Journal of Organometallic Chemistry, 413 (1991) C10-C14 Elsevier Sequoia S.A., Lausanne JOM 21681PC

## Preliminary communication

# Neue metallorganische Platin-Indium und Cobalt-Gallium Komplexe \*

Roland A. Fischer \* und Joachim Behm

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, W-8046 Garching (Deutschland)

(Eingegangen den 18. Dezember 1990)

#### Abstract

Oxidative addition of one indium-carbon bond of  $InR_3$  ( $R = CH_2Si(CH_3)_3$ ) to the highly reactive, coordinatively unsaturated platinum fragment  $[Cy_2P(CH_2CH_2)PCy_2]Pt$  ( $Cy = cyclo-C_6H_{11}$ ) gives the novel platinum-indium complex  $[Cy_2P(CH_2CH_2)PCy_2]Pt(InR_2)(R)$  (3) in high yield. A single-crystal X-ray diffraction study reveals a Pt-In bond distance of 260.12(2) pm. Salt elimination between  $Na[Co(CO)_4]$  and bis(neopentyl)gallium chloride constitutes a surprisingly facile access to the novel halide-free, volatile cobalt-gallium complexes of type  $(CO)_4Co-GaR_2(thf)$  (4;  $R = CH_2C(CH_3)_3$ ).

Die elementorganische Chemie der Metalle der 3. Hauptgruppe erlebt einen raschen Aufschwung, der nicht zuletzt auf die Bedeutung von Erdmetallorganylen als chemische Vorstufen für III/V-Halbleiter und verwandte Materialien zurückgeht [1]. Auch das Interesse an bimetallischen Komplexen mit Kombinationen von Hauptgruppen- und Übergangsmetallen ist durch ihr Potential als Quellen für Feststoffe spezieller Eigenschaften stimuliert [2]. Vor diesem Hintergrund sind wir unter anderem an Verbindungen interessiert, in denen Fragmente vom Typ R<sub>2</sub>E der Erdmetalle (R = Alkyl, Aryl; E = Al, Ga, In, Tl) an d-Block-Elemente über Metall-Metall-Bindungen fixiert sind. Die Anzahl der bekannten Komplexe dieser Art ist sehr gering [3]. Während einige Diorganylthallium-Derivate beschrieben sind [4], beschränkt sich die Kenntnis der Chemie von R<sub>2</sub>E-Komplexen der leichteren Homologen auf Einzelbeispiele [5]. Infolge der relativen Schwäche von Erdmetall-Kohlenstoff-Bindungen, kombiniert mit dem elektronendefizitären Charakter von Erdmetallorganylen, ist das Reaktionsgeschehen bei Umsetzungen dieser Verbindungen mit Organoübergangsmetall-Komplexen zumeist durch folgende Prozesse bestimmt: (a) Angriff des Erdmetallatoms auf Lewis-basische Zentren [6], (b) Reduktion via Alkylierung/Eliminierung [7], (c) Ausbildung von Brückenstrukturen

<sup>\*</sup> Professor Peter L. Pauson anläßlich der Emeritierung und für seine richtungsweisenden Beiträge zur Metallorganischen Chemie gewidmet.

Cy:  $cyclo-C_0H_{11}$ ; R:  $CH_2C(CH_3)_3$ ,  $CH_2SI(CH_3)_3$ ; E: AI, Ga, In Scheme 1.

[8] oder (d) Symmetrisierungs-bzw. Redistributions-Gleichgewichte entsprechend Gl. 1 [4]:

$$3 L_x M-ER_2 \rightleftharpoons 2 ER_3 + E(ML_x)_3 \tag{1}$$

Diese Faktoren ließen die Darstellung von R<sub>2</sub>E-Komplexen des Typs L<sub>x</sub>M-ER<sub>2</sub> als wenig aussichtsreich erscheinen. Der Einfluß besonders sperriger Alkylsubstituenten ist in diesem Zusammenhang bisher kaum untersucht worden. Schwächung der Lewis-Acidität und Stabilisierung gegenüber Disproportionierung und Transalkylierung sind typische Substituenteneffekte in sterisch anspruchsvollen Erdmetallorganylen [9]. Räumlicher Abschirmung ist auch die Isolierung der bemerkenswert stabilen Platin-Gallium-Verbindung 2 zu danken, über deren Synthese gemäß Schema 1 und strukturanalytische Charakterisierung wir unlängst kurz berichtet haben [10].

