Journal of Organometallic Chemistry, 402 (1991) 179–199 Elsevier Sequoia S.A., Lausanne JOM 21276

# UV-spektroskopische und photochemische Untersuchungen am Dibenzoplatinol-System

Hans-Albert Brune  $*^a$ , Robert Hohenadel <sup>a</sup>, Günter Schmidtberg <sup>b</sup> und Ulrich Ziegler <sup>a</sup>

<sup>a</sup> Lehrstuhl für Organische Chemie I und <sup>b</sup> Sektion Massenspektrometrie der Universität Ulm, Albert-Einstein-Allee, W-7900 Ulm/Donau (Deutschland)

(Eingegangen den 13. Juli 1990)

#### Abstract

The dibenzoplatinol system has been irradiated with monochromatic UV-radiation of wavelengths  $\lambda = 253.2$ , 278.8, 313.7, 348.1 nm and studied with respect to photochemical reactivity. All 15 compounds were completely photo-stable within the cited wavelength interval. The results are discussed with respect to the mechanism of the reductive elimination of the biphenyl system from *cis*-bis(phenyl)platinum(II) complexes.

#### Zusammenfassung

Das Dibenzoplatinol-System wurde mit monochromatischem UV-Licht der Wellenlängen  $\lambda = 253.2$ , 278.8, 313.7, 348.1 nm angeregt und im Hinblick auf seine Photoreaktivität untersucht. Alle 15 in die Untersuchung einbezogenen Verbindungen waren in dem angegebenen Wellenlängen-Bereich vollkommen photostabil. Die Ergebnisse werden in Zusammenhang mit dem Mechanismus der reduktiven Eliminierung des Biphenyl-Systems aus *cis*-Bis(phenyl)platin(II)-Komplexen diskutiert.

cis-Bis(phenyl)platin(II)-Verbindungen (A) eliminieren thermisch unter relativ milden Bedingungen [1-14] und photochemisch [15-17] sogar bei tiefen Temperaturen das Biphenyl-System. Beide Reaktionsarten verlaufen stereospezifisch: die Bindung zwischen den beiden Phenyl-Ringen im Biphenyl wird zwischen denjenigen Kohlenstoff-Atomen ausgebildet, die in A die Bindungen zum Platin ausbilden. Aus diesem Befund und aus "Kreuzungs-Experimenten" [3,5-9,14-17] folgt, daß die Eliminierung (Gl. 1) eine konzertierte pericyclische Reaktion an einem Übergangsmetall ist. Für den Verlauf der Eliminierung sind zwei Mechanismen denkbar:

(a) Die von den beiden Kohlenstoff-Atomen C-1 und C-1' und vom Platin zur Ausbildung der Platin-Kohlenstoff- $\sigma$ -Bindungen in A beigesteuerten Hybrid-Orbitale erzeugen im Übergangszustand der Reaktion ein 3-Zentren-4-Elektronen-Bindungssystem, das dann unter Ausbildung einer  $\sigma$ -Bindung zwischen C-1 und C-1' zum Biphenyl und der Entstehung eines nicht-bindenden Elektronenzustandes an dem — dadurch von der oxidativen Wertigkeit +2 zu O reduzierten — Platin zerfällt. An diesem Reaktionsverlauf sind ausschließlich Wechselwirkungen von  $\sigma$ -Symmetrie beteiligt (" $\sigma$ -Mechanismus"); nach dem Prinzip von der Erhaltung der Orbitalsymmetrie erweist er sich als thermisch symmetrie-erlaubt [18].

(b) Aus den beiden  $2p_z$ -Orbitalen von C-1 und C-1' beginnt sich — unter partieller Aufhebung des aromatischen Charakters in beiden Phenyl-Ringen — eine  $\sigma$ -Bindung auszubilden; die bei der konzertierten Lösung der beiden Platin-Kohlenstoff-Bindungsbeziehungen frei werdenden Elektronenpaare stellen dann unter Umhybridisierung der von C-1 und C-1' zu den Bindungen zum Platin beigesteuerten  $sp^2$ -Hybride zu reinen  $2p_z$ -Orbitalen — den aromatischen Charakter im entstehenden Biphenyl und einen nicht-bindenden Elektronenzustand am Platin her [1] (" $\pi$ -Mechanismus").

Die Beobachtung, daß die reduktive Eliminierung (Gl. 1) stets dann durch eine besonders niedrige Aktivierungs-Enthalpie und eine stark negative Aktivierungs-Entropie gekennzeichnet ist [5-8,10,11], wenn in einem der beiden Phenyl-Ringe durch Substituenten mit Donor-Funktion die  $\pi$ -Elektronendichte auf C-1 erhöht, im zweiten Phenyl-Ring dagegen durch Substituenten mit Akzeptor-Funktion auf C-1' erniedrigt ist, wurde als Einleitung der Reaktion und energetische Absenkung des Übergangszustandes durch eine Donor-Akzeptor-Wechselwirkung zwischen beiden Phenyl-Ringen und damit als Hinweis auf die unmittelbare Beteiligung der  $\pi$ -Elektronen-Systeme im Sinne von Mechanismus (b) gedeutet. Nun stehen - wie Röntgen-Strukturanalysen [19–25] und <sup>1</sup>H-NMR-spektroskopische Untersuchungen [26-30] zeigten — die beiden Phenylringe in Verbindungen vom Typ A im Kristall und in den stabilen Konformationen der Moleküle in Lösung parallel (oder angenähert parallel) zueinander und senkrecht (oder angenähert senkrecht) zu der durch die vom dsp<sup>2</sup>-hybridisierten (quasi "quadratisch-ebenen") Platin ausgehenden Valenzen definierten Ebene (im Folgenden als "Platin-Ebene" abgekürzt). Damit ermöglicht diese Molekülgeometrie sowohl den  $\sigma$ - als auch den  $\pi$ -Mechanismus. Wir haben nun versucht, die Möglichkeit des Reaktionsverlaufs über den  $\pi$ -Mechanismus — ohne Beeinträchtigung der Möglichkeit des o-Mechanismus — dadurch auszuschalten, daß wir die beiden Phenyl-Ringe durch Verknüpfung miteinander koplanar zur Platin-Ebene angeordnet haben. Ein erster orientierender Versuch in dieser Richtung [31] ergab eine Verbindung, die sowohl thermisch wie photochemisch stabil war. Diese Stabilität wurde zwar ebenfalls als Hinweis auf den Reaktionsverlauf über den  $\pi$ -Mechanismus gedeutet, mußte jedoch durch weitere Experimente kritisch geprüft und abgesichert werden. In diesem Zusammenhang berichten wir hier über das photochemische Verhalten von Verbindungen, in denen das mit funktionellen Gruppen stark unterschiedlichen elektronischen Charakters substituierte Biphenyl-System über je ein ortho-ständiges Kohlenstoff-Atom jedes Phenyl-Ringes an das Platin gebunden ist.

## Synthesen

Aus den 9,9-Bis(n-butyl)dibenzostannolen 1a-f [32] wurden—analog zu der erstmals von Vicente und Mitarbeitern [33] mit 9,9-Bis(n-propyl)dibenzostannol durchgeführten Synthese des unsubstituierten Dibenzoplatinol-Systems — durch Reaktion mit Dichloro(1,2,5,6- $\eta^4$ -cycloocta-1,5-dien)platin(II) [34] bzw. Dichloro (2,3,5,6- $\eta^4$ -bicyclo[2.2.1]hepta-2,5-dien)platin(II) [35] die entsprechend substituierten



9,9-(1,2,5,6-n<sup>4</sup>-Cycloocta-1,5-dien)dibenzoplatinole **2a-f** und 9,9-(2,3,5,6-n<sup>4</sup>-Bicyclo[2.2.1]hepta-2,5-dien)dibenzoplatinole 3a-f erhalten. Über Liganden-Austausch konnte in 2a-f der Cycloocta-1,5-dien-Ligand durch Triphenylphosphin zu den 9,9-Bis(triphenylphosphin)dibenzoplatinolen 4a-f substituiert werden; dagegen waren 2a-f gegenüber Ligandenaustausch mit den Chelat-Liganden 2,2'-Bipyridin und 2,2'-Bipyrimidin inert. Diese Inertheit ist offenbar — wie der Vergleich mit dem Verhalten von 3a-f belegt (s.u.) — sterisch als Folge des relativ großen Eigenvolumens des Cycloocta-1,5-dien-Liganden verursacht. Demgegenüber verlief an den Verbindungen 3a-f der Ligandenaustausch mit Triphenylphosphin, 2,2'-Bipyridin und 2,2'-Bipyrimidin — offenbar als Konsequenz der kompakteren Struktur, aber vermutlich wohl auch der schwächeren koordinativen Bindung des unflexiblen Norbornadiens an das Platin [29-31] --- in guten Ausbeuten glatt zu 4a-f, den 9.9- $(\eta^2-2,2'-Bipyridin)$ dibenzoplatinolen **5a**-f und den 9.9- $(\eta^2-2,2'-Bipyridin)$ din)dibenzoplatinolen 6a-f. Bei den Ligandenaustausch-Reaktionen zu 5a-f und 6a-f wurden zur Erzielung optimaler Ausbeuten die einzuführenden Liganden im Überschuß eingesetzt. Wurden demgegenüber beim Liganden-Austausch an 3a-f mit 2,2'-Bipyrimidin die Platin-Verbindungen **3a-f** in mindestens doppelt molarer Menge eingesetzt, entstanden die zweikernigen Komplexe  $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)bis(dibenzoplatinol)] 7a-f.

Alle dargestellten Verbindungen mit den substituierten Biphenyl-Liganden am Platin sind bis ca. 200°C thermisch stabil; eine Eliminierung tritt also unter Bedingungen, unter denen sie an Verbindungen vom Typ A abläuft, nicht ein.

| Verbin-<br>dung | Lösungs-<br>mittel              | $\lambda_{\max}$ (nm) (1 | og ε)                   |                         |                         |           |           |
|-----------------|---------------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-----------|-----------|
| 2a              | CH <sub>2</sub> Cl <sub>2</sub> | 266(4.57)                | 281 a(4.25)             | 305(3.98)               |                         | 354(3.31) | 383(3.07) |
|                 | Acetonitril                     | 264(4.57)                | 281 <sup>a</sup> (4.19) | 304(3.95)               |                         | 354(3.30) | 379(3.06) |
|                 | 1,4-Dioxan                      | 267(4.52)                | 280 a(4.21)             | 306(3.95)               |                         | 358(3.25) | 384(3.04) |
| 2b              | CH <sub>2</sub> Cl <sub>2</sub> | 268(4.54)                | 284(4.35)               | 308(4.13)               | 337(3.60)               | 352(3.45) | 384(3.11) |
|                 | Acetonitril                     | 266(4.48)                | 284(4.29)               | 306(4.03)               | 335(3.53)               | 352(3.36) | 378(3.08) |
|                 | 1,4-Dioxan                      | 268(4.47)                | 285(4.35)               | 306(4.07)               | 335(3.51)               | 352(3.36) | 379(3.04) |
| <b>2</b> c      | CH <sub>2</sub> Cl <sub>2</sub> | 279 <sup>a</sup> (4.43)  | 291(4.53)               | 323(4.30)               | 336 °(3.90)             | 353(3.83) |           |
|                 | Acetonitril                     | 278 <sup>a</sup> (4.29)  | 287(4.34)               | 317(4.14)               | 335 °(3.69)             | 351(3.78) |           |
|                 | 1,4-Dioxan                      | 281 a(4.36)              | 291(4.48)               | 324(4.25)               | 336 a(3.82)             | 353(3.86) |           |
| 2đ              | CH <sub>2</sub> Cl <sub>2</sub> | 273(4.42)                | 294(4.50)               | 326 a(3.76)             | 336 "(3.65)             |           |           |
|                 | Acetonitril                     | 271(4.47)                | 292(4.51)               | 325 <sup>a</sup> (3.77) | 337 <sup>a</sup> (3.63) |           |           |
|                 | 1,4-Dioxan                      | 274(4.43)                | 295(4.55)               | 326 a(3.76)             | 338 a(3.62)             |           |           |
| 2e              | CH <sub>2</sub> Cl <sub>2</sub> | 275(4.49)                | 289(4.47)               | 315(4.12)               |                         | 363(3.31) | 390(3.21) |
|                 | Acetonitril                     | 273(4.57)                | 286(4.48)               | 312(4.17)               |                         | 358(3.40) | 384(3.24) |
|                 | 1,4-Dioxan                      | 275(4.51)                | 289(4.50)               | 314(4.16)               |                         | 362(3.35) | 387(3.23) |
| 2f              | CH <sub>2</sub> Cl <sub>2</sub> | 274(4.47)                | 292(4.48)               | 310(4.04)               |                         | 364(3.15) | 392(2.90) |
|                 | Acetontril                      | 271(4.57)                | 290(4.51)               | 307(4.08)               |                         | 359(3.21) | 384(3.00) |
|                 | 1,4-Dioxan                      | 275(4.52)                | 291(4.53)               | 310(4.07)               |                         | 363(3.18) | 391(3.02) |

UV-spektroskopische Meßdaten der Verbindungen 2a-f

<sup>a</sup> Nur als Schulter identifiziert.

## Tabelle 2

| UV-spektroskopisch | e Meßdaten o | ler Verbindungen . | 3a-f |
|--------------------|--------------|--------------------|------|
|--------------------|--------------|--------------------|------|

| Verbin-<br>dung | Lösungs-<br>mittel              | $\lambda_{max}(nm)(lo$  | g e)      | <u></u>                 |                         |                         |                         |
|-----------------|---------------------------------|-------------------------|-----------|-------------------------|-------------------------|-------------------------|-------------------------|
| 3a              | CH <sub>2</sub> Cl <sub>2</sub> | 267(4.50)               | 273(4.56) | 295 a(4.05)             | 308 <sup>a</sup> (3.98) | 364(3.40)               | 399(3.13)               |
|                 | Acetonitril                     | 263 a(4.50)             | 272(4.47) | 298(3.99)               |                         | 369(3.20)               | 399(2.91)               |
|                 | 1,4-Dioxan                      | 267 °(4.55)             | 275(4.60) | 297 <sup>a</sup> (4.08) | 311(4.03)               | 367(3.44)               | 402(3.14)               |
| 3b              | CH <sub>2</sub> Cl <sub>2</sub> | 269 <sup>a</sup> (4.37) | 277(4.46) | 294(4.21)               | 311(4.10)               | 362(3.45)               | 398(3.10)               |
|                 | Acetonitril                     | 264 °(4.34)             | 276(4.42) | 292 <sup>a</sup> (4.11) | 311 <sup>a</sup> (4.02) | 358(3.37)               | 394(2.96)               |
|                 | 1,4-Dioxan                      | 268 a(4.40)             | 278(4.49) | 294(4.24)               | 312(4.15)               | 362(3.47)               | 399(3.10)               |
| 3c              | CH <sub>2</sub> Cl <sub>2</sub> | 277 <sup>a</sup> (4.15) | 287(4.30) | 296(4.29)               | 331(4.09)               | 372(3.52)               | 401(3.23)               |
|                 | Acetonitril                     |                         | 284(4.36) |                         | 328(4.11)               | 371(3.46)               | 396(3.11)               |
|                 | 1,4-Dioxan                      | 275 <sup>a</sup> (4.16) | 289(4.37) | 294(4.34)               | 331(4.17)               | 374(3.49)               | 399(3.10)               |
| 3d              | $CH_2Cl_2$                      |                         | 283(4.48) | 301(4.39)               | 339 <sup>a</sup> (3.57) |                         |                         |
|                 | Acetonitril                     | 266 a(4.40)             | 282(4.57) | 297(4.39)               | 342 <sup>a</sup> (3.68) |                         |                         |
|                 | 1,4-Dioxan                      |                         | 284(4.49) | 302(4.42)               | 342 <sup>a</sup> (3.57) | 362 <sup>a</sup> (3.21) | 403(2.77)               |
| 3e              | CH <sub>2</sub> Cl <sub>2</sub> | 274 <sup>a</sup> (4.42) | 283(4.56) | 295 °(4.35)             | 319(4.15)               | 367(3.46)               | 401(3.16)               |
|                 | Acetonitril                     | 273 <sup>a</sup> (qual) | 281(qual) | 304 °(qual)             | 319(qual)               | 363(qual)               | 399(qual)               |
|                 | 1,4-Dioxan                      | 275 °(4.40)             | 284(4.53) |                         | 321(4.13)               | 370(3.34)               | 404(3.06)               |
| 3ſ              | CH <sub>2</sub> Cl <sub>2</sub> | 271 <sup>a</sup> (4.36) | 283(4.54) | 297(4.36)               | 315 <sup>a</sup> (4.08) | 366(3.32)               | 405(2.99)               |
|                 | Acetonitril                     | 272 <sup>a</sup> (4.38) | 281(4.53) | 296 °(4.27)             | 314 <sup>a</sup> (4.01) | 357(3.26)               | 401 <sup>a</sup> (2.91) |
|                 | 1,4-Dioxan                      | 274 °(4.54)             | 283(4.56) | 295 °(4.37)             | 315 <sup>a</sup> (4.09) | 366(3.28)               | 405(2.94)               |

<sup>a</sup> Nur als Schulter identifiziert.

