(8)	C(40) - Si(5) - C(41)	104.8(8)	
$\begin{array}{ccccccc} P(2)-C(1)-Si(3) & 98.2(5) & Si(1)-C(1)-Si(2) & 111.7(5) \\ Si(1)-C(1)-Si(3) & 105.7(5) & Si(2)-C(1)-Si(3) & 109.1(5) \\ P(1)-C(2)-Si(4) & 114.0(6) & P(1)-C(2)-Si(5) & 121.2(6) \\ Si(4)-C(2)-Si(5) & 113.9(6) & Pt-C(3)-Si(3) & 105.3(4) \\ P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(6)-C(7)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & 119.7(8) \\ \end{array}$	P(2)-C(1)-Si(1)	108.2(5)	P(2)-C(1)-Si(2)	122.1(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)-C(1)-Si(3)	98.2(5)	Si(1)-C(1)-Si(2)	111.7(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(1)-C(1)-Si(3)	105.7(5)	Si(2)-C(1)-Si(3)	109.1(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-C(2)-Si(4)	114. 0(6)	P(1)-C(2)-Si(5)	121.2(6)	
$\begin{array}{ccccc} P(1)-C(4)-C(5) & 115.6(8) & P(1)-C(4)-C(9) & 124.6(8) \\ C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(6)-C(7)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & 119.7(8) \end{array}$	Si(4) - C(2) - Si(5)	113. 9(6)	Pt-C(3)-Si(3)	105.3(4)	
$\begin{array}{cccc} C(5)-C(4)-C(9) & 119(1) & C(4)-C(5)-C(6) & 121(1) \\ C(5)-C(6)-C(7) & 119(1) & C(6)-C(7)-C(8) & 121(1) \\ C(7)-C(8)-C(9) & 119(1) & C(4)-C(9)-C(8) & 121(1) \\ P(2)-C(10)-C(11) & 121.4(8) & P(2)-C(10)-C(15) & 119.7(8) \end{array}$	P(1)-C(4)-C(5)	115.6(8)	P(1)-C(4)-C(9)	124.6(8)	
C(5)-C(6)-C(7)119(1) $C(6)-C(7)-C(8)$ 121(1) $C(7)-C(8)-C(9)$ 119(1) $C(4)-C(9)-C(8)$ 121(1) $P(2)-C(10)-C(11)$ 121.4(8) $P(2)-C(10)-C(15)$ 119.7(8)	C(5)-C(4)-C(9)	119(1)	C(4)-C(5)-C(6)	121(1)	
C(7)-C(8)-C(9)119(1)C(4)-C(9)-C(8)121(1)P(2)-C(10)-C(11)121.4(8)P(2)-C(10)-C(15)119.7(8)	C(5)-C(6)-C(7)	119(1)	C(6)-C(7)-C(8)	121(1)	
P(2)-C(10)-C(11) 121.4(8) P(2)-C(10)-C(15) 119.7(8)	C(7)-C(8)-C(9)	119(1)	C(4)-C(9)-C(8)	121(1)	
	P(2)-C(10)-C(11)	121.4(8)	P(2)-C(10)-C(15)	119.7(8)	

Mean C-C-C angle in phenyl rings 120(1)°.

Lorentz and polarisation effects but not absorption. 5168 reflections with $|F|^2 > \sigma(F^2)$ were used in the structure refinement.

The positions of Pt, P, Cl, Si, and C atoms were found by heavy atom methods and refined by full matrix least squares with anisotropic temperature factors. The methine hydrogen atom of the phosphine ligand was found from a difference map but not refined. The remaining hydrogen atoms were placed at calculated positions (C-H 1.08 Å) and fixed with $B_{iso} = 6.0$ Å². Refinement converged at $R = (\Sigma || F_o | - |F_c ||)/\Sigma |F_o |) = 0.053$ and $R' = \{ [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2 \}^{1/2} = 0.063$ with $w = 1/\sigma^2(F)$. A final difference map had peaks of up to 2.8 e Å⁻³ near the Pt atom.

A PDP 11/34 computer and the Enraf-Nonius Structure Determination Package were used for the structure solution and refinement. Final atomic coordinates are given in Table 1, and bond lengths and angles in Table 2. Hydrogen atom coordinates and temperature and structure factors are available from the authors.

Results and discussion

The phosphine $(Me_3Si)_2CHPPh_2$ (1a) reacts in the usual way with *trans*-[PtCl₂(PhCN)₂] to give the yellow complex 2a: the *trans*-configuration is confirmed by the ³¹P NMR data [9]. The more hindered $(Me_3Si)_3CPPh_2$, however, does not give the expected complex 2b. Instead the product is the white compound 3 (Fig. 1),

Fig. 1. Molecular structure of PtClPPh2C(SiMe3)2SiMe2CH2{PPh2CH(SiMe3)2} (3).

in which a methyl group from one ligand has been metallated and an Me₃Si group has been lost from the other ligand:

$$2 (Me_{3}Si)_{3}CPPh_{2} + [PtCl_{2}(PhCN)_{2}] \rightarrow PtClPPh_{2}C(SiMe_{3})_{2}SiMe_{2}CH_{2}{PPh_{2}CH(SiMe_{3})_{2}} + 2 PhCN + Me_{3}SiCl (1)$$
(3)

There are precedents for both of these transformations. Metallation of propyl [6], t-butyl [7], and o-tolyl groups [6] of phosphine ligands is known to be facilitated by the presence of bulky groups attached to phosphorus. Metallation by manganese of methyl groups attached to silicon in the bidentate phosphine $Ph_2PCH_2SiMe_2CH_2$ PPh₂ has also been described [10].

