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Abstract

The title compound, 5, which is the first dirhodium complex to contain both arsenic and a chiral
substituent, has been synthesized from [Rh(CO),],(u-Cl),, As('Bu); and (+)-(neomenthanethio)tri-
methylsilane. The complex was found to catalyze the hydrogenation of methyl N-acetamidocinnamate,
albeit with low enantioselectivity. X-Ray diffraction studies revealed that 5 exists in the crystal as a pair
of epimers.

Introduction

The superior ability of dinuclear complexes to