Tabelle 1

#### Elektronenanregungs-Spektren und Photochemie

Zur Auswahl der für photochemische Untersuchungen erforderlichen Lichtquelle ist die Kenntnis der für die Elektronenanregung erforderlichen Wellenlängen erforderlich. Daher wurden zunächst die UV-VIS-Spektren der Verbindungen 2a-f, 3a-f, 4a-f, 5a-f und 6a-f in Lösung in — mit dem Ziel einer Zuordnung der Übergänge

— drei verschiedenen Lösungsmitteln stark unterschiedlicher Polarität sowie in kristalliner Phase (Reflexionsspektren) registriert. Die eindeutig identifizierten Absorptionsmaxima sind in den Tabellen 1–5 zusammengestellt.

In den UV-Spektren der Komplexe 4a-f mit den Triphenylphosphin-Liganden sind — trotz Anwendung der Derivativ-Technik — als Folge des Komplexen Charakters der sich überlagernden Absorptionsbanden nicht mehr alle Maxima eindeutig zu identifizieren: daher war eine Zusammenfassung der einander in den verschiedenen Verbindungen entsprechenden Absorptionsmaxima nicht sicher durchführbar.

Die in der Tabelle 6 zusammengefaßten Daten der Festkörper-Reflexionsspektren geben als Konsequenz der speziellen Aufnahmetechnik ausschließlich die Wellenlängen der sicher identifizierten Absorptionsmaxima wieder.

In den Verbindungen vom Typ A war auf der Basis systematischer Untersuchungen [15–17] die um 320–380 nm registrierte, vom elektronischen Charakter der an die Phenyl-Ringe gebundenen Substituenten abhängige längstwellige Absorptionsbande einem Phenyl-Platin-Charge-Transfer-Übergang zugeordnet; nur bei Anregung in diese Absorptionsbande trat Photo-Eliminierung des Biphenyl-Sys-

| Verbin-<br>dung<br>4a | Lösungs-<br>mittel                                           | $\lambda_{\max}(nm)(\log \epsilon)$                                           |                                                                               |                                                                               |                                     |                                        |             |  |  |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------|--|--|
|                       | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 248 <sup><i>a</i></sup> (4.71)<br>250(4.81)<br>283 <sup><i>a</i></sup> (4.26) | 282 <sup><i>a</i></sup> (4.28)<br>261 <sup><i>a</i></sup> (4.70)<br>335(3.55) | 336(3.57)<br>272 <sup>a</sup> (4.58)                                          | 301 <sup>a</sup> (4.05)             | 333(3.94)                              |             |  |  |
| 4b                    | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 261 <sup>a</sup> (4.47)<br>250(qual)<br>266 <sup>a</sup> (qual)               | 336(3.68)<br>255 <sup>a</sup> (qual)<br>283 <sup>a</sup> (qual)               | 272(qual)<br>337(qual)                                                        | 303(qual)                           | 331(qual)                              |             |  |  |
| 4c                    | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 250 <sup>a</sup> (4.58)<br>247 <sup>a</sup> (qual)<br>268 <sup>a</sup> (4.61) | 284 <sup>a</sup> (4.29)<br>257 <sup>a</sup> (qual)<br>285 <sup>a</sup> (4.40) | 309 <sup>a</sup> (3.97)<br>272 <sup>a</sup> (qual)<br>309 <sup>a</sup> (4.07) | 336(3.89)<br>306(qual)<br>336(3.96) | 347(3.86)<br>328(qual)<br>3.48 "(3.91) | 341 "(qual) |  |  |
| <b>4</b> d            | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 256(4.54)<br>249(qual)<br>289(qual)                                           | 289(4.34)<br>311 <sup>a</sup> (qual)<br>323 <sup>a</sup> (qual)               | 340 <sup>a</sup> (3.70)<br>326 <sup>a</sup> (qual)<br>336 <sup>a</sup> (qual) | 341(qual)                           |                                        |             |  |  |
| <b>4</b> e            | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 253 <sup>a</sup> (4.63)<br>252(4.73)<br>268 <sup>a</sup> (4.64)               | 287 <sup>a</sup> (4.27)<br>258 <sup>a</sup> (4.27)<br>295 <sup>a</sup> (4.37) | 340 <sup>a</sup> (3.60)<br>273(4.53)<br>340(3.71)                             | 302(4.15)                           | 328(4.03)                              | 339(3.87)   |  |  |
| 4f                    | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 259(4.71)<br>253(qual)<br>268 <sup>a</sup> (4.64)                             | 290(4.48)<br>261(qual)<br>291(4.43)                                           | 340 <sup>a</sup> (3.77)<br>274(qual)<br>337(3.68)                             | 302(qual)                           | 328(qual)                              | 339(qual)   |  |  |

| UV-spektroskopische   | Meßdaten | der | Verbindungen | 4a-1 |
|-----------------------|----------|-----|--------------|------|
| O V -spektroskopische | Mendaten | uci | veronnaungen |      |

Tabelle 3

<sup>a</sup> Nur als Schulter identifiziert.

## Tabelle 4

UV-spektroskopische Meßdaten der Verbindungen 5a-f

| Verbindung | Lösungsmittel                                                | $\lambda_{max}(nm)(lo$               | og∢)                    |                                                   |                                                                                                    |                                                                               |                                     |
|------------|--------------------------------------------------------------|--------------------------------------|-------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|
| 5a         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 251(4.60)                            | 259(4.61)               | 291(4.40)<br>281(4.38)<br>290 <sup>a</sup> (4.59) | 305 <sup><i>a</i></sup> (4.35)<br>295 <sup><i>a</i></sup> (4.35)                                   | 348 <sup>a</sup> (3.73)<br>332 <sup>a</sup> (3.94)                            | 423(3.90)<br>403(3.87)<br>434(3.66) |
| 5b         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 253(qual)                            | 260(4.48)               | 292(4.33)<br>285(qual)<br>290(qual)               | 307 <sup>a</sup> (4.21)                                                                            | 328 <sup>a</sup> (3.94)<br>343 <sup>a</sup> (qual)<br>330 <sup>a</sup> (qual) | 423(3.80)<br>404(qual)<br>435(qual) |
| 5c         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 248 <sup>a</sup> (4.46)              |                         | 291(4.27)<br>284(4.31)<br>292 <sup>a</sup> (4.50) |                                                                                                    | 344 <sup><i>a</i></sup> (3.73)<br>345 <sup><i>a</i></sup> (3.67)              | 467(3.56)<br>448(3.61)<br>492(3.19) |
| 5d         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 246(4.50)<br>240 <sup>a</sup> (4.49) | 264(4.50)<br>256(4.52)  | 292(4.37)<br>283(4.36)<br>289 <sup>a</sup> (4.61) | 313 <sup>a</sup> (4.14)                                                                            | 330(4.14)<br>337 <sup><i>a</i></sup> (4.09)                                   | 438(3.77)<br>422(3.75)<br>455(3.59) |
| 5e         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 247 <sup>a</sup> (4.50)<br>254(4.53) | 260 <sup>a</sup> (4.48) | 293(4.30)<br>287(4.31)<br>290 <sup>a</sup> (4.57) | 309 <sup><i>a</i></sup> (4.12)<br>303 <sup><i>a</i></sup> (4.19)<br>300 <sup><i>a</i></sup> (4.43) | 333(3.95)<br>339(3.94)                                                        | 453(3.75)<br>434(3.79)<br>478(3.56) |
| 5f         | CH <sub>2</sub> Cl <sub>2</sub><br>Acetonitril<br>1,4-Dioxan | 254(4.59)<br>257(4.57)               | 264(4.58)               | 294(4.41)<br>285(4.35)<br>293 <sup>a</sup> (qual) | 306 <sup><i>a</i></sup> (4.15)                                                                     | 333(4.14)<br>339(qual)                                                        | 450(3.84)<br>432(3.77)<br>471(qual) |

<sup>a</sup> Nur als Schulter identifiziert.

## Tabelle 5

| UV-spektroskopische | Meßdaten | der | Verbindungen | 6a-f |
|---------------------|----------|-----|--------------|------|
|---------------------|----------|-----|--------------|------|

| Verbin-<br>dung | Lösungs-<br>mittel              | λ <sub>max</sub> (nm)(lo | g e)                    |             |                         |                         |           |
|-----------------|---------------------------------|--------------------------|-------------------------|-------------|-------------------------|-------------------------|-----------|
| <u>6a</u>       | CH <sub>2</sub> Cl <sub>2</sub> | 253(qual)                |                         |             | 340(qual)               |                         | 440(qual) |
|                 | Acetonitril                     | 253(4.64)                |                         | 330(4.03)   |                         |                         | 420(3.70) |
|                 | 1,4-Dioxan                      |                          |                         |             | 338(3.99)               |                         | 441(3.62) |
| 6b              | CH <sub>2</sub> Cl <sub>2</sub> |                          | 259(qual)               |             | 343(qual)               |                         | 441(qual) |
|                 | Acetonitril                     | 253(qual)                |                         | 325(qual)   |                         | 417(qual)               |           |
|                 | 1,4-Dioxan                      |                          |                         |             | 345(qual)               |                         | 442(qual) |
| 6c              | $CH_2Cl_2$                      | 250 a(4.48)              | 259 <sup>a</sup> (4.46) |             |                         | 360(3.78)               | 487(3.33) |
|                 | Acetonitril                     | 249 <sup>a</sup> (4.49)  |                         | 330(3.85)   |                         | 355 <sup>a</sup> (3.80) | 463(3.41) |
|                 | 1,4-Dioxan                      |                          |                         |             |                         | 359(3.77)               | 491(3.26) |
| 6d              | CH <sub>2</sub> Cl <sub>2</sub> | 248(4.58)                | 262 <sup>a</sup> (4.50) | 331(4.18)   |                         | 375 <sup>a</sup> (3.68) | 450(3.61) |
|                 | Acetonitril                     | 248(4.50)                | 258 a(4.46)             | 329(4.10)   | 339 <sup>a</sup> (4.05) |                         | 437(3.53) |
|                 | 1,4-Dioxan                      |                          | . ,                     | 332(4.23)   | . ,                     | 366 °(3.85)             | 456(3.65) |
| 6e              | CH <sub>2</sub> Cl <sub>2</sub> |                          |                         |             | 344(3.83)               | 373 <sup>a</sup> (3.71) | 466(3.44) |
|                 | Acetonitril                     |                          |                         |             | 339(3.94)               |                         | 451(3.56) |
|                 | 1,4-Dioxan                      |                          |                         |             | 344(3.86)               | 373 <sup>a</sup> (3.69) | 478(3.43) |
| 6f              | CH <sub>2</sub> Cl <sub>2</sub> | 256(4.64)                | 263 <sup>a</sup> (4.49) | 336(4.12)   | 348(4.10)               | 375 <sup>a</sup> (3.84) | 466(3.68) |
|                 | Acetonitril                     | 251(4.61)                |                         | 332(4.06)   | 342(4.05)               |                         | 444(3.56) |
|                 | 1,4-Dioxan                      | . ,                      |                         | 336 °(4.00) | 345 °(3.99)             | 374 "(3.69)             | 472(3.45) |

<sup>a</sup> Nur als Schulter identifiziert.

| Verbindung | $\lambda_{max}(n)$ | m)               |                  |                  |                  |                  |                  |       |     |     |
|------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------|-----|-----|
| 2b         | 267                | 299              | 327 ª            | 343              | 357              | 382 a            | 439              | 470   | 506 |     |
| 2d         | 276 ª              | 296              | 369 <sup>a</sup> | 426 <sup>a</sup> | 525 <sup>a</sup> | 565 a            |                  |       |     |     |
| 2e         | 278 ª              | 296              | 318              | 352 ª            | 372 ª            | 390 a            | 472 <i>°</i>     | 508 ª |     |     |
| 3b         | 277                | 315 <sup>a</sup> | 328 <sup>a</sup> | 343              | 361              | 371              | 395              | 446   | 479 | 516 |
| 3c         | 259 ª              | 300              | 333              | 356              | 375              | 399 a            | 421 <sup>a</sup> | 526 a |     |     |
| 3d         | 285                | 394              | 373 <sup>a</sup> | 399              | 457              | 499 <sup>a</sup> | 574 <i>°</i>     |       |     |     |
| 4b         | 263                | 286 <sup>a</sup> | 306 a            | 339              | 351 ª            | 426              | 455              | 489   |     |     |
| <b>4</b> d | 264                | 295              | 329 <sup>a</sup> | 341 <sup>a</sup> | 395 a            | 486 <sup>a</sup> | 525 a            |       |     |     |
| <b>4e</b>  | 267                | 293              | 332 <sup>a</sup> | 346              | 363 ª            | 459 a            | 492 <i>"</i>     |       |     |     |
| 5b         | 263 ª              | 306 ª            | 373 ª            | 427 ª            |                  |                  |                  |       |     |     |
| 5f         | 270                | 314              | 348              | 456              | 474              | 550              |                  |       |     |     |
| 6c         | 266                | 306 <sup>a</sup> | 368              | 500 <sup>a</sup> |                  |                  |                  |       |     |     |
| 6e         | 262                | 369              | 476              | 600 <sup>a</sup> |                  |                  |                  |       |     |     |

Identifizierbare Maxima in den UV-Festkörper-Reflexionsspektren in den Verbindungen 2-6

<sup>a</sup> Nur als Schulter identifiziert.

Tabelle 6

tems ein. Gegenüber Anregung in die kürzerwelligen Absorptionsbanden blieben die Verbindungen 1 — trotz der höheren Energien der Photonen — photostabil. Auch in den Verbindungen 3-7 werden in diesem Wellenlängenbereich Absorptionsbanden — teilweise sogar mit ausgeprägter Schwingungs-Feinstruktur — beobachtet. Gerade diese Schwingung-Feinstruktur zeigt an, daß es sich hier um Absorptionsbanden handelt, die unter Mitbeteiligung des jetzt — als Folge der Koordination an das Platin — starren Biphenyl-Liganden erzeugt werden. Da die Innerligand-Übergänge des Biphenyl-Liganden jedoch wesentlich kürzerwellig liegen, können die an 3-7 im Bereich 320-400 nm beobachteten Absorptionsbanden — insbesondere auf der Basis einer analogen Abhängigkeit dieser Absorptionsbanden von den  $\sigma$ -Konstanten der Substituenten wie in den Verbindungen vom Typ A — ebenfalls Ligand-Metall-CT-Übergängen zugeordnet werden.