Es gelang uns nun die Synthese der neuartigen Platin-Aluminium- und Platin-Indium-Komplexe 1 und 3 (Schema 1). Solche formal oxidative Additionsreaktionen von Erdmetall-Kohlenstoff-Bindungen an koordinativ ungesättigte Übergangsmetall-Fragmente sind ein neuer Weg zu stabilen Erdmetall-Übergangsmetall-Bindungen. Die Einkristall-Röntgenstrukturanalyse von 3 (Fig. 1) \* weist einen Pt-In-Abstand von 260.1(2) pm aus. Die Koordination des Pt-Zentrums ist verzerrt quadratisch planar, das Indiumatom befindet sich in trigonal-planarer Umgebung. Die durch P1, Pt, P2 sowie C51, In, C52 definierten Ebenen schließen einen Winkel von 91.7(1)° ein.

Damit schließt sich der Platin-Indium-Komplex strukturell an das Platin-Gallium-Derivat 2 an. Der röntgenographische Beleg der direkten Pt-Al-Bindung in 1 steht in Ermangelung eines geeigneten Einkristalls noch aus. Eine ausführliche Strukturdiskussion der Komplexe 1-3, die als erste gesicherte Beispiele für Metall-Metall-Bindungen zwischen Erdmetallen und Elementen der Nickel-Triade gelten dürfen [11], bleibt daher einer nachfolgenden Publikation vorbehalten.

<sup>\*</sup> Weitere Einzelheiten zu der Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, W-7514 Eggenstein, Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55182, der Autoren und des Zeitschriftenzitats angefordert werden.

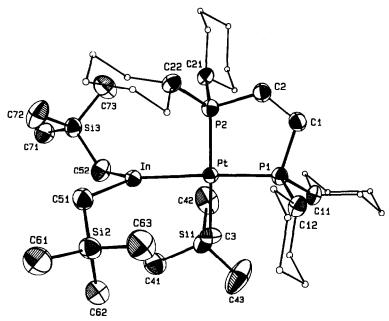



Fig. 1. Molekülstruktur von Verbindung 3 im Kristall (ORTEP-Darstellung, die thermischen Schwingungsellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit). Die Kohlenstoffatome der Cyclohexyl-Substituenten wurden der Übersichtlichkeit halber als kleine Kugeln angedeutet. Ausgewählte Bindungsabstände (pm) und Winkel (grad): Pt-In 260.12(2), Pt-C(3) 214.7(3), Pt-P(1) 229.5(1), Pt-P(2) 225.1(1); P(1)-Pt-P(2) 86.99(3). In-Pt-C(3) 84.74(8), In-Pt-P(1) 173.67(2), P(2)-Pt-C(3) 176.36(8).

Neopentyl- bzw. Trimethylsilylmethyl-Substituenten erwiesen sich auch bei der nach Gl. 2 erfolgten Synthese der Cobalt-Gallium- und Cobalt-Indium-Komplexe 4 und 5 von besonderem Vorteil.

$$[(CO)_4Co]Na + Cl - ER_2 + L \xrightarrow{-NaCl} (CO)_4Co - E \xrightarrow{R} R$$
 (2)

Ein Redistributionsgleichgewicht gemäß Gl. 1 oder Angriff des Erdmetallzentrums auf die Carbonylliganden wurde nicht beobachtet. Die Verbindungen sind in hohen Ausbeuten isolierbar (85–90%). Sie zeichnen sich gegenüber ihren Verwandten vom Typ (CO)<sub>4</sub>Co-EX<sub>2</sub>(L) (E = Ga, In; X = Cl, Br; L =  $C_4H_8O$ ; P( $C_6H_5$ )<sub>3</sub>; [12,13]) vor allem durch ihre erhöhte Flüchtigkeit aus: 4 sublimiert unzersetzt bei 35°C/ $10^{-2}$  Torr. Diese Eigenschaft macht sie zu interessanten Vorstufen für die Abscheidung von CoGa- und CoIn-Filmen durch MOCVD (Metal Organic Chemical Vapor Deposition) [14]. Die Pyrolyse der Platin-Gallium-Verbindung 2 bei 400°C führt z.B. selektiv zur Phase PtGa [15]. Bestimmte intermetallische Phasen wie z.B. PtGa oder CoGa kommen nämlich als chemisch stabile "Kontaktmetalle" auf GaAs-Halbleiter-Oberflächen in Betracht [16].