The loss of Me₃Si from the second ligand is similar to that observed when the phosphine is protonated [5]: NMR spectroscopy showed that 3 was formed before the reaction mixture was added to the alumina column, but we cannot be sure whether the breakdown of the $(Me_3Si)_3C$ group results from nucleophilic attack on silicon by chloride formed in the metallation or from traces of moisture in the original reaction mixture. (We have some evidence that it is slow when highly purified starting materials are used.)

The reaction described by eq. 1 is similar to that observed between PBu_3^t and $PtCl_2$ [11]; in that case also one mole of phosphine is metallated and the other degraded (eq. 2):

$$6 \text{ PBu}_{3}^{t} + 3 \text{ PtCl}_{2} \rightarrow 2 \left[\text{PtClPBu}_{2}^{t} \text{CMe}_{2}^{t} \text{CH}_{2} \left\{ \text{PBu}_{2}^{t} \text{H} \right\} \right] \\ + \left[\text{PBu}_{3}^{t} \text{H} \right]_{2} \left[\text{PtCl}_{4} \right] + 2 \text{ CH}_{2} = \text{CMe}_{2} \quad (2)$$

It seems that complexation of the lone pair of a silicon-alkyl-substituted phosphine results in subtle changes in the susceptibility of the bonds to silicon towards nucleophilic attack. Another example is found in the chemistry of PPh₂CH₂SiMe₂H. Attack of OH⁻, OMe⁻, or Cl⁻ at silicon in the free phosphine results in cleavage of the Si-C bond: in [Ru(η^6 -C₆H₄Me₂)Cl₂(PPh₂CH₂SiMe₂H)], however, the Si-H bond is broken [12].

The X-ray study shows that the Pt-Cl, Pt-P, and Pt-C bond lengths in 3 are within experimental error the same as those of the corresponding bonds in *trans*-[PtMeCl(PMePh₂)₂] [13] or *trans*-[PtCl(CH₂SiMe₃)(PMePh₂)₂] [14]. The coordination at platinum is planar, but the P(1)-Pt-Cl and P(2)-Pt-Cl angles are significantly greater and the P(1)-Pt-C angle is significantly less than 90°, presumably as a consequence of the intramolecular strain arising from the bulky ligand and the five-membered ring. In the ligands the Si-C bonds (mean 1.942(10) Å) are longer than the Si-Me bonds (mean 1.87(2) Å), as in (Me₃Si)₃CPH₂ [15] and (Me₃Si)₃CP=PC(SiMe₃)₂ [16,17]. The Ph-P-Ph angles (102.3(5)°) are considerably smaller than tetrahedral.

Acknowledgments

The authors thank the SERC for financial support, the Government of Saudi Arabia for a scholarship to S.S.Al-J., the Indian National Science Academy and the Royal Society for support to P.N.K., and Dr. A.J. Avent for assistance with NMR spectra.

References

- 1 C. Eaborn, J. Organomet. Chem., 239 (1982) 93; J.D. Smith, Pure Appl. Chem., 58 (1986) 623.
- 2 C. Eaborn, in: H. Sakurai (Ed.), Organosilicon and Bioorganosilicon Chemistry, Ellis Horwood, Chichester, 1985, pp. 123-130.
- 3 S.S. Dua, C. Eaborn, D.A.R. Happer, S.P. Hopper, K.D. Safa and D.R.M. Walton, J. Organomet. Chem., 178 (1979) 75.
- 4 K. Issleib, H. Schmidt and C. Wirkner, Z. Chem., 1980 (20) 153.
- 5 C. Eaborn, N. Retta and J.D. Smith, J. Chem. Soc., Dalton Trans., (1983) 905.
- 6 A.J. Cheney, B.E. Mann, B.L. Shaw and R.M. Slade, J. Chem. Soc. A, (1971) 3833.
- 7 H.C. Clark, A.B. Goel, R.G. Goel and S. Goel, Inorg. Chem., 19 (1980) 3220.
- 8 F.H. Allen and S.N. Sze, J. Chem. Soc. A, (1971) 2054.
- 9 S.O. Grim, R.L. Keiter and W. McFarlane, Inorg. Chem., 6 (1967) 1133.
- 10 J.M. Ressner, P.C. Wernett, C.S. Kraihanzel and A.L. Rheingold, Organometallics, 7 (1988) 1661.
- 11 R.G. Goel and W.O. Ogini, Organometallics, 1 (1982) 654.
- 12 R.D. Brost, G.C. Bruce and S.R. Stobart, J. Chem. Soc., Chem. Commun., (1986) 1580.
- 13 M.A. Bennett, H.K. Chee and G.B. Robertson, Inorg. Chem., 18 (1979) 1061.
- 14 B. Jovanović. L. Manojlović-Muir and K.W. Muir, J. Chem. Soc., Dalton Trans., (1974) 195.
- 15 A.H. Cowley, J.E. Kilduff, E.A.V. Ebsworth, D.W.H. Rankin, H.E. Robertson and R. Seip, J. Chem. Soc., Dalton Trans., (1984) 689.
- 16 A.H. Cowley, J.E. Kilduff, J.G. Lasch, S.K. Mehrotra, N.C. Norman, M. Pakulski, B.R. Whittlesey, J.L. Atwood and W.E. Hunter, Inorg. Chem., 23 (1984) 2582.
- 17 J. Escudié, C. Couret, H. Ranaivonjatovo and J. Satgé, Phosphorus Sulphur, 17 (1983) 221.