In den Verbindungsreihen 5a-f mit dem Bipyridin- und 6a-f. 7a-f mit dem Bipvrimidin-Liganden treten zusätzlich zu den eben diskutierten weitere, noch längerwellige Absorptionsbanden im Bereich zwischen 410 und 490 nm auf: sie sind die Ursache der ausgeprägten Farbigkeit dieser Verbindungen. An den Wellenlängen dieser Absorptionsbanden fällt ihre ausgesprochene Solvatochromie (hyproschrome Verschiebung mit steigender Polarität des Lösungsmittels) auf. An andersartigen Platin-Komplexen mit Bipyridin- bzw. Bipyrimidin-Liganden in diesem Wellenlängenbereich registrierte Absorptionsbanden wurden Übergängen eines Elektrons aus einem nicht-bindenden (metall-zentrierten) 5d-Orbital des Platins in das LUMO des jeweiligen heterocyclischen Chelat-Liganden zugeordnet [35-42]. Die systematisch durch Substituenten modifizierten Verbindungen 5a-f und 6a-f boten die Möglichkeit zur kritischen Prüfung der gegebenen Zuordnungen: Trägt man die Wellenlängen der längstwelligen Absorptionsbanden der Verbindungen 5a-f (Fig. 1) bzw. 6a-f (Fig. 2) als Funktion der Substituenten-Konstanten  $\sigma$  der an die Biphenyl-Liganden gebundenen Substituenten auf, so erhält man - analog zur gleichen Abhängigkeit der  $\lambda$ -Werte der L  $\rightarrow$  M-CT-Banden von den  $\sigma$ -Konstanten — lineare



Korrelationen. Da diese längstwelligen Absorptionsbanden nur an den Bipyridinbzw. Bipyrimidin-komplexierten Verbindungen auftreten, werden sie zweifellos unter Beteiligung dieser Liganden erzeugt. Deren Innerligand-Übergänge liegen jedoch im kürzerwelligen UV-Bereich des Spektrums [35–42]; somit bleiben als Ursache für diesen längstwelligen Übergang nur ein  $M \rightarrow L$ -CT- oder ein  $L \rightarrow M$ -CT-Übergang. Die in den Diagrammen der Fig. 1 und 2 veranschaulichten Zusammenhänge zeigen deutlich, daß mit steigender Donor-Wirkung der Substituenten in den Biphenyl-Liganden und als Konsequenz davon der steigenden Elektronendichte auf dem Zentralatom die diskutierte Absorptionsbande langwellig verschoben wird. Aus dieser Abhängigkeit kann daher als Ursache für diese Absorption nur ein — mit wachsender Elektronendichte auf dem Zentralatom mit verringertem Energie-Aufwand realisierbarer — Platin  $\rightarrow$  Bipyridin- bzw. Platin  $\rightarrow$  Bipyrimidin-CT-Übergang gefolgert und damit die früher gegebene Zuordnung [15–17] bestätigt werden.



In den an den kristallinen Verbindungen registrierten Elektronenanregungs-Spektren aller untersuchten Verbindungen sind die Absorptionsbanden im Vergleich zu den in Lösungen vermessenen Spektren — offenbar als Konsequenz zusätzlicher zwischenmolekularer elektronischer Wechselwirkungen — deutlich langwellig verschoben.

 $10^{-3}$  molare Lösungen der Verbindungsreihen 3-6 in Dichlormethan wurden mit dem — durch Interferenzfilter aus der Gesamtemission einer Quecksilber-Hochdrucklampe isolierten — Licht der Wellenlängen 253.2, 278.8, 313.7 und 348.1 nm jeweils 6 Stunden lang angeregt und der Reaktionsverlauf dünnschicht- und gaschromatographisch an halbstündig entnommenen Proben kontrolliert. In keinem Fall konnte eine Photoreaktion nachgewiesen werden; vielmehr waren alle Verbindungen unter den angewendeten Reaktionsbedingungen vollkommen photostabil!

Dieses Ausbleiben der thermischen und photochemischen Eliminierung kann angesichts der koplanaren Einstellung der beiden zum Biphenyl-System verbundenen Phenyl-Ringe als weiteres Argument für den Reaktionsverlauf der Eliminierung (Gl. 1) über den  $\pi$ -Mechanismus gewertet werden. Es ist jedoch kein eindeutiger Beweis für diesen Mechanismus, noch kann aus dem Nichteintreten der Eliminierung der  $\sigma$ -Mechanismus mit Sicherheit ausgeschlossen werden. Denn die *ortho*-Verknüpfung der beiden Phenyl-Ringe kann möglicherweise die Bindungsverhältnisse in den Dibenzoplatinol-Verbindungen im Vergleich zu den unverknüpften Bis(phenyl) platin-Verbindungen vom Typ A wesentlich verändern. Außerdem müßte im Falle einer konzertierten Eliminierung aus den Biphenylplatin-Verbindungen das Biphenylen-System entstehen, dessen — durch die zweifache *ortho*-Verknüpfung verursachter — hoher Energieinhalt eine Eliminierung verhindern könnte.

Wir setzen daher zur vollständigen Aufklärung des mechanistischen Problems die Untersuchungen an weiteren Modellverbindungen fort.

#### **Experimenteller Teil**

NMR-Spektren: Varian EM 360L (<sup>1</sup>H) und Bruker MSL 300 (<sup>13</sup>C); chemische Verschiebungen auf der  $\delta$ -Skala in ppm gegen Tetramethylsilan inn. Stand. ( $\delta$ [TMS] = 0.00); verwendete Lösungsmittel sind bei den jeweiligen NMR-Spektren der Verbindungen angegeben; Zuordnung der <sup>13</sup>C-NMR-Signale durch Off-Resonance-Registrierung, <sup>195</sup>Pt,C- und <sup>19</sup>F,C-Kopplungen. IR-Spektren: Perkin Elmer Gitterspektrometer 577; Aufnahmen als KBr-Presslinge; Frequenzangaben in cm<sup>-1</sup>. Massenspektren: Varian MAT 711; Felddesorption (FD) bzw. Elektronenstoss-Ionisation (EI) mit 70 eV Anregungsenergie. UV-VIS-Spektren: Perkin Elmer Lambda 15. Aus Raumgründen werden hier nur diejenigen spektroskopischen Daten referiert, die unmittelbar als Grundlage für Konstitutions-Aussagen bzw. zur Charakterisierung verwendet wurden. Vollständige Daten oder gegebenenfalls Spektrenkopien für Vergleichszwecke können angefordert werden.

Dünnschicht-Chromatographie: Merck-DC-Fertigplatten Kieselgel 60 und Aluminiumoxid 60 mit Fluoreszenzindikator  $F_{254}$ ; Laufmittel  $CH_2Cl_2$  bzw.  $CHCl_3$ . Säulen-Chromatographie: Quarzrohre von 40, 60 bzw. 80 cm Länge, 2 cm inn. Durchm.; stationäre Phasen: Merck Kieselgel 60 (70–320 mesh ASTM) und Fluka Aluminiumoxid 507C, neutral (100–125 mesh) bzw. 5016A, basisch. Die stationären Phasen wurden mit 1% Fluoreszenzindikator  $F_{254}$  versetzt und unmittelbar vor der Verwendung im jeweiligen Laufmittel suspendiert; Laufmittel  $CH_2Cl_2$  bzw.  $CHCl_3$ ; Detektion durch Fluoreszenz-Löschung bei 254 nm. Gaschromatographie: Spectra-Physics SP 7100 mit FID und Schreiber/Integrator SP 4270; Quarzkapillaren S&W Scientific 25 m  $\times$  0.2 mm, DB-1 (Filmdicke 0, 2 um); Trägergas N<sub>2</sub> (100 ml/min); Splitverhältnis 1:100; Injektortemp. und Temp.-Programm wurden dem jeweiligen Problem angepasst. Elementar-Analysen: Heraeus CHN-O-Rapid.

#### Synthesen

## Die Synthesen von 3f, 4f und 5f wurden bereits beschrieben.

9,9-(1,2,5,6- $\eta^4$ -Cycloocta-1,5,-dien)bis-3,6-(trifluormethyl)dibenzoplatinol (2a). 0.350 g (0.94 mmol) Dichloro(1,2,5,6- $\eta^4$ -cycloocta-1,5-dien)platin(II) [(COD)PtCl<sub>2</sub>] [33] wurden unter Ar-Schutzgas in 35 ml 1,4-Dioxan mit 0.510 g (0.98 mmol) 9,9-Bis(n-butyl)dibenzostannol [31] bei 90 °C solange gerührt, bis bei der dünnschichtchromatischen Kontrolle des Reaktionsverlaufs kein (COD)PtCl<sub>2</sub> mehr nachweisbar war (2 h). Dann wurde auf Raumtemp. abgekühlt, das Lösungsmittel im Rotationsverdampfer vollständig abgezogen und der Rückstand bei -25 °C in n-Pentan digeriert. Der unlösliche Rückstand wurde abgetrennt und zweimal über eine 80 cm Säule in CHCl<sub>3</sub> an SiO<sub>2</sub> chromatographiert. Ausb. 0.201 g (36%); gelbe Kristalle, Schmp. 249 °C (Zers.). IR (KBr): 3080, 3010 ( $\nu$ [C( $sp^2$ )-H]); 2960, 2930, 2890, 2840 ( $\nu$ [C( $sp^3$ )-H]); 1590 (aromat. Gerüstschw.); 1473, 1427 ( $\delta$ [CH<sub>2</sub>]); 1335, 1322 ( $\nu_{as}$ ,  $\nu_s$ [CF<sub>3</sub>]); 819 ( $\gamma$ [C-H<sub>aromat</sub>]).

NMR-Spektren: Für die Zuordnung der registrierten <sup>13</sup>C-NMR-Signale zu den einzelnen Kohlenstoff-Atomen ist die Bezifferung nach der chemischen Dibenzoplatinol-Nomenklatur ungeeignet, weil die Brückenkopfatome unberücksichtigt bleiben. Daher wird für die Zuordnung der NMR-Daten zur Konstitutions-Bestimmung folgende — von der chemischen abweichende — Bezifferung verwendet:



<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 2.60$  (kompl. m der 4 CH<sub>2</sub> aus COD; <sup>3</sup>*J*[<sup>195</sup>Pt,H] 15.9 Hz); 5.63 (m der 4 H<sub>olefin</sub> aus COD; <sup>2</sup>*J*[<sup>195</sup>Pt,H] 41.3 Hz); 6.97–7.70 (kompl, m der 6 H<sub>aromat</sub>; <sup>3</sup>*J*[6-H,5-H] 7.6 Hz); gem. Int.-Verh. 8.0/3.9/6.0 (ber. 8/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 29.7$  (C<sub>aliphat</sub> aus COD); 105.2 (C<sub>olefin</sub> aus COD); <sup>1</sup>*J*[<sup>195</sup>Pt,C] 57.4 Hz; <sup>3</sup>*J*[F,C] 3.9 Hz); 124.6 (CF<sub>3</sub>; <sup>1</sup>*J*[F,C] 271.6 Hz); 129.2 (C-4; <sup>2</sup>*J*[F,C] 31.7 Hz); 133.1 (C-6; <sup>2</sup>*J*[<sup>195</sup>Pt,C] 39.6 Hz); 155.4 (C-2); 159.3 (C-1); MS (EI):  $M^+ m/e = 591$  (ber. 591 für <sup>195</sup>Pt). Analyse: Gef.: C, 44.74; H, 3.12. C<sub>22</sub>H<sub>18</sub>F<sub>6</sub>Pt (591.45) ber.: C, 44.68; H, 3.07%.

9,9- $(1,2,5,6-\eta^4$ -Cycloocta-1,5-dien)-2,7-bis(trifluormethyl)dibenzoplatinol (2b). Analog zu 2a aus 0.230 g (0.61 mmol) (COD)PtCl<sub>2</sub> und 0.470 g (0.90 mmol) 9,9-Bis(n-butyl)-2,7-bis(trifluormethyl)dibenzostannol [31] in 25 ml CHCl<sub>3</sub>; 23 h unter Rückfluß; Aufarbeitung: Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde zunächst in reichlich CH<sub>2</sub>Cl<sub>2</sub>/Ethanol (1:1) gelöst und durch langsames Entfernen des Lösungsmittels kristallisiert; die isolierten Kristalle wurden in einer 40 cm Säule in CH<sub>2</sub>Cl<sub>2</sub> and SiO<sub>2</sub> chromatographiert. Ausb. 0.180 g (50%); gelbe Kristalle, Schmp. 254°C (Zers.). IR (KBr): 3020 ( $\nu$ [C( $sp^2$ )-H]); 2960-2850 ( $\nu$ [C( $sp^3$ )-H]); 1585 (Gerüstschw.); 1470, 1425 ( $\delta$ [CH<sub>2</sub>]); 1318 ( $\nu$ [CF<sub>3</sub>]); 827, 818 ( $\gamma$ [C-H<sub>aromat</sub>]). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 2.63 (m der 4 CH<sub>2</sub> aus COD; <sup>3</sup>J[<sup>195</sup>Pt,H] 16.5 Hz); 5.65 (m der 4 H<sub>olefin</sub> aus COD; <sup>2</sup>J[<sup>195</sup>Pt,H] 42.1 Hz); 7.13-7.61 (m der 6 H<sub>aromat</sub>; <sup>3</sup>J[<sup>195</sup>Pt,6-H] 56.9 Hz); gem. Int.-Verh. 8.1/4.0/5.9 (ber. 8/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 29.8 (C<sub>aliphat</sub> aus COD); 105.0 (C<sub>olefin</sub> aus COD; <sup>1</sup>J[<sup>195</sup>Pt,C] 59.6 Hz); 120.6 (C-3; <sup>3</sup>J[<sup>195</sup>Pt,C] 61.1 Hz); 124.1 (C-4; <sup>4</sup>J[<sup>195</sup>Pt,C] 9.1 Hz); 124.7 (CF<sub>3</sub>; <sup>1</sup>J[F,C] 274.2 Hz); 129.2 (C-6); 155.9 (C-1); 158.1 (C-2). MS (EI): M<sup>+</sup> m/e = 591 (ber. 591 für <sup>195</sup>Pt). Analyse: Gef.: C, 44.67; H, 3.06. C<sub>22</sub>H<sub>18</sub>F<sub>6</sub>Pt (591.45) ber.: C, 44.68; H, 3.07%.

9,9-(1,2,5,6-n<sup>4</sup>-Cycloocta-1,5-dien)-3,6-bis(methoxy)dibenzoplatinol (2c). Analog zu 2a aus 0.305 g (0.8 mmol) (COD)PtCl<sub>2</sub> und 0.534 g (1.2 mmol) 9,9-Bis(n-butyl)-3,6-bis(methoxy)dibenzostannol [31] in 25 ml CHCl<sub>3</sub>; 9 h unter Rückfluß; Aufarbeitung: Nach dem Abziehen des Lösungsmittels wurde aus dem verbliebenen Rückstand zunächst das überschüßige, nicht umgesetzte Stannol durch Digerieren mit n-Heptan/Diethylether (1/1) weitgehend herausgelöst; der ungelöst gebliebene Komplex wurde isoliert und über eine 40 cm Säule in  $CHCl_3$  an  $Al_2O_3$  (neutral) chromatographiert. Ausb.: 0.160 g (39%); gelbe Kritalle, Schmp. 233°C (Zers.). IR (KBr): 3060, 3000 ( $\nu$ [C( $sp^2$ )-H]); 2960-2880 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [(CH<sub>3</sub>O]): 1580, 1550 (Gerüstschw.); 1460 ( $\delta_{as}[CH_3]$ ); 1415 ( $\delta_{as}[CH_2]$ ); 1211 ( $\nu[C(sp^2)-O]$ ); 1021 ( $\nu$ [C(sp<sup>3</sup>)-O]); 813, 804 ( $\gamma$ [C-H<sub>aromat</sub>]). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 2.54 (m der 4 CH<sub>2</sub> aus COD;  ${}^{3}J[{}^{195}Pt,H]$  15.8 Hz); 3.78 (s; CH<sub>3</sub>O); 5.48 (m der 4 H<sub>olefin</sub> aus COD; <sup>2</sup>*J*[<sup>195</sup>Pt,H] 42.5 Hz); 6.47 (dd; 5-H; <sup>3</sup>*J*[5-H,6-H] 8.6 Hz; <sup>4</sup>*J*[5-H,3-H] 2.8 Hz); 6.87 (d; 3-H; <sup>4</sup>J[3-H,5-H] 2.8 Hz); 7.00 (d; 6-H; <sup>3</sup>J[6-H,5-H] 8.6 Hz; <sup>3</sup>J[<sup>195</sup>Pt,H] 52.6 Hz); gem. Int.-Verh. 7.9/6.1/4.2/5.8 (ber. 8/6/4/6).  $^{13}$ C-NMR (CDCl<sub>3</sub>):  $\delta = 29.9$ (C<sub>aliphat</sub> aus COD); 55.2 (CH<sub>3</sub>O); 102.4 (C<sub>olefin</sub> aus COD; <sup>1</sup>J[<sup>195</sup>Pt,C] 59.6 Hz); 107.0 (C-3; <sup>3</sup>J[<sup>195</sup>Pt,C] 64.9 Hz); 111.3 (C-5; <sup>3</sup>J[<sup>195</sup>Pt,C] 59.6 Hz); 133.4 (C-6; <sup>2</sup>J[<sup>195</sup>Pt,C] 43.5 Hz); 148.7 (C-1; <sup>1</sup>*J*[<sup>195</sup>Pt,C] 1100.0 Hz); 157.2 (C-2; <sup>2</sup>*J*[<sup>195</sup>Pt,C] 122.0 Hz); 159.2 (C-4). MS (EI):  $M^+ m/e = 515$  (ber. 515 für <sup>195</sup>Pt). Analyse: Gef.: C, 51.13; H, 4.52. C<sub>22</sub>H<sub>24</sub>O<sub>2</sub>Pt (515.51) ber.: C, 51.25; H, 4.69%.