Über die Chemie der bimetallischen Komplexe 1-5 im Hinblick auf die Frage ihrer Eignung als metallorganische Vorstufen für intermetallische Phasen werden wir in weiteren Publikationen berichten.

## **Experimenteller Teil**

Alle Arbeiten wurden in ausgeheizten Glasapparaturen unter rigorosem Ausschluß von Luft und Feuchtigkeit durchgeführt (Schlenk- und Hochvakuumtechniken). Die verwendeten Lösungsmittel wurden nach den üblichen Methoden getrocknet und mit Stickstoff gesättigt. IR-Spektren: Nicolet FT-5DX. NMR-Spektren: JEOL JMX-GX-400. Massenspektren: Finnigan MAT 90. Schmelz- bzw. Zersetzungspunkte (unkorrigiert): Büchi SMP-200. Elementaranalysen wurden im institutseigenen Laboratorium durchgeführt.

- (1) Bis(dicyclohexylphosphinoethan)[bis(trimethylsilylmethyl)indio](trimethylsilylmethyl)platin(II) (Pt-In; 3). In einem Schlenk-Rohr (Dimensionen: 1 = 20 cm;  $\emptyset = 3.5$  cm) suspendiert man 250 mg (0.36 mmol) [Cy<sub>2</sub>P(CH<sub>2</sub>CH<sub>2</sub>)PCy<sub>2</sub>]Pt(CH<sub>2</sub>C-(CH<sub>3</sub>)<sub>3</sub>)(H) [17] in 1.0 ml (ca. 2.5 mmol; etwa 7-facher Überschuß) Trimethylsilylmethylindium [18]. Nach Evakuierung des Reaktionsgefäßes erhitzt man im Ölbad auf 80°C. Rasch setzt Gasentwicklung ein, wobei sich allmählich eine klare, leicht gelbe Lösung bildet. Nach ca. 1 h ist die Umsetzung vollständig. Man läßt abkühlen und entfernt alle flüchtigen Anteile über Nacht im Hochvakuum. Den schwach gelben Rückstand wäscht man bei Trockeneistemperatur zweimal mit je 3 ml vorgekühltem n-Pentan. Nach Umkristallisation aus 2 ml heißem Benzol und eintägiger Trocknung der erhaltenen farblosen Kristalle erhält man 260 mg (72%) der analysenreinen Verbindung 3. Schmp. 97°C. <sup>1</sup>H-NMR (399.78 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C):  $\delta = 0.28$  (s, 4H; [(CH<sub>3</sub>)<sub>3</sub>SiCH<sub>2</sub>)<sub>2</sub>In-], 0.33 (s, 9H; (CH<sub>3</sub>)<sub>3</sub>SiCH<sub>2</sub>-Pt), 0.39 (s, 18H,  $[(CH_3)_3SiCH_2)_2In-]$ , 1.05-2.20 (breite Multipletts, 50 H;  $(CH_3)_3SiCH_2Pt$ nicht beobachtet, Überlagerung durch die Signale des Liganden Cy2P- $(CH_2CH_2)PCy_2$ ).  $^{13}(\{^1H\}-NMR\ (100.5\ MHz,\ C_6D_6,\ 25\,^{\circ}C)$ :  $\delta=3.75,\ 4.50,\ 19.31\ (d,\ (CH_3)_3SiCH_2Pt-,\ ^2J(^{31}P_{trans}-C)=18.5\ Hz;\ ^1J(^{195}Pt-C)=n$ . beobachtet), 22.2–36.8 (komplexe Multipletts).  $^{31}P-NMR\ (161.8\ MHz,\ C_6D_6,\ ^{\circ}C)$ :  $\delta=77.5\ (^1J(^{195}Pt-^{31}P)$ = 2112 Hz), 72.1 ( ${}^{1}J({}^{195}Pt - {}^{31}P)$  = 1838 Hz). Anal. Gef.: C, 45.21; H, 7.80: Pt, 20.62: In, 12.0. C<sub>38</sub>H<sub>81</sub>InP<sub>2</sub>PtSi<sub>3</sub> (994.17) ber.: C, 45.91; H, 8.21; Pt, 20.36; In, 11.55%.