9,9-(1,2,5,6-n<sup>4</sup>-Cycloocta-1,5-dien)-2,7-bis(methoxy)dibenzoplatinol (2d). Analog zu 2a aus 0.300 g (0.8 mmol) (COD)PtCl<sub>2</sub> und 0.534 g (1.2 mmol) 9,9-Bis(n-butyl)-2,7-bis(methoxy)dibenzostannol [31] in 25 ml CHCl<sub>3</sub>; 24 h unter Rückfluß. Aufarbeitung: Der nach dem Abziehen des Lösungsmittels verbliebene ölige Rückstand wurde in CH<sub>2</sub>Cl<sub>2</sub>/Ethanol (1/1) gelöst und durch langsames Abziehen des leichter flüchtigen CH<sub>2</sub>Cl<sub>2</sub> aus Ethanol kristallisiert. Die isolierten Kristalle wurden erst mit Ethanol gewaschen und dann durch Chromatographie (40 cm Säule, CH<sub>2</sub>Cl<sub>2</sub>, SiO<sub>2</sub>) gereinigt. Ausb. 0.240 g (58%); orangefarbene Nadeln, Schmp. 257°C (Zers.). IR (KBr): 3080, 3010 ( $\nu$ [C( $sp^2$ )-H]); 2980-2890 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1575 (Gerüstschw.); 1470 ( $\delta_{as}$ [CH<sub>3</sub>]); 1428 ( $\delta$ [CH<sub>2</sub>]); 1232 ( $\nu$ [C( $sp^2$ )-O]); 1032  $(\nu[C(sp^3)-O]); 821 (\gamma[C-H_{aromat}]).$ <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 2.52$  (m der 4 CH<sub>2</sub> aus COD; <sup>3</sup>J[<sup>195</sup>Pt,H] 16.8 Hz); 3.75 (s; CH<sub>3</sub>O); 5.58 (m; H<sub>olefin</sub> aus COD; <sup>2</sup>J[<sup>195</sup>Pt,H] 41.6 Hz); 6.48 (d; 6-H; <sup>4</sup>J[6-H,4-H] 2.4 Hz); 6.67 (dd; 4-H; <sup>4</sup>J[4-H,6-H] 2.4 Hz; <sup>3</sup>J[4-H,3-H] 8.0 Hz); 7.17 (d; 3-H; <sup>3</sup>J[3-H,4-H] 8.0 Hz); gem. Int.-Verh. 8.0/5.8/4.1/6.1 (ber. 8/6/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 29.7$  (C<sub>aliphat</sub> aus COD); 55.3 (CH<sub>3</sub>O); 103.4 (C<sub>olefin</sub> aus COD;  ${}^{1}J[{}^{195}Pt,C]$  57.4 Hz); 110.6 (C-4); 120.2 (C-3;  ${}^{3}J[{}^{195}Pt,C]$  70.9 Hz); 120.6 (C-6;  ${}^{2}J[{}^{195}Pt,C]$  41.5 Hz); 148.9 (C-2;  ${}^{2}J[{}^{195}Pt,C]$  117.7 Hz); 156.3 (C-1;  ${}^{1}J[{}^{195}Pt,C]$  1109 Hz); 157.3 (C-5;  ${}^{3}J[{}^{195}Pt,C]$  75.2 Hz). MS (EI):  $M^{+} m/e = 515$  (ber. 515 für  ${}^{195}Pt$ ). Analyse: Gef.: C, 51.16; H, 4.59. C<sub>22</sub>H<sub>24</sub>O<sub>2</sub>Pt (515.51) ber.: C, 51.26; H, 4.69%.

9,9-(1,2,5,6-η<sup>4</sup>-Cycloocta-1,5-dien)-3,6-bis(t-butyl)dibenzoplatinol (2e). Analog zu 2a aus 0.300 g (0.8 mmol) (COD)PtCl<sub>2</sub> und 0.600 g (1.2 mmol) 9,9-Bis(n-butyl)-3,6bis(t-butyl)dibenzostannol [31] in 30 ml CHCl<sub>3</sub>; 24 h unter Rückfluß. Aufarbeitung: Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde zunächst in einer 80 cm Säule in CH<sub>2</sub>Cl<sub>2</sub> an Al<sub>2</sub>O<sub>3</sub> (neutral) chromatographiert, anschließend in CH<sub>2</sub>Cl<sub>2</sub>/Ethanol (1/1) gelöst und durch langsames Abziehen des leichter flüchtigen CH<sub>2</sub>Cl<sub>2</sub> aus Ethanol kristallisiert. Ausb. 0.220 g (48%); hellgelbe Kristalle, Schmp. 262°C (Zers.). IR (KBr): 3060, 3000 ( $\nu$ [C( $sp^2$ )-H]); 2960, 2900, 2880 ( $\nu$ [C( $sp^3$ )-H]); 1580 (Gerüstschw.); 1470 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 1415 ( $\delta$ [CH<sub>2</sub>]); 1379, 1355 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 811 ( $\gamma$ [C-H<sub>aromat</sub>]). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.33 (s; C(CH<sub>3</sub>)<sub>3</sub>); 2.51 (m der 4 CH<sub>2</sub> aus COD; <sup>3</sup>J[<sup>195</sup>Pt,H] 16.4 Hz); 5.53 (m der 4 H<sub>olefin</sub> aus COD; <sup>2</sup>J[<sup>195</sup>Pt,H] 42.2 Hz); 6.73-7.54 (m der 6 H<sub>aromat</sub>; aus den <sup>195</sup>Pt,H-Satelliten lassen sich analysieren: 7.07 (d; 6-H; <sup>3</sup>J[6-H,5-H] 8.3 Hz; <sup>3</sup>J[<sup>195</sup>Pt,6-H] 55.4 Hz); gem. Int.-Verh. 18.3/7.9/3.9/5.9 (ber. 18/8/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 29.8 (C<sub>aliphat</sub> aus COD); 31.4 (C(CH<sub>3</sub>)<sub>3</sub>); 34.6 (C(CH<sub>3</sub>)<sub>3</sub>); 102.7 (C<sub>olefin</sub> aus COD; <sup>1</sup>J[<sup>195</sup>Pt,C] 57.8 Hz); 117.2 (C-3; <sup>3</sup>J[<sup>195</sup>Pt,C-3] 62.3 Hz); 123.1 (C-5; <sup>3</sup>J[<sup>195</sup>Pt,C-5] 55.6 Hz); 132.3 (C-6; <sup>2</sup>J[<sup>195</sup>Pt,C-6] 40.9 Hz); 149.6 (C-4); 154.0 (C-1; <sup>1</sup>J[<sup>195</sup>Pt,C-5] 55.6 Hz); 132.3 (C-6; <sup>2</sup>J[<sup>195</sup>Pt,C-2] 124.1 Hz). MS (EI): M<sup>+</sup> m/e = 567 (ber. 567 für <sup>195</sup>Pt). Analyse: Gef.: C, 59.18; H, 6.31. C<sub>28</sub>H<sub>36</sub>Pt (567.67) ber.: C, 59.24; H, 6.39%.

9,9-(1,2,5,6-n<sup>4</sup>-Cycloocta-1,5-dien)-2,7-bis(t-butyl)dibenzoplatinol (2f). Analog zu 2a aus 0.300 g (0.8 mmol) (COD)PtCl<sub>2</sub> und 0.600 g (1.2 mmol) 9,9-Bis(n-butyl)-2,7bis(t-butyl)dibenzostannol [31] in 30 ml CHCl<sub>3</sub>; 30 h unter Rückfluß. Aufarbeitung: Der nach dem Abziehen des Lösungsmittels verbliebene ölige Rückstand wurde mit 50 ml Ethanol digeriert; bei  $-25^{\circ}$ C kristallisierte dabei 2f. Die Kristalle wurden isoliert und in einer 60 cm Säule an Al<sub>2</sub>O<sub>3</sub> (neutral) in CHCl<sub>3</sub> chromatographiert. Ausb. 0.130 g (29%); orangefarbene Kristalle, Schmp. 255°C (Zers.). IR (KBr): 3060, 3010  $(\nu[C(sp^2)-H])$ ; 2960, 2905, 2870, 2840  $(\nu[C(sp^3)-H])$ ; 1578 (Gerüstschw.); 1470 (δ[C(CH<sub>3</sub>)<sub>3</sub>]); 1420 (δ[CH<sub>2</sub>]); 1375, 1350 (δ[C(CH<sub>3</sub>)<sub>3</sub>]); 820  $(\gamma [C-H_{aromat}])$ . <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.27$  (s; C(CH<sub>3</sub>)<sub>3</sub>); 2.55 (m der 4 CH<sub>2</sub> aus COD;  ${}^{3}J[{}^{195}Pt,H]$  16.2 Hz); 5.60 (m der H<sub>olefin</sub> aus COD;  ${}^{2}J[{}^{195}Pt,H]$  41.8 Hz); 7.01 (dd; 4-H; <sup>3</sup>J[4-H,3-H] 7.9 Hz; <sup>4</sup>J[4-H,6-H] 1.9 Hz); 7.17 (d; 6-H; <sup>4</sup>J[6-H,4-H] 1.9 Hz;  ${}^{3}J[{}^{195}Pt,6-H]$  56.2 Hz); 7.22 (d; 3-H;  ${}^{3}J[3-H,4-H]$  7.9 Hz); gem. Int.-Verh. 18.1/8.1/3.8/6.0 (ber. 18/8/4/(2+2+2)).  ${}^{13}C$ -NMR (CDCl<sub>3</sub>):  $\delta = 29.7$  (Caliphat aus COD); 31.5 (C(CH<sub>3</sub>)<sub>3</sub>); 34.7 (C(CH<sub>3</sub>)<sub>3</sub>); 102.9 (C<sub>olefin</sub> aus COD; <sup>1</sup>J[<sup>195</sup>Pt,C] 56.6 Hz); 119.4 (C-3; <sup>3</sup>*J*[<sup>195</sup>Pt,C-3] 64.2 Hz); 123.7 (C-4); 129.5 (C-6; <sup>2</sup>*J*[<sup>195</sup>Pt,C-6] 43.8 Hz); 148.1 (C-5; <sup>3</sup>*J*[<sup>195</sup>Pt,C-5] 52.1 Hz); 153.4 (C-2; <sup>2</sup>*J*[<sup>195</sup>Pt,C-2] 122.3 Hz); 156.2 (C-1;  ${}^{1}J[{}^{195}Pt,C-1]$  1107.9 Hz). MS (EI):  $M^{+}m/e = 567$  (ber. 567 für  ${}^{195}Pt$ ). Analyse: Gef.: C, 59.18; H, 6.31. C<sub>28</sub>H<sub>36</sub>Pt (567.67) ber.: C, 59.24; H, 6.39%.

9,9-(2,3,5,6- $\eta^4$ -Bicyclo[2.2.1]hepta-2,5-dien)-3,6-bis(trifluormethyl)dibenzoplatinol (3a). 0.370 g (1.0 mmol) Dichloro(2,3,5,6- $\eta^4$ -bicyclo[2.2.1]hepta-2,5-dien)platin(II) [Abk. (NBD)PtCl<sub>2</sub>] [34] wurden unter Ar-Schutzgas in 45 ml CHCl<sub>3</sub> suspendiert und dann mit 0.600 g (1.2 mmol) 9,9-Bis(n-butyl)-3,6-bis(trifluormethyl)dibenzostannol [31] unter Rückfluß solange erhitzt, bis dünnschicht-chromatographisch kein (NBD)PtCl<sub>2</sub> mehr nachweisbar war (3 h für 3a). Dann wurde das Lösungsmittel bei Raumtemp. im Vakuum abgezogen und der verbliebene Rückstand über eine 40 cm Säule SiO<sub>2</sub> in CHCl<sub>3</sub> chromatographiert. Dann wurde vom Eluat das Lösungsmittel abgezogen, der Rückstand in  $CH_2Cl_2$ /Ethanol (1/1) gelöst und **3a** durch langsames Abziehen des leichter flüchtigen CH<sub>2</sub>Cl<sub>2</sub> kristallisiert erhalten. Die isolierten Kristalle wurden mit Ethanol gewaschen. Ausb. 0.310 g (52%); orangefarbene Kristalle, Schmp. 221°C (Zers.). IR (KBr): 3070, 3030 ( $\nu$ [C( $sp^2$ )–H]); 2955, 2850 ( $\nu$ [C( $sp^3$ )– H]); 1590 (Gerüstschw.); 1428 ( $\delta$ [CH<sub>2</sub>]); 1331, 1318 ( $\nu_{as}$ ,  $\nu_{s}$ [CF<sub>3</sub>]); 1308  $(\delta[C_{Brückenkopf}-H]);$  823 ( $\gamma[C-H_{aromat}])$ . <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.80$  (m der CH<sub>2</sub>-Gruppe aus NBD); 4.19 (m; H<sub>Brückenkopf</sub> aus NBD); 5.60 (m; H<sub>olefin</sub> aus NBD; <sup>2</sup>*J*[<sup>195</sup>Pt,H] 42.2 Hz); 6.70 (d; 6-H; <sup>3</sup>*J*[6-H,5-H] 7.8 Hz; <sup>3</sup>*J*[<sup>195</sup>Pt,6-H] 64 Hz); 7.18 (d; 5-H; J[5-H,6-H] 7.8 Hz); 7.47 (s; 3-H); gem. Int.-Verh. 2.0/2.0/4.1/6.0 (ber. 2/2/4/(2+2+2)). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 51.3$  (C<sub>Brückenkopf</sub> aus NBD; <sup>2</sup>J[<sup>195</sup>Pt,C] 34.6 Hz); 75.5 (CH<sub>2</sub> aus NBD;  ${}^{3}J[{}^{195}Pt,C]$  51.2 Hz); 95.0 (C<sub>olefin</sub> aus NBD;  ${}^{1}J[{}^{195}Pt,C]$  49.0 Hz); 116.3 (C-3;  ${}^{3}J[{}^{195}Pt,C-3]$  66.0 Hz;  ${}^{3}J[F,C-3]$  3.2 Hz); 123.6 (C-5;  ${}^{3}J[{}^{195}Pt,C-5]$  65.5 Hz;  ${}^{3}J[F,C-5]$  4.0 hz); 124.6 (CF<sub>3</sub>;  ${}^{1}J[F,C]$  271.5 Hz); 129.4 (C-4;  ${}^{2}J[F,C-4]$  31.7 Hz); 130.9 (C-6;  ${}^{2}J[{}^{195}Pt,C-6]$  52.1 Hz); 155.6 (C-2;  ${}^{2}J[{}^{195}Pt,C-2]$ 136.2 Hz); 158.1 (C-1;  ${}^{1}J|_{195}$ Pt,C-1] 1172 Hz). MS (EI):  $M^{+}$  m/e = 575 (ber. 575 für <sup>195</sup>Pt). Analyse: Gef.: C, 43.76; H, 2.38. C<sub>21</sub>H<sub>14</sub>F<sub>6</sub>Pt (575.41) ber.: C, 43.83; H, 2.45%.

9,9-(2,3,5,6-n<sup>4</sup>-Bicyclo[2.2.1]hepta-2,5-dien)-2,7-bis(trifluormethyl)dibenzoplatinol (3b). Analog zu 3a aus 1.000 g (2.8 mmol) (NBD)PtCl<sub>2</sub> und 1.82 g (3.5 mmol) 9,9-Bis(n-butyl)-2,7-bis(trifluormethyl)dibenzostannol [31] in 110 ml CHCl<sub>3</sub>; 5 h unter Rückfluß. Aufarbeitung: Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde in CH<sub>2</sub>Cl<sub>2</sub>/Ethanol (1/1) gelöst; dann wurde das leichter flüchtige CH2Cl2 langsam bei Raumtemp. abgezogen, wobei Kristalle ausfielen, die isoliert und mit Ethanol gewaschen wurden. Ausb. 1.0 g (62%); orangefarbene Kristalle, Schmp. 247 °C (Zers.). IR (KBr): 3060, 3030 ( $\nu$ [C( $sp^2$ )-H]); 2970, 2860 ( $\nu$ [C(sp<sup>3</sup>)-H]); 1586 (Gerüstschw.); 1430 ( $\delta$ [CH<sub>2</sub>]); 1318 ( $\nu$ [CF<sub>3</sub>]); 823  $(\gamma [C-H_{aromat}])$ . <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.84$  (m; CH<sub>2</sub> aus NBD); 4.31 (m; H<sub>Brückenkopf</sub> aus NBD); 5.70 (m; H<sub>olefin</sub> aus NBD; <sup>2</sup>J[<sup>195</sup>Pt,H] 42.2 Hz); 6.93 (s; 6-H; <sup>3</sup>J[<sup>195</sup>Pt,6-H] 67.9 Hz); 71.7–7.47 (kompl. m von 3-H und 4-H); gem. Int.-Verh. 2.0/2.1/4.0/6.1 (ber. 2/2/4/(2+2+2)). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 51.2$  (C<sub>Brückenkopf</sub> aus NBD;  ${}^{3}J[{}^{195}Pt,C_{Brückenkopf}]$  34.7 Hz); 75.5 (CH<sub>2</sub> aus NBD;  ${}^{3}J[{}^{195}Pt,C]$  50.9 Hz); 94.3 (C<sub>olefin</sub> aus NBD;  ${}^{J}J[{}^{195}Pt,C_{olefin}]$  49.8 Hz); 120.0 (C-3;  ${}^{3}J[{}^{195}Pt,C-3]$  64.9 Hz); 124.5 (C-4; <sup>4</sup>J[<sup>195</sup>Pt,C-4] 7.5 Hz); 124.9 (CF<sub>3</sub>; <sup>1</sup>J[C,F] 273 Hz); 127.0 (C-6; <sup>2</sup>*J*[<sup>195</sup>Pt,C-6] 57.3 Hz); 128.7 (C-5, <sup>2</sup>*J*[F,C-5] 30.9 Hz); 154.8 (C-1; <sup>1</sup>*J*]<sup>195</sup>Pt,C-1] 1180 Hz). MS (EI):  $M^+ m/e = 575$  (ber. 575 für <sup>195</sup> Pt). Analyse: Gef.: C, 43.80; H, 2.44.  $C_{21}H_{14}F_6Pt$  (575.41) ber.: C, 43.83; H, 2.45%.

9,9-(2,3,5,6- $\eta^4$ -Bicyclo[2.2.1]hepta-2,5-dien)-3,6-bis(methoxy)dibenzoplatinol (3c). Analog zu 3a aus 2.00 g (5.6 mmol) (NBD)PtCl<sub>2</sub> [34] und 3.71 g (8.3 mmol) 9,9-Bis(n-butyl)-3,6-bis(methoxy)dibenzostannol [31] in 200 ml CHCl<sub>3</sub>; 1 h unter Rückfluß. Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde zunächst mit 50 ml Petrolether (Hochsied.) digeriert, der darin unlösliche Komplex wurde dann in CHCl<sub>3</sub> in einer 80 cm Säule an Al<sub>2</sub>O<sub>3</sub> (neutral) chromatographiert. Ausb. 1.45 g (52%); orangefarbene Kristalle, Schmp. 115 °C. IR (KBr): 3060, 3000 ( $\nu$ [C( $sp^2$ )-H]); 2970, 2880 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1580, 1505 (Gerüstschw.); 1428 ( $\delta$ [CH<sub>2</sub>]); 1301 ( $\delta$ [C-H<sub>Brückenkopf</sub>]); 1213 ( $\nu$ [C( $sp^2$ )-O]); 1027 ( $\nu$ [C( $sp^3$ )-O]); 798 ( $\gamma$ [C-H<sub>aromat</sub>]). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.69 (m; CH<sub>2</sub> aus NBD); 3.77 (s; CH<sub>3</sub>O); 4.15 (m; H<sub>Brückenkopf</sub> aus NBD); 5.37 (verbr. s; H<sub>olefin</sub> aus NBD;  ${}^{2}J[{}^{195}Pt,H]$  42 Hz); 6.17–7.10 (kompl. m; H<sub>aromat</sub>); gem. Int.-Verh. 2.3/5.8/ 1.9/3.8/6.2 (ber. 2/6/2/4/6).  ${}^{13}C$ -NMR (CDCl<sub>3</sub>):  $\delta = 50.5$  (C<sub>Brückenkopf</sub> aus NBD;  ${}^{2}J[{}^{195}Pt,C]$  35.4 Hz); 55.2 (CH<sub>3</sub>O); 74.4 (CH<sub>2</sub> aus NBD;  ${}^{3}J[{}^{195}Pt,C]$  49.7 Hz); 90.2 (C<sub>olefin</sub> aus NBD;  ${}^{1}J[{}^{195}Pt,C]$  51.9 Hz); 106.6 (C-3;  ${}^{3}J[{}^{195}Pt,C]$  68.9 Hz); 110.8 (C-5;  ${}^{3}J[{}^{195}Pt,C]$  68.9 Hz); 131.2 (C-6;  ${}^{2}J[{}^{195}Pt,C]$  57.3 Hz); 148.3 (C-1;  ${}^{1}J[{}^{195}Pt,C]$  1159.0 Hz); 157.4 (C-2;  ${}^{2}J[{}^{195}Pt,C]$  143.2 Hz); 159.4 (C-4;  ${}^{4}J[{}^{195}Pt,C]$  8.8 Hz). MS (EI):  $M^{+} m/e = 499$  (ber. 499 für  ${}^{195}Pt$ ). Analyse: Gef.: C, 51.01; H, 4.16. C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>Pt (499.47) ber.: C, 50.50; H, 4.04%.

9,9- $(2,3,5,6-\eta^4$ -Bicyclo[2,2,1]hepta-2,5-dien)-2,7-bis(methoxy)dibenzostannol (**3d**). Analog zu 3a aus 1.47 g (4.1 mmol) (NBD)PtCl<sub>2</sub> [34] and 2.22 g (5.0 mmol) 9,9-Bis(n-butyl)-2,7-bis(methoxy)dibenzostannol in 130 ml CHCl<sub>3</sub>; 1 h unter Rückfluß. Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde wieder in CH<sub>2</sub>Cl<sub>2</sub>/Ethanol gelöst, dann wurde das Volumen des leichter flüchtigen CH<sub>2</sub>Cl<sub>2</sub> im Rotationsverdampfer wieder abgezogen und schließlich der dabei ausgefallene braune Feststoff abgetrennt und über eine 40 cm Säule SiO<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub> chromatographiert. Ausb. 0.840 g (41%); orangefarbene Kristalle, Schmp. 206 °C (zers.). IR (KBr): 3060, 3015 ( $\nu$ [C( $sp^2$ )-H]); 2960-2880 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1570 (Gerüstschw.); 1427 ( $\delta$ [CH<sub>2</sub>]); 1300 ( $\delta$ [C-H<sub>Brückenkopf</sub>]); 1215  $(\nu[C(sp^2)-O]);$  1033  $(\nu[C(sp^3)-O]);$  816, 807  $(\gamma[C-H_{aromat}]).$ <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.78$  (m; CH<sub>2</sub> aus NBD); 3.78 (s; CH<sub>3</sub>O); 4.20 (m; H<sub>Brückenkopf</sub> aus NBD); 5.57 (m; H<sub>olefin</sub> aus NBD; <sup>2</sup>J[<sup>195</sup>Pt,H] 41.0 Hz); 6.30 (d; 6-H; <sup>4</sup>J[6-H,4-H] 2.4 Hz; <sup>3</sup>*J*[<sup>195</sup>Pt,6-H] 72 Hz); 6.57 (dd; 4-H; <sup>3</sup>*J*[4-H,3-H] 8.0 Hz; <sup>4</sup>*J*[4-H,6-H] 2.4 Hz); 7.17 (d; 3-H; <sup>3</sup>/[3-H,4-H] 8.0 Hz); gem. Int.-Verh. 1.9/6.0/1.9/4.3/5.9 (ber. 2/6/2/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 50.7$  (C<sub>Brückenkopf</sub> aus NBD; <sup>2</sup>J[<sup>195</sup>Pt,C] 34.7 Hz); 55.3 (CH<sub>3</sub>O); 74.8 (CH<sub>2</sub> aus NBD;  ${}^{3}J[{}^{195}Pt,C]$  50.6 Hz); 92.6 (C<sub>olefin</sub> aus NBD;  ${}^{1}J[{}^{195}Pt,C]$  49.8 Hz); 110.6 (C-4); 117.9 (C-6;  ${}^{2}J[{}^{195}Pt,C]$  53.6 Hz); 119.6 (C-3;  ${}^{3}J[{}^{195}Pt,C]$  76.2 Hz); 149.1 (C-2;  ${}^{2}J[{}^{195}Pt,C]$  129.8 Hz); 155.5 (C-1;  ${}^{1}J[{}^{195}Pt,C]$ 1169.0 Hz); 157.1 (C-5;  ${}^{3}J[{}^{195}Pt,C]$  83.0 Hz). MS (EI):  $M^{+}m/e = 499$  (ber. 499 für <sup>195</sup>Pt). Analyse: Gef.: C, 50.42; H, 4.10. C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>Pt (499.47) ber.: C, 50.50 ; H, 4.04%.

9,9- $(2,3,5,6-\eta^4$ -Bicyclo[2.2.1]hepta-2,5-dien)-3,6-bis(t-butyl)dibenzoplatinol (3e). Analog zu 3a aus 1.200 g (3.35 mmol) (NBD)PtCl<sub>2</sub> [34] und 2.500 g (5.02 mmol) 9,9-Bis(n-butyl)-3,6-bis(t-butyl)dibenzostannol [31] in 100 ml CHCl<sub>3</sub>; 10 min unter Rückfluß. Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde zunächst in CHCl<sub>3</sub> über eine 40 cm Säule Al<sub>2</sub>O<sub>3</sub> (neutral) chromatographiert, vom Lösungsmittel befreit, in CH<sub>2</sub>Cl<sub>2</sub>/Ethanol wieder gelöst und schließlich durch langsames Abziehen des leichter flüchtigen CH<sub>2</sub>Cl<sub>2</sub> kristallisiert. Ausb. 0.940 g (51%); orangefarbene Kristalle, Schmp. 234°C (Zers.). IR (KBr): 3060, 3030  $(\nu[C(sp^2)-H]); 2990-2860 (\nu[C(sp^3)-H]); 1580 (gerüstschw.); 1428 (\delta[CH_2]); 1370,$ 1355 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 1300 ( $\delta$ [C-H<sub>Brückenkopf</sub>]); 803, 792 ( $\gamma$ [C-H<sub>aromat</sub>]). <sup>1</sup>H-NMR  $(CDCl_3)$ :  $\delta = 1.29$  (s; C(CH<sub>3</sub>)<sub>3</sub>); 1.66 (m; CH<sub>2</sub> aus NBD); 4.10 (m; H<sub>Brückenkopf</sub> aus NBD); 5.40 (m;  $H_{olefin}$  aus NBD;  ${}^{2}J[{}^{195}Pt,H]$  40.5 Hz); 6.55 (d; 6-H;  ${}^{3}J[6-H,5-H]$ 7.5 Hz; <sup>3</sup>*J*<sup>[195</sup>Pt,6-H] 62 Hz); 6.90 (d, d; 5-H; <sup>3</sup>*J*[5-H,6-H] 7.5 Hz; <sup>4</sup>*J*[5-H,3-H] 2.1 Hz); 7.27 (d; 3-H; <sup>4</sup>J[3-H,5-H] 2.1 Hz); gem. Int.-Verh. 17.9/2.0/2.0/4.0/6.1 (ber. 18/2/2/4/6). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 31.4$  (C(CH<sub>3</sub>)<sub>3</sub>); 36.7 (C(CH<sub>3</sub>)<sub>3</sub>); 50.5 (C<sub>Brückenkopf</sub> aus NBD; <sup>2</sup>J[<sup>195</sup>Pt,C] 35.2 Hz); 74.6 (CH<sub>2</sub> aus NBD; <sup>3</sup>J[<sup>195</sup>Pt,C] 48.8 Hz); 91.4 ( $C_{\text{olefin}}$  aus NBD;  ${}^{1}J[{}^{195}\text{Pt,C}]$  50.6 Hz); 116.6 (C-3;  ${}^{3}J[{}^{195}\text{Pt,C}]$  66.4 Hz); 122.8 (C-5;  ${}^{3}J[{}^{195}\text{Pt,C}]$  64.9 Hz); 130.1 (C-6;  ${}^{2}J[{}^{195}\text{Pt,C}]$  52.8 Hz); 150.1 (C-4;  ${}^{4}J[{}^{195}Pt,C] 8.0 Hz); 153.3 (C-1; {}^{1}J[{}^{195}Pt,C] 1166.6 Hz); 156.2 (C-2; {}^{2}J[{}^{195}Pt,C] 138.9 Hz). MS (EI): <math>M^{+} m/e = 551$  (ber. 551 für  ${}^{195}Pt$ ). Analyse: Gef.: C, 58.77; H, 5.70. C<sub>27</sub>H<sub>32</sub>Pt (551.63) ber.: C, 58.79; H, 5.84%.

9,9-Bis(triphenylphosphin)-3,6-bis(trifluormethyl)dibenzoplatinol (4a). Unter Ar-Atmosphäre wurden 0.100 g (0.17 mmol) 3a und 0.400 g (1.50 mmol) Triphenylphosphin in 50 ml Toluol gelöst und 1 h unter Rückfluß erhitzt. Der nach dem Abziehen des Lösungsmittels verbliebene Rückstand wurde mit 30 ml Diethylether digeriert, wobei der Platin-Komplex ungelöst zurückblieb. Er wurde in dem gerade erforderlichen Volumen CH<sub>2</sub>Cl<sub>2</sub> gelöst, diese Lösung mit dem gleichen Volumen Ethanol versetzt und schließlich das leichter flüchtige CH<sub>2</sub>Cl<sub>2</sub> langsam wieder entfernt; dabei kristallisierte 4a aus. Es wurde isoliert, mit reichlich Diethylether gewaschen und im Vakuum getrocknet. Ausb. 0.130 g (74%, bezogen auf eingesetztes 3a); gelbe Kristalle, Schmp. 249°C (Zers.). IR (KBr): 3060 ( $\nu$ [C( $sp^2$ )-H]); 1585 (Gerüstschw.); 1475, 1435 (typ. für PPh<sub>3</sub>); 1335, 1320 (v<sub>as</sub>, v<sub>s</sub>[CF<sub>3</sub>]); 1090 (ν[P-C]); 1000 (Ringschw. PPh<sub>3</sub>); 818 (γ[C-H<sub>aromat</sub>]); 749, 740, 735, 730 (γ[C-H<sub>aromat</sub>]PPh<sub>3</sub>); 699 (Ringdef. PPh<sub>3</sub>); 532, 522, 508, 489 (typ. für *cis*-Pt(PPh<sub>3</sub>)<sub>2</sub>); sog. "Mastin-Banden" [43]. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 6.43-7.80$  (kompl. m.). <sup>13</sup>C-NMR  $(CDCl_3): \delta = 116.0 (C-3); 122.1 (C-5); 125.2 (CF_3; {}^{1}J[C-3,F] 272 Hz); 126.1 (C-4;$ <sup>2</sup>J[C-4,F] 31.4 Hz); 139.6 (C-6); 156.5 (C-2); 166.1 (C-1; <sup>2</sup>J[C-1,P<sub>trans</sub>] 109 Hz); PPh<sub>3</sub>: 127.9 (C-3'); 130.0 (C-4'); 132.9 (C-1'; <sup>1</sup>J[C-1,P] 46.6 Hz); 135.0 (C-2'). MS (Felddesorption):  $M^+ m/e = 1007$  (ber. 1007 für <sup>195</sup> Pt). Analyse: Gef.: C, 58.92; H, 3.59. C<sub>50</sub>H<sub>36</sub>F<sub>6</sub>P<sub>2</sub>Pt (1007.85) ber.: C, 59.59; H, 3.60%.