- (2) Tetracarbonyl[(tetrahydrofuran)dineopentylgallio]cobalt(I) (Co-Ga; 4). Die Reaktion wird zweckmäßig in einer Schenkelfritte [19] durchgeführt. Auf eine Mischung aus 700 mg (2.5 mmol) festem, feinpulvrigen Na[Co(CO)<sub>4</sub>] • 1.1 THF [20] und 620 mg (2.5 mmol) Dineopentylgalliumchlorid [21] kondensiert man ca. 30 ml trockenes n-Pentan. Man erwärmt auf Raumtemperatur und rührt die Suspension intensiv. Nach 1 h filtriert man und engt das farblose bis schwach rosa gefärbte Filtrat auf ca. 5 ml ein. Dann kühlt man auf -30°C. Über Nacht kristallisiert das Produkt in farblosen, durchsichtigen Nadeln aus. Die Kristallisation wird durch Kühlung auf −78°C vervollständigt. Nach Abdekantieren befreit man das Kristallisat von anhaftender Mutterlauge durch zweimaliges Waschen mit je 1-2 ml vorgekühltem n-Pentan. Das Produkt trocknet man bei -30°C im Hochvakuum über Nacht. Man erhält 980 mg (87%) analysenreine weiße Kristalle. Schmp. 65°C. <sup>1</sup>H-NMR (399.78 MHz,  $C_6D_6$ , 25°C):  $\delta = 1.11$  (t, 4H,  $-OCH_2CH_2-$ ); 1.20 (s, 18H,  $(CH_3)_3CCH_2Ga-)$ ; 1.35 (s, 4H,  $(CH_3)_3CCH_2Ga-)$ , 3.45 (t, 4H,  $-OCH_2CH_2-)$ . <sup>13</sup>C-NMR (100.5 MHz,  $C_6D_6$ , 25°C):  $\delta = 25.0$  (t,  $^{1}J(C-H) = 134.3$  Hz,  $^{1}J(C-H) = 123.6$  Hz,  $-OCH_2CH_2-$ ), 32.6 (s,  $(CH_3)_3CCH_2Ga-$ ), 34.4 (q,  $(CH_3)_3CCH_2Ga-$ ), 43.5 (t,  ${}^1J(C-H) = 119.9$  Hz,  $(CH_3)_3CCH_2Ga-$ ); 70.1 (t,  ${}^1J(C-H)$ ) H) = 149.9 Hz,  $-OCH_2CH_2-$ ); 204.3 (s,  $-Co(CO)_4$ ). IR (n-Hexan):  $\nu(CO) = 2066$

(s), 1997 (s), 1968 (vs), 1955 (vs). Feldionisations-MS:  $m/z = 382 ([M - C_4H_8O]^+, 22.7\%)$ ; 211 ([ $^{69}$ Ga{CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>}<sub>2</sub>]<sup>+</sup>, 100%); 171 ([ $^{59}$ Co(CO)<sub>4</sub>]<sup>+</sup>, 51%). Anal. Gef.: C, 47.61; H, 6.60; O, 17.44; Co, 12.5; Ga, 14.9. C<sub>18</sub>H<sub>30</sub>CoGaO<sub>5</sub> (455.09) ber.: C, 47.51; H, 6.64; O, 17.58; Co, 12.95; Ga, 15.32%.

Dank. Wir danken der Hanns-Seidel-Stiftung (Stipendium J.B.) und dem Stipendienfonds des Verbandes der Chemischen Industrie für die großzügige Förderung dieser Arbeit (Liebig-Stipendium R.A.F.).