9,9-Bis(triphenylphosphin)-2,7-bis(tripluormethyl)dibenzoplatinol (4b). Analog zu 4a aus 0.200 g (0.35 mmol) 3b und 0.750 g (2.86 mmol) PPh<sub>3</sub> in 60 ml Toluol; 1 h unter Rückfluß. Ausb. 0.310 g (89%); gelbe Kristalle, Schmp. 263°C (Zers.). IR (KBr): 3060 ( $\nu$ [C( $sp^2$ )-H]); 1580 (Gerüstschw.); 1470, 1430 (typ. für PPh<sub>3</sub>); 1310 ( $\nu$ [CF<sub>3</sub>]); 1090, 1075 ( $\nu_{as}$ ,  $\nu_{s}$ [P-C]); 995 (Ringschw. PPh<sub>3</sub>); 820 ( $\gamma$ [C-H<sub>aromat</sub>]); 752, 743, 732, 727 ( $\gamma$ [C-H<sub>aromat</sub>] PPh<sub>3</sub>); 695 (Ringdef. PPh<sub>3</sub>); 531, 520, 512, 505, 485 (typ. für *cis*-Pt(PPh<sub>3</sub>)<sub>2</sub>). <sup>T</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 6.97-7.67$  (kompl. m). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 119.7$  (C-3; <sup>3</sup>J[<sup>195</sup>Pt,C-3] 51.2 Hz); 121.0 (C-4); 124.5 (CF<sub>3</sub>; <sup>1</sup>J[C,F] 272.4 Hz); 128.0 (C-5; <sup>2</sup>J[C-5,F] 34.7 Hz); 136.2 (C-6); 159.4 (C-2); 161.7 (C-1; <sup>2</sup>J[C-1,P<sub>trans</sub>] 110.2 Hz; <sup>2</sup>J[C-6,P<sub>cis</sub>] 9.0 Hz; PPh<sub>3</sub>: 127.9 (C-3'); 129.9 (C-4'); 132.7 (C-1'; <sup>1</sup>J[<sup>31</sup>P,C] 47.5 Hz; <sup>2</sup>J[<sup>195</sup>Pt,C] 15.8 Hz); 134.8 (C-2'). MS (FD):  $M^+ m/e =$ 1007 (ber. 1007 für <sup>195</sup>Pt). Analyse: Gef.: C, 59.60; H, 3.59. C<sub>50</sub>H<sub>36</sub>F<sub>6</sub>P<sub>2</sub>Pt (1007.85) ber.: C, 59.59; H, 3.60%.

9,9-Bis(triphenylphosphin)-3,6-bis(methoxy)dibenzoplatinol (4c). Analog zu 4a aus 0.200 g (0.40 mmol) 3c und 0.750 g (2.86 mmol) PPh<sub>3</sub> in 60 ml Toluol; 30 min bei Raumtemp. Ausb. 0.170 g (46%); hellgelbe Kristalle, Schmp. 225°C (Zers.). IR (KBr): 3060, 3000 ( $\nu$ [C( $sp^2$ )-H]); 2980, 2890 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1580 (Gerüstschw.); 1475, 1430 (typ. für PPh<sub>3</sub>); 1215 ( $\nu$ [C( $sp^2$ )-O]); 1090 ( $\nu$ [P-C]); 1025 ( $\nu$ [C( $sp^2$ )-O]); 1000 (Ringschw. PPh<sub>3</sub>); 802 ( $\gamma$ [C-H<sub>aromat</sub>]); 756, 746 ( $\gamma$ [C-H<sub>aromat</sub>] PPh<sub>3</sub>); 698 (Ringdef. PPh<sub>3</sub>); 534, 520, 509, 488 (*cis*-Pt(PPh<sub>3</sub>)<sub>2</sub>). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 3.69 (s; CH<sub>3</sub>O); 6.83-7.89 (kompl. m der 36 H<sub>aromat</sub>); gem. Int.-Verh. 5.7/36.6 (ber. 6/36). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 55.0 (CH<sub>3</sub>O); 106.2 (C-3); 110.6 (C-5); 140.4 (C-6); 154.0 (C-1; <sup>2</sup>J[C-1,P<sub>trans</sub>] 110 Hz); 156.9 (C-4); 158.5 (C-2). PPh<sub>3</sub>: 127.7 (C-3'); 129.5 (C-4'); 133.8 (C-1'; <sup>1</sup>J[P,C] 44.8 Hz); 135.1 (C-2'). MS (FD): M<sup>+</sup> m/e = 931 (ber. 931 für <sup>195</sup>Pt). Analyse: Gef.: C, 63.86; H, 4.47. C<sub>50</sub>H<sub>42</sub>O<sub>2</sub>P<sub>2</sub>Pt (931.91) ber.: C, 64.44; H, 4.54%. 9,9-Bis(triphenylphosphin)-2,7-bis(methoxy)dibenzoplatinol (4d). Analog zu 4a aus 0.150 g (0.30 mmol) 3d und 0.560 g (2.13 mmol) PPh<sub>3</sub> in 45 ml Toluol, 45 min bei Raumtemp. Ausb. 0.230 g (82%); gelbe Kristalle, Schmp. 243°C (Zers.). IR (KBr): 3060, 3000 ( $\nu$ [C( $sp^2$ )-H]); 2950–2890 ( $\nu$ [C( $sp^3$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1575 (Gerüstschw.); 1475, 1430 (typ. für PPh<sub>3</sub>); 1225 ( $\nu$ [C( $sp^2$ )-O]); 1085 ( $\nu$ [C( $sp^2$ )-P]); 1035 ( $\nu$ [C( $sp^3$ )-O]); 998 (typ. für PPh<sub>3</sub>); 819, 811 ( $\gamma$ [C-H<sub>aromat</sub>]); 755, 747, 736 ( $\gamma$ [C-H<sub>aromat</sub>] PPh<sub>3</sub>); 535, 524, 509, 490 (*cis*-Pt(PPh<sub>3</sub>)<sub>2</sub>). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 3.85 (s; CH<sub>3</sub>O); 6.27–7.76 (kompl. m der 36 H<sub>aromat</sub>); gem. Int.-Verh. 5.9/36.1 (ber. 6/36). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 54.6 (CH<sub>3</sub>O); 111.3 (C-4); 119.6 (C-3; <sup>3</sup>*J*[<sup>195</sup>Pt,C-3] 63 Hz); 124.6 (C-6); 150.3 (C-2); 156.3 (C-5); 162.2 (C-1; <sup>2</sup>*J*[C-1,P<sub>trans</sub>] 110 Hz; <sup>2</sup>*J*[C-1,P<sub>cis</sub>] 9 Hz). PPh<sub>3</sub>: 127.8 (C-3'); 129.7 (C-4'); 133.7 (C-1'; <sup>1</sup>*J*[<sup>31</sup>P,C-1] 44.5 Hz; <sup>2</sup>*J*[<sup>195</sup>Pt,C-1] 15.3 Hz); 135.1 (C-2'). MS (FD): *M*<sup>+</sup> *m*/*e* = 931 (ber. 931 für <sup>195</sup>Pt). Analyse: Gef.: C, 64.44; H, 4.44. C<sub>50</sub>H<sub>42</sub>O<sub>2</sub>P<sub>2</sub>Pt (931.91) ber.: C, 64.44; H, 4.54%.

9,9-Bis(triphenylphosphin)-3,6-bis(t-butyl)dibenzoplatinol (4e). Analog zu 4a aus 0.200 g (0.36 mmol) 3e und 0.600 g (2.29 mmol) PPh<sub>3</sub> in 40 ml Toluol; 1 h bei Raumtemp. Ausb. 0.260 g (73%); gelbe Kristalle, Schmp. 220 ° C (Zers.). IR (KBr): 3060 ( $\nu$ [C( $sp^2$ )-H]); 2950, 2900, 2860 ( $\nu$ [C( $sp^3$ )-H]); 1580 (Gerüstschw.); 1475, 1430 (typ. für PPh<sub>3</sub>); 1375, 1335 ( $\delta$ [CH<sub>3</sub>] in C(CH<sub>3</sub>)<sub>3</sub>); 1095, 1082 ( $\nu_{as}$ ,  $\nu_{s}$ [P-C]); 995 (typ. für PPh<sub>3</sub>); 813 ( $\gamma$ [C-H<sub>aromat</sub>]); 750, 745, 735, 729 ( $\gamma$ [C-H<sub>aromat</sub>]PPh<sub>3</sub>); 532, 520, 507, 489 (*cis*-Pt(PPh<sub>3</sub>)<sub>2</sub>). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.23 (s; C(CH<sub>3</sub>)<sub>3</sub>); 6.10-7.70 (kompl. m der 36 H<sub>aromat</sub>); gem. Int.-Verh. 18.0/36.3 (ber. 18/36). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 31.6 (C(CH<sub>3</sub>)<sub>3</sub>); 34.2 (C(CH<sub>3</sub>)<sub>3</sub>); 116.2 (C-3; <sup>3</sup>J[<sup>195</sup>Pt,C-3] 54 Hz); 122.1 (C-5; <sup>3</sup>J[<sup>195</sup>Pt,C-5] 53 Hz); 139.5 (C-6); 146.0 (C-4); 156.9 (C-2); 159.0 (C-1; <sup>2</sup>J[C-1,P<sub>trans</sub>] 107.8 Hz; <sup>2</sup>J[C-1,P<sub>cis</sub>] 9.7 Hz). PPh<sub>3</sub>: 127.6 (C-3'); 129.4 (C-4'); 134.0 (C-1'; <sup>1</sup>J[C-1',P] 43.6 Hz; <sup>2</sup>J[C-1,<sup>155</sup>Pt] 15.2 Hz); 135.2 (C-2'). MS (FD): M<sup>+</sup> m/e = 983 (ber. 983 für <sup>195</sup>Pt). Analyse: Gef.: C, 68.32; H, 5.34. C<sub>56</sub>H<sub>54</sub>P<sub>2</sub>Pt (984.0) ber.: C, 68.35; H, 5.53%.

9,9-( $\eta^2$ -2,2'-Bipyridin)-3,6-bis(trifluormethyl)dibenzoplatinol (5a). 0.131 g (0.23 mmol) 3a wurden in 30 ml Toluol mit 0.150 g (0.96 mmol) 2,2'-Bipyridin 2 h lang auf 100 °C erhitzt. Der beim Abkühlen der Lösung auf ca. 10 °C ausgefallene Komplex 5a wurde auf einer Glasfritte isoliert, mehrmals mit kaltem Toluol gewaschen und schließlich im Vakuum getrocknet. Die so erhaltenen Kristalle waren chromatographisch rein. Ausb. 0.130 g (90%); braune Kristalle, Schmp. 319 °C (Zers.). IR (KBr): 1590, 1460, 1435 (aromat. Gerüst schw.); 1330 ( $\nu$ [CF<sub>3</sub>]); 820 ( $\gamma$ [C-H<sub>aromat</sub>] Biphenyl); 750, 724 ( $\gamma$ [C-H<sub>aromat</sub>] Bipyr.). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>; 300 MHz): Biph.:  $\delta$  = 7.19 (d; 5-H; <sup>3</sup>J[5-H,6-H] 7.6 Hz); 7.60 (d; 6-H, <sup>3</sup>J[6-H,5,H] 7.6 Hz); 7.69 (s; 3-H); Bipyr: 7.89 (d,d; 5'-H); 8.42 (d,d; 4'-H); 8.68 (d; 3'-H; <sup>3</sup>J[3'-H,4'-H] 8.0 Hz); 9.35 (d; 6'-H; <sup>3</sup>J[6'-H,5'-H] 5.3 Hz). Als Folge zu geringer Löslichkeit kein <sup>13</sup>C-NMR-Spektrum. MS (FD):  $M^+$  m/e = 639 (ber. 639 für <sup>195</sup> Pt). Analyse: Gef.: C, 45.16; H, 2.27; N, 4.32. C<sub>24</sub>H<sub>14</sub>F<sub>6</sub>N<sub>2</sub>Pt (639.46) ber.: C, 45.08; H, 2.21; N, 4.38%.

9,9-( $\eta^2$ -2,2'-Bipyridin)-2,7-bis(trifluormethyl)dibenzoplatinol (5b). Analog zu 5a aus 0.200 g (0.35 mmol) 3b und 0.220 g 2,2'-Bipyridin in 50 ml Toluol; 3 h unter Rückfluß. Ausb. 0.180 g (81%); rote Kristalle, Schmp. 325°C (Zers.). IR (KBr): 1595, 1460, 1435 (Gerüstschw.); 1315 ( $\nu$ [CF<sub>3</sub>]); 832 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph.); 758. 726 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipyr.); <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>): Biph:  $\delta$  = 7.29 (d; 4-H; <sup>3</sup>J[4-H,3-H] 7.8 Hz); 7.56 (d; 3-H; <sup>3</sup>J[3-H,4-H] 7.8 Hz); 7.62 (s; 6-H). Bipyr: 7.99 (d,d,d; 5'-H;  ${}^{3}J[5'-H,6'-H]$  4.6 Hz;  ${}^{3}J[5'-H,4'-H]$  7.8 Hz;  ${}^{4}J[5'-H,3'-H]$  1.2 Hz); 8.47 (d,d,d; 4'-H;  ${}^{3}J[4'-H,3'-H]$  7.9 Hz;  ${}^{3}J[4'-H,5'-H]$  7.8 Hz;  ${}^{4}J[4'-H,6'-H]$  1.4 Hz); 8.75 (d; 3'-H;  ${}^{3}J[3'-H,4'-H]$  7.9 Hz); 9.29 (d; 6'-H;  ${}^{3}J[6'-H,5'-H]$  4.6 Hz). Als Folge zu geringer Löslichkeit kein  ${}^{13}$ C-NMR-Spektrum. MS (FD):  $M^{+}$  m/e = 639 (ber. 639 für  ${}^{195}$  Pt). Analyse: Gef.: C, 45.07; H, 2.30; N, 4.37. C<sub>24</sub>H<sub>14</sub>F<sub>6</sub>N<sub>2</sub>Pt (639.46) ber.: C, 45.08; H, 2.21; N, 4.38%.

9,9-( $\eta^2$ -2,2'-Bipyridin)-3,6-bis(methoxy)dibenzoplatinol (5c). Analog zu 5a aus 0.280 g (0.56 mmol) 3c und 0.300 g (1.92 mmol) 2,2'-Bipyridin in 50 ml Toluol; 4 h bei 110 ° C. Ausb. 0.110 g (35%); rote Kristalle, Schmp. 254 ° C (Zers.). IR (KBr): 3060 ( $\nu$ [C( $sp^2$ )-H]); 2830 ( $\nu$ [OCH<sub>3</sub>]); 1595, 1575, 1460, 1435 (Gerüstschw.); 1210 ( $\nu$ [C( $sp^2$ )-O]); 1027 ( $\nu$ [C( $sp^3$ )-O]); 798 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 760, 730 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipyr). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>; 300 MHz): Biph:  $\delta$  = 3.75 (s; CH<sub>3</sub>O); 6.52 (d,d; 5-H; <sup>3</sup>J[5-H,6-H] 8.2 Hz; <sup>4</sup>J[5-H,3-H] 2.6 Hz); 7.24 (d; 6-H, <sup>3</sup>J[6-H,5-H] 8.2 Hz); Bipyr: 7.87 (d; 5'-H; <sup>3</sup>J[5'-H,6'-H] 5.2 Hz); 8.41 (d; 4'-H; <sup>3</sup>J[4'-H,3'-H] 9.0 Hz); 8.67 (d; 3'-H; <sup>3</sup>J[3'-H,4'-H] 9.0 Hz); 9.43 (d; 6'-H, <sup>3</sup>J[6'-H,5'-H] 5.2 Hz); gem. Int.-Verh.: 6.2/13.8 (ber. 6/14). Infolge zu geringer Löslichkeit kein <sup>13</sup>C-NMR-Spektrum erhalten. MS (FD):  $M^+ m/e = 563$  (ber. 563 für <sup>195</sup>Pt). Analyse: Gef.: C, 51.24; H, 3.74; N, 4.53. C<sub>24</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>Pt (653.51) ber.: C, 51.15; H, 3.58, N, 4.97%.

9,9-( $\eta^2$ -2,2'-Bipyridin)-2,7-bis(methoxy)dibenzoplatinol (5d). Analog zu 5a aus 0.150 g (0.30 mmol) 3d und 0.190 g (1.2 mmol) 2,2'-Bipyridin in 40 ml Toluol; 2 h bei 100 °C. Ausb. 0.240 g (83%); rotbraune Kristalle, Schmp. 232 °C (Zers.). IR (KBr): 3060 ( $\nu$ [C( $sp^2$ )-H]); 2830 ( $\nu$ [OCH<sub>3</sub>]); 1597, 1560, 1460, 1434 (Gerüstschw.); 1200 ( $\nu$ [C( $sp^2$ )-O]); 1035 ( $\nu$ [C( $sp^3$ )-O]); 813 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 754, 727 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipyr). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>; 300 MHz): Biph:  $\delta$  = 3.73 (s; CH<sub>3</sub>O); 6.44 (d,d; 4-H; <sup>3</sup>J[4-H,3-H] 8.2 Hz; <sup>4</sup>J[4-H,6-H] 2.4 Hz); 6.87 (d; 6-H; <sup>4</sup>J[6-H,4-H] 2.4 Hz; <sup>3</sup>J[<sup>195</sup>Pt,6-H] 52 Hz); 7.06 (d; 3-H; <sup>3</sup>J[3-H,4-H] 8.2 Hz); Bipyr: 7.93 (d; 5'-H; <sup>3</sup>J[5'-H,6'-H] 5.2 Hz); 8.43 (d; 4'-H; <sup>3</sup>J[4'-H,3'-H] 7.9 Hz); 8.68 (d; 3'-H; <sup>3</sup>J[3'-H,4'-H] 7.9 Hz); 9.40 (d; 6'-H; <sup>3</sup>J[6'-H,5'-H] 5.2 Hz); gem. Int.-Verh. 5.5/14.5 (ber. 6/14). <sup>13</sup>C-NMR (DMSO-d<sub>6</sub>): Biph:  $\delta$  = 54.5 (CH<sub>3</sub>O); 107.2 (C-4); 118.4 (C-6); 119.3 (C-3); 124.3 (C-1); 149.1 (C-2); 155.6 (C-5). Bipyr: 127.5, 138.5, 147.1, 149.5, 155.8. MS (FD):  $M^+$  m/e = 563 (ber. 563 für <sup>195</sup>Pt). Analyse: Gef.: C, 51.08; H, 3.61; N, 4.90. C<sub>24</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>Pt (563.51) ber.: C, 51.15; H, 3.58; N, 4.97%.

9,9- $(\eta^2$ -Bipyridin)-3,6-bis(t-butyl)dibenzoplatinol (5e). Analog zu 5a aus 0.350 g (0.63 mmol) 3e und 0.320 g (2.05 mmol) 2,2'-Bipyridin in 35 ml Toluol; 30 min unter Rückfluss. 5e ist in Toluol löslich und konnte daher nicht analog zu 5a-disoliert werden. Stattdessen wurde das Lösungsmittel im Rotationsverdampfer vollständig abgezogen und der trockene Rückstand mit n-Pentan digeriert, wobei der rote Komplex ungelöst zurückblieb. Er wurde isoliert und aus Aceton umkristallisiert. Ausb. 0.280 g (72%); ziegelrote Kristalle, Schmp. 267°C (Zers.). IR (KBr): 3080-3020 ( $\nu$ [C( $sp^2$ )-H]); 2960, 2900, 2880 ( $\nu$ [C( $sp^3$ )-H]); 1595, 1460 (Gerüstschw.); 1435 ( $\delta_{as}[C(CH_3)_3]$ ); 1380, 1352 ( $\delta_{s}[C(CH_3)_3]$ ); 820 ( $\gamma[C-H_{aromat}]$ ; Biph); 760, 727 (γ[C-H<sub>aromat</sub>]; Bipyr). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>, 300 MHz); Biph:  $\delta = 1.33$  (s; C(CH<sub>3</sub>)<sub>3</sub>); 6.89 (d,d; 5-H; <sup>3</sup>J[5-H,6-H] 8.1 Hz; <sup>4</sup>J[5-H,3-H] 2.0 Hz); 7.29 (d; 3-H; <sup>4</sup>J[3-H,5-H] 2.0 Hz); 7.30 (d; 6-H; <sup>3</sup>J[6-H,5-H] 8.1 Hz). Bipyr: 7.88 (d,d,d; 5'-H; <sup>3</sup>J(5'-H,6'-H) 5.3 Hz; <sup>3</sup>J[5'-H,4'-H] 7.5 Hz; <sup>4</sup>J[5'-H,3'-H] 1.1 Hz); 8.42 (d,d,d; 4'-H; <sup>3</sup>J[4'-H,3'-H] 8.1 Hz; <sup>3</sup>J[4'-H,5'-H] 7.5 Hz; <sup>4</sup>J[4'-H,6'-H] 1.2 Hz); 8.67 (d; 3'-H;  ${}^{3}J[3'-H,4'-H]$  8.1 Hz); 9.46 (d; 6'-H;  ${}^{3}J[6'-H,5'-H]$  5.3 Hz); gem. Int.-verh. 17.4/14.6 (ber. 18/14). <sup>13</sup>C-NMR (DMSO- $d_6$ ): Biph:  $\delta = 31.4$  (C(CH<sub>3</sub>)<sub>3</sub>); 33.8

 $(C(CH_3)_3)$ ; 115.7 (C-3); 121.2 (C-5); 124.0 (C-1); 132.3 (C-6); 143.6 (C-4); 156.2 (C-2). Bipyr: 127.3, 138.3, 145.1, 149.5, 155.6. MS (FD):  $M^+ m/e = 615$  (ber. 615 für <sup>195</sup>Pt). Analyse. Gef.: C, 58.44; H, 5.19; N, 4.37. C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>Pt (615.38) ber.: C, 58.53; H, 5.14; N, 4.55%.

9,9-( $\eta^2$ -2,2'-Bipyrimidin)-3,6-bis(trifluormethyl)dibenzoplatinol (6a). Unter Ar-Schutzgas wurden 0.130 g (0.23 mmol) 3a und 0.150 g (0.95 mmol) 2,2'-Bipyrimidin in 30 ml Toluol 2 h unter Rühren auf 100 °C erhitzt. Der nach dem Abkühlen auf 10 °C ausgefallene Komplex wurde isoliert, mit viel Toluol gewaschen und im Vakuum getrocknet; er war chromatographisch rein. Ausb. 0.120 g (83%); orangefarbene Kristalle, Schmp. 305 °C (Zers.). IR (KBr): 3070 ( $\nu$ [C( $sp^2$ )-H]); 1570, 1545, 1402 (aromat. Gerüstschw.); 1330, 1320 ( $\nu_{as}$ ,  $\nu_s$ [CF<sub>3</sub>]); 820 ( $\gamma$ [C-H<sub>aromat</sub>]Biph.); 795 ( $\beta$ [C-H<sub>aromat</sub>]Bipym.); 750 ( $\gamma$ [C-H<sub>aromat</sub>]Bipym.); 660 (Ringdeform. Bipym.). <sup>1</sup>H-NMR (DMSO- $d_6$ ; 300 MHz), Biph.:  $\delta$  = 7.20 (d; 5-H; <sup>3</sup>J[5-H,6-H] 7.7 Hz); 7.61 (d; 6-H; <sup>3</sup>J[6-H,5-H] 7.7 Hz); 7.73 (s; 3-H). Bipym.: 8.07 (verbr. s; 5'-H); 9.56 (br. s; 4'-H, 6'-H). Infolge Schwerlöslichkeit kein <sup>13</sup>C-NMR-Spektrum. MS (FD):  $M^+$ m/e = 641 (ber. 641 für <sup>195</sup>Pt). Analyse. Gef.: C, 41.21; H, 1.94; N, 8.69. C<sub>22</sub>H<sub>12</sub>F<sub>6</sub>N<sub>4</sub>Pt (641.43) ber.: C, 41.20; H, 1.89; N, 8.73%.

9,9-( $\eta^2$ -2,2'-Bipyrimidin)-2,7-bis(trifluormethyl)dibenzoplatinol (6b). Analog zu 6a aus 0.200 g (0.35 mmol) 3a und 0.079 g (0.50 mmol) 2,2'-Bipyrimidin in 50 ml Toluol; 3 h unter Rückfluß. Nach dem vollständigen Abziehen des Lösungsmittels Kristallisation aus einer Lösung in CH<sub>2</sub>Cl<sub>2</sub> durch Überschichten mit Ethanol. Ausb. 0.210 g (94%); Schmp. 334°C (Zers.). IR (KBr): 3050 ( $\nu$ [C( $sp^2$ )–H]); 1574, 1545, 1400 (aromat. Gerüstschw.); 1315 ( $\nu$ [CF<sub>3</sub>]); 820 ( $\gamma$ [C–H<sub>aromat</sub>]; Biph); 800, 749 ( $\gamma$ [C–H<sub>aromat</sub>]; Bipym); 660 (Ringdeform.). <sup>1</sup>H-NMR und <sup>13</sup>C-NMR: Infolge unzureichender Löslichkeit nicht registrierbar. MS (FD):  $M^+ m/e = 641$  (ber. 641 für <sup>195</sup> Pt). Analyse. Gef.: C, 40.96; H, 2.08; N, 8.68. C<sub>22</sub>H<sub>12</sub>F<sub>6</sub>N<sub>4</sub>Pt (641.43) ber.: C, 41.20; H, 1.89; N, 8.73%.

9,9-( $\eta^2$ -2,2'-Bipyrimidin)-3,6-bis(methoxy)dibenzoplatinol (6c). Analog zu 6a aus 0.500 g (1.0 mmol) 3c und 0.300 g (1.9 mmol) 2,2'-Bipyrimidin in 50 ml Toluol; 3 h bei 100 °C. Ausb. 0.350 g (62%); Schmp. 262 °C (Zers.). IR (KBr): 3090–3030 ( $\nu$ [C( $sp^2$ )–H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1570, 1545, 1400 (Gerüstschw.); 1212 ( $\nu$ [C( $sp^2$ )– O]); 1025 ( $\nu$ [C( $sp^3$ )–O]); 800 ( $\gamma$ [C–H<sub>aromat</sub>]; Biph); 750 ( $\gamma$ [C–H<sub>aromat</sub>]; Bipym); 660 (Ringdeform.). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>; 300 MHz). Biph:  $\delta$  = 3.75 (s; CH<sub>3</sub>O); 6.48 (d,d; 5-H; <sup>3</sup>J[5-H,6-H] 8.3 Hz; <sup>4</sup>J[5-H,3-H] 2.7 Hz); 6.88 (d; 3-H; <sup>4</sup>J[3-H,5-H] 2.7 Hz); 7.20 (d; 6-H; <sup>3</sup>J[6-H,5-H] 8.3 Hz); Bipym: 8.00 (br. s; 5'-H); 9.52 (br. s; 4'-H + 6'-H); gem. Int.-Verh. 6.1/11.9 (ber. 6/12). Infolge unzureichender Löslichkeit kein <sup>13</sup>C-NMR-Spektrum. MS (FD):  $M^+$  m/e = 565 ber. 565 für <sup>195</sup>Pt). Analyse. Gef.: C, 46.73; H, 3.27; N, 9.92. C<sub>22</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>Pt (565.49) ber.: C, 46.73; H, 3.21; N, 9.91%.

9,9-( $\eta^2$ -2,2'-Bipyrimidin)-2,7-bis(methoxy)dibenzoplatinol (6d). Analog zu 6a aus 0.200 g (0.4 mmol) 3d und 0.095 g (0.6 mmol) 2,2'-Bipyrimidin in 60 ml Toluol; 2.5 h bei 100 °C, Auskristallisation durch langsames Abkühlen; die isolierten Kristalle wurden zunächst mit kaltem Toluol, dann mit Diethylether gewaschen und schließlich im Vakuum getrocknet. Ausb. 0.190 g (84%); dunkelbraune Nadeln, Schmp. 246 °C. IR (KBr): 3070-3040 ( $\nu$ [C( $sp^2$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1560, 1530, 1400 (Gerüstschw.); 1205 ( $\nu$ [C( $sp^2$ )-O]); 1040 ( $\nu$ [C( $sp^3$ )-O]); 812 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 800, 745 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym); 660 (Ringdeform.). <sup>1</sup>H-NMR (DMSO- $d_6$ ; 300 MHz) Biph:  $\delta$  = 3.73 (s; CH<sub>3</sub>O); 6.43 (d,d; 4-H; <sup>3</sup>J[4-H,3-H] 8.2 Hz; <sup>4</sup>J[4-H,6-H] 2.4 Hz); 6.81 (d; 6-H;  ${}^{4}J$ [6-H,4-H] 2.4 Hz;  ${}^{3}J$ [6-H, ${}^{195}$ Pt] 54 Hz); 7.02 (d; 3-H;  ${}^{3}J$ [3-H,4-H] 8.2 Hz); Bipym: 8.05 (br. s; 5'-H); 9.53 (br. s; 4'-H + 6'-H); gem. Int.-Verh. 6.3/11.7 (ber. 6/12). Infolge unzureichender Löslichkeit kein  ${}^{13}$ C-NMR-Spektrum registrierbar. MS (FD):  $M^{+}$  m/e = 565 (ber. 565 für  ${}^{195}$ Pt). Analyse. Gef.: C, 46.96; H, 3.16; N, 9.90. C<sub>22</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>Pt (565.49) ber.: C, 46.73; H, 3.21; N, 9.91%.

9,9-( $\eta^2$ -2,2'-Bipyrimidin)-3,6-bis(t-butyl)dibenzoplatinol (6e). Analog zu 6a aus 0.500 g (0.91 mmol) 3e und 0.200 g (1.26 mmol) 2,2'-Bipyrimidin in 50 ml Toluol; 1 h bei 100 ° C; nach Auskristallisation mit Heptan waschen und im Vakuum trocknen. Ausb. 0.370 g (66%); Schmp. 285 ° C (Zers.). IR (KBr): 3080-3020 ( $\nu$ [C( $sp^2$ )-H]); 2960, 2900, 2870 ( $\nu$ [C( $sp^3$ )-H]); 1570, 1550, 1400 (Gerüstschw.); 1385, 1355 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 810 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 750 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym); 660 (Ringdeform. Bipym). <sup>1</sup>H-NMR (DMSO- $d_6$ ; 300 MHz) Biph:  $\delta = 1.33$  (s; C(CH<sub>3</sub>)<sub>3</sub>); 6.88 (d,d; 5-H; <sup>3</sup>J[5-H,6-H] 7.9 Hz; <sup>4</sup>J[5-H,3-H] 2.0 Hz); 7.25 (d; 6-H; <sup>3</sup>J[6-H,5-H] 7.9 Hz); 7.30 (d; 3-H; <sup>4</sup>J[3-H,5-H] 2.0 Hz). Bipym: 8.04 (br. s; 5'-H) 9.42 (br. s; 4'-H + 6'-H); gem. Int.-Verh. 17.9/12.1 (ber. 18/12). <sup>13</sup>C-NMR (DMSO- $d_6$ ) Biph:  $\delta = 31.4$  (C(CH<sub>3</sub>)<sub>3</sub>); 33.8 (C(CH<sub>3</sub>)<sub>3</sub>); 115.9 (C-3); 121.2 (C-5); 124.3 (C-1); 132.0 (C-6); 142.4 (C-4); 155.9 (C-2). Bipym: 121.6, 145.5, 157.7, 161.4. MS (FD):  $M^+$ m/e = 617 (ber. 617 für <sup>195</sup> Pt). Analyse. Gef.: C, 54.41; H, 4.97; N, 8.93. C<sub>28</sub>H<sub>30</sub>N<sub>4</sub>Pt (617.65) ber.: C, 54.45; H, 4.90; N, 9.07%.