### Literatur

- 1 A.H. Cowley und R.A. Jones, Angew. Chem., 101 (1989) 1235, Angew. Chem., Int. Ed. Engl., 28 (1989) 1208.
- 2 Beispiele in (a) M.E. Gross, J.M. Jasinski und J.T. Yates (Hrsg.), Chemical Perspectives of Microelectronics, Mater. Res. Soc. Symp. Proc., Vol. 131, 1989; (b) S.K. Deb und A. Zunger (Hrsg.), Ternary and Multinary Compounds, Mater. Res. Soc., Pittsburgh, PA, 1987; (c) R.A. Reynolds, J. Vac. Sci. Technol., A7 (1989) 289.
- 3 S.K. Boocock und S.G. Shore, in G. Wilkinson, F.G.A. Stone und E.W. Abel (Hrsg.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, Band 6, S. 947 ff.
- 4 B. Walther, H. Albert und Alfred Kolbe, J. Organomet. Chem., 145 (1978) 285 und dort zit. Lit.
- 5 (a) J.N.St. Denis, W. Butler, M.D. Glick und J.P. Oliver, J. Organomet. Chem., 129 (1977) 1; (b) A.J. Conway, P.B. Hitchcock und J.D. Smith, J. Chem. Soc., Dalton Trans., (1975) 1945.
- 6 (a) A.J. Conway, G.J. Gaisford, R.R. Schrieke und J.D. Smith, J. Chem. Soc., Dalton Trans., (1975) 2499; (b) J.M. Mayer und J.C. Calabrese, Organometallics, 3 (1984) 1292.
- 7 B. Bogdanovic, M. Körner und G. Wilke, Liebigs Ann. Chem., 699 (1866) 1.
- 8 W.J. Evans, L.R. Chamberlain und J.W. Ziller, J. Am. Chem. Soc., 109 (1987) 7209.
- (a) W. Uhl, Z. Naturforsch., B43 (1988) 1113;
  (b) W. Uhl, M. Layln und W. Hiller, J. Organomet. Chem., 368 (1989) 139;
   (c) O. T. Beachley und L. Victoriano, Organometallics, 7 (1988) 63.
- 10 R.A. Fischer, H.D. Kaesz, S.I. Kahn und H.-J. Müller, Inorg. Chem., 29 (1990) 1601.
- 11 (a) J. Chatt, C. Eaborn und P.N. Kapoor, J. Organomet. Chem., 23 (1970) 109; (b) T.R. Durkin und E.P. Schram, Inorg. Chem., 11 (1978) 1054.
- 12 D.J. Patmore und W.A.G. Graham, Inorg. Chem., 5 (1866) 1586.
- 13 L.M. Clarkson, K. McGrudden, N.C. Norman und L. Farrugia, Polyhedron, 9 (1990) 2533.
- 14 Y.-J. Chen, H.D. Kaesz, Y.K. Kim, H.-J. Müller, R.S. Williams und Z. Xue, Appl. Phys. Lett., 55 (1989) 2760.
- 15 R.A. Fischer, unveröffentlichte Ergebnisse, 1990.
- 16 Beispiele: (a) Y.K. Kim, D.A. Bough, D.K. Shuh, R.S. Williams, L.P. Sadwick und K.L. Wang, J. Mater. Res., 5 (1990) 2139; (b) T. Sands, Appl. Phys. Lett., 52 (1988) 197; (c) A. Guivarch, M. Secoué und B. Guenais, Appl. Phys. Lett., 52 (1988); N. Braslau, J. Vac. Sci. Technol., A4 (1986) 3085.
- 17 M. Hackett und G.M. Whitesides, J. Am. Chem. Soc., 110 (1988) 1449.
- 18 O.T. Beachley und R.N. Rusinko, Inorg. Chem., 18 (1979) 1966.
- 19 W. Strohmeier, Chem. Ber., 88 (1955) 1218.
- 20 W.F. Edgell und J. Lyford, Inorg. Chem., 9 (1970) 1932.
- 21 O.T. Beachley und J.C. Pazik, Organometallics, 7 (1988) 63.