9,9-( $\eta^2$ -Bipyrimidin)-2,7-bis(t-butyl)dibenzoplatinol (6f). Analog zu 6a aus 0.300 g (0.54 mmol) 3f und 0.110 g (0.70 mmol) 2,2'-Bipyrimidin in 70 ml Toluol; 2 h bei 100 ° C, anschließend 1 h unter Rückfluß; die beim langsamen Abkühlen bis auf – 25 ° C ausgefallenen Kristalle wurden mit Diethylether gewaschen. Ausb. 0.270 g (80%); Schmp. 317 ° C (Zers.). IR (KBr): 3080–3040 ( $\nu$ [C( $sp^2$ )–H]); 2950, 2900, 2860 ( $\nu$ [C( $sp^3$ )–H]); 1570, 1545, 1398 (Gerüstschw.); 1375 1351 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 810 ( $\gamma$ [C–H<sub>aromat</sub>]; Biph); 750 ( $\gamma$ [C–H<sub>aromat</sub>]; Bipym); 660 (Ringdeform.). <sup>1</sup>H-NMR (DMSO- $d_6$ ; 300 MHz) Biph:  $\delta = 1.33$  (s, C(CH<sub>3</sub>)<sub>3</sub>); 6.89 (d,d; 4-H; <sup>3</sup>J[4-H,3-H] 7.8 Hz; <sup>4</sup>J[4-H,6-H] 1.8 Hz); 7.10 (d; 3-H; <sup>3</sup>J[3-H,4-H] 7.8 Hz); 7.30 (d; 6-H, <sup>4</sup>J[6-H,4-H] 1.8 Hz). Bipym: 8.13 (br. s; 5'-H); 9.56 (br. s; 4'-H + 6'-H); gem. Int.-Verh., 18.2/11.8 (ber. 18/12). <sup>13</sup>C-NMR (CDCl<sub>3</sub>) Biph:  $\delta = 31.7$  (C(CH<sub>3</sub>)<sub>3</sub>); 34.7 (C(CH<sub>3</sub>)<sub>3</sub>); 119.2 (C-3); 123.4 (C-4); 129.3 (C-6); 146.8 (C-5); 154.0 (C-2); 156.0 (C-1). Bipym: 121.5, 144.5, 157.1, 162.1. MS (FD):  $M^+ m/e = 617$  (ber. 617 für <sup>195</sup> Pt). Analyse. Gef.: C, 54.58; H, 4.94; N, 9.16. C<sub>28</sub>H<sub>30</sub>N<sub>4</sub>Pt (617.85) ber.: C, 54.45; H, 4.90; N, 9.07%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[3,6-bis(trifluormethyl)dibenzoplatinol] (7a). 145 mg (0.25 mmol) **3a** wurden unter Ar-Schutzgas mit 20 mg (0.13 mmol) 2,2'-Bipyrimidin in 15 ml frisch destilliertem Toluol 25 h unter Rückfluss erhitzt. Die nach dcm Abkühlen der Lösung ausgefallenen Kristalle wurden mit reichlich 1,4-Dioxan gewaschen. Ausb. 90 mg (64%); Schmp. 380°C (Zers.). IR (KBr): 3100 ( $\nu$ [C( $sp^2$ )-H]); 1590, 1405 (Gerüstschw.); 1332, 1320 ( $\nu_{as}$ ,  $\nu_s$ [CF<sub>3</sub>]); 805 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 732, 726 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym), Infolge Schwerlöslichkeit weder <sup>1</sup>H- noch <sup>13</sup>C-NMR-Spektrum erhätlich. MS (FD):  $M^+$  m/e = 1124 (ber. 1124 für <sup>195</sup>Pt). Analyse. Gef.: C, 38.56; H, 1.66; N, 5.28. C<sub>36</sub>H<sub>18</sub>F<sub>12</sub>N<sub>4</sub>Pt<sub>2</sub> (1124.71) ber.: C, 38.45; H, 1.61; N, 4.98%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[2,7-bis(trifluormethyl)dibenzoplatinol] (7b). Analog zu 7a aus 69.0 mg (0.12 mmol) 3b und 95.1 mg (0.06 mmol) 2,2'-Bipyrimidin in 10 ml 1,4-Dioxan; 100 h unter Rückfluß. Ausb. 38.1 mg (57%); Schmp. 347°C

(Zers.). IR (KBr): 3100, 3050 ( $\nu$ [C( $sp^2$ )-H]); 1572, 1401 (Gerüstschw.); 1315 ( $\nu$ [CF<sub>3</sub>]); 820 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 804, 728 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym). Infolge Schwerlöslichkeit kein <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum registrierbar. MS (FD):  $M^+$  m/e = 1124 (ber. 1124 für <sup>195</sup>Pt). Analyse. Gef.: C, 38.62; H, 1.95; N, 4.60. C<sub>36</sub>H<sub>18</sub>F<sub>12</sub>N<sub>4</sub>Pt<sub>2</sub> (1124.7) ber.: C, 38.45; H, 1.61; N, 4.98%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[3,6-bis(methoxy)dibenzoplatinol] (7c). Analog zu 7a aus 50 mg (0.10 mmol) 3c und 8 mg (0.05 mmol) 2,2'-Bipyrimidin in 5 ml Toluol; 9 h bei 90°C; die nach dem Abkühlen isolierten Kristalle wurden mit reichlich Aceton gewaschen. Ausb. 5 mg (10%); Schmp. 291°C (Zers.). IR (KBr): 3100, 3040 ( $\nu$ [C( $sp^2$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1570, 1405 (Gerüstschw.); 1212 ( $\nu$ [C( $sp^2$ )-O]); 1022 ( $\nu$ [C( $sp^3$ )-O]); 800 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 730 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym). Infolge Schwerlöslichkeit kein <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum registrierbar. MS (FD):  $M^+$ m/e = 972 (ber. 972 für <sup>195</sup>Pt). Analyse. Gef.: C, 44.69; H, 3.18; N, 5.44. C<sub>36</sub>H<sub>30</sub>N<sub>4</sub>O<sub>4</sub>Pt<sub>2</sub> (972.8) ber.: C, 44.15; H, 3.11; N, 5.76%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[2,7-bis(methoxy)dibenzoplatinol] (7d). Analog zu 7a aus 120 mg (0.24 mmol) 3d und 19 mg (0.12 mmol) 2,2'-Bipyrimidin in 30 ml Toluol; 7 h unter Rückfluß, waschen mit Toluol und CH<sub>2</sub>Cl<sub>2</sub>. Ausb. 80 mg (69%); Schmp. 332°C (Zers.). IR (KBr): 3100, 3040 ( $\nu$ [C( $sp^2$ )-H]); 2830 ( $\nu$ [CH<sub>3</sub>O]); 1565, 1405 (Gerüstschw.); 1205 ( $\nu$ [C( $sp^2$ )-O]); 1030 ( $\nu$ [C( $sp^3$ )-O]); 815 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 729 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym). Infolge Schwerlöslichkeit kein <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum registrierbar. MS (FD):  $M^+$  m/e = 972 (ber. 972 für <sup>195</sup>Pt). Analyse. Gef.: C, 44.70; H, 2.99; N, 5.57. C<sub>36</sub>H<sub>30</sub>N<sub>4</sub>O<sub>4</sub>Pt<sub>2</sub> (972.82) ber.: C, 44.45; H, 3.11; N, 5.76%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[3,6-bis(t-butyl)dibenzoplatinol] (7e). Analog zu 7a aus 150 mg (0.27 mmol) 3e und 21 mg (0.13 mmol) 2,2'-Bipyrimidin in 20 ml Toluol; 10 h unter Rückfluß, waschen mit Toluol und Aceton. Ausb. 60 mg (42%); Schmp. 311°C (Zers.). IR (KBr): 3090, 3010 ( $\nu$ [C(sp<sup>2</sup>)-H]); 2960, 2900, 2870 ( $\nu$ [C(sp<sup>3</sup>)-H]); 1570, 1398 (Gerüstschw.); 1385, 1355 (δ[C(CH<sub>3</sub>)<sub>3</sub>]); 800 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 727 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym). Infolge Schwerlöslichkeit kein <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum registrierbar. MS (FD):  $M^+$  m/e = 1076 (ber. 1076 für <sup>195</sup>Pt). Analyse. Gef.: C, 53.08; H, 5.10; N, 5.13. C<sub>48</sub>H<sub>54</sub>N<sub>4</sub>Pt<sub>2</sub> (1077.14) ber.: C, 53.52; H, 5.05; N, 5.20%.

 $\mu$ -[9,9-( $\eta^2$ -2,2'-Bipyrimidin)]-bis[2,7-bis(t-butyl)dibenzoplatinol] (7f). Analog zu 7a aus 200 mg (0.36 mmol) 3f und 28 mg (0.18 mmol) 2,2'-Bipyrimidin in 50 ml Toluol; 30 h unter Rückfluß, waschen mit Toluol und Diethylether. Ausb. 120 mg (62%); Schmp. 358°C (Zers.). IR (KBr): 3090, 3040 ( $\nu$ [C( $sp^2$ )-H]); 2960, 2900, 2870 ( $\nu$ [C( $sp^3$ )-H]); 1570, 1400 (Gerüstschw.); 1373, 1352 ( $\delta$ [C(CH<sub>3</sub>)<sub>3</sub>]); 815, 810 ( $\gamma$ [C-H<sub>aromat</sub>]; Biph); 730 ( $\gamma$ [C-H<sub>aromat</sub>]; Bipym). Infolge Schwerlöslichkeit kein <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum registrierbar. MS (FD):  $M^+$  m/e = 1076 (ber. 1076 für <sup>195</sup>Pt). Analyse. Gef.: C, 53.41; H, 5.02; N, 5.21. C<sub>48</sub>H<sub>54</sub>N<sub>4</sub>Pt<sub>2</sub> (1077.14) ber.: C, 53.52; H, 5.05; N, 5.20%.

#### Literatur

- 1 P.S. Braterman, R.J. Cross und G.B. Young, J. Chem. Soc., Dalton Trans., (1976) 1306; (1977) 1982.
- 2 W. Böse, Diplom-Arbeit, Univ. Ulm, 1977.
- 3 H.-A. Brune und J. Ertl, Liebigs Ann. Chem., (1980) 928.
- 4 H.-A. Brune, J. Ertl, D. Grafl und G. Schmidtberg, Chem. Ber., 115 (1982) 1141.

- 5 U. Bayer und H.-A. Brune, Z. Naturforsch. B, 38 (1983) 226.
- 6 U. Bayer und H.-A. Brune, Z. Naturforsch. B, 38 (1983) 621.
- 7 H.-A. Brune, R. Hess und G. Schmidtberg, Z. Naturforsch. B, 39 (1984) 1772.
- 8 H.-A. Brune, R. Hess und G. Schmidtberg, Chem. Ber., 118 (1985) 2011.
- 9 H.-A. Brune, R. Hess und G. Schmidtberg, J. Organomet. Chem., 303 (1986) 429.
- 10 H.-A. Brune, B. Stapp und G. Schmidtberg, Chem. Ber., 119 (1986) 1845.
- 11 H.-A. Brune, B. Stapp und G. Schmidtberg, J. Organomet. Chem., 307 (1986) 129.
- 12 H.-A. Brune, G. Schmidtberg und M. Wiege, Z. Naturforsch., B, 39 (1984) 517.
- 13 H.-A. Brune, M. Falck, R. Hemmer und H.G. Alt, Chem. Ber., 117 (1984) 2803.
- 14 B. Stapp, G. Schmidtberg und H.-A. Brune, Z. Naturforsch. B, 41 (1986) 514.
- 15 R. Klotzbücher und H.-A. Brune, J. Organomet. Chem., 299 (1986) 399.
- 16 U. Mayr und H.-A. Brune, Z. Naturforsch. B, 41 (1986) 1281.
- 17 H. Palkovits, U. Ziegler, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 338 (1988) 119.
- 18 P.S. Braterman, Top. Curr. Chem., 92 (1980) 149.
- 19 J. Ertl. T. Debaerdemaker und H.-A. Brune, Chem. Ber., 115 (1982) 3860.
- 20 H.-A. Brune, M. Wiege und T. Debaerdemaker, Z. Naturforsch. B, 39 (1984) 359.
- 21 H.-A. Brune, M. Wiege und T. Debaerdemaker, Z. Naturforsch. B, 39 (1984) 907.
- 22 T. Debaerdemaker, B. Stapp und H.-A. Brune, Acta Cryst. C, 43 (1987) 473.
- 23 T. Debaerdemaker, R. Baumgärtner und H.-A. Brune, Z. Kristallogr., 180 (1987) 171.
- 24 T. Debaerdemaker, K. Berhalter, C. Weisemann und H.-A. Brune, Acta Crystallogr., Sect. C, 43 (1987) 1253.
- 25 T. Debaerdemaker, C. Weisemann und H.-A. Brune Acta Cryst., C, 43 (1987) 432.
- 26 R. Baumgärtner, G. Laube, G. Schmidtberg und H.-A. Brune J. Organomet. Chem., 332 (1987) 221.
- 27 R. Baumgärtner und H.-A. Brune, J. Organomet. Chem., 332 (1987) 379.
- 28 C. Weisemann und H.-A. Brune, J. Organomet. Chem., 312 (1986) 133.
- 29 H.-A. Brune, W. Schäfer, K.-H. Spohn und C. Weisemann, J. Organomet. Chem., 316 (1986) 367.
- 30 R. Hohenadel und H.-A. Brune, J. Organomet. Chem., 350 (1988) 101.
- 31 H.-A. Brune, R. Hohenadel, G. Schmidtberg und U. Ziegler, J. Organomet. Chem., 402 (1991) 171.
- 32 R. Uson, J. Vicente, J.A. Cirac und M.T. Chicote, J. Organomet. Chem., 198 (1980) 105.
- 33 H.C. Clark und L.E. Manzer, J. Organomet. Chem., 59 (1973) 411.
- 34 D.W. Wertz und M.A. Moseley, Spectrochim. Acta, A, 36 (1980) 467.
- 35 N. Chaudhury und R.J. Puddephatt, J. Organomet. Chem., 84 (1975) 105.
- 36 Z. Dawoodi, C. Eaborn und A. Pidcock, J. Organomet. Chem., 170 (1979) 95.
- 37 C. Cornidey-Deuschel und A. von Zelewski, Inorg. Chem., 26 (1987) 3354.
- 38 V.F. Suttcliffe und G.B. Young, Polyhedron, 3 (1984) 87.
- 39 K.J. Moore und J.D. Petersen, Polyhedron, 2 (1983) 279.
- 40 W. Kaim und S. Kohlmann, Inorg. Chem., 25 (1986) 3306.
- 41 S. Ernst, Y. Kurth und W. Kaim, J. Organomet. Chem., 302 (1986) 211.
- 42 M. Maestri, D. Sandrini, V. Balzani, A. von Zelewski, C. Deuschel-Cornioley und P. Jolliet, Helv. Chim. Acta, 71 (1988) 1053.
- 42 S.H. Mastin, Inorg. Chem., 13 (1974) 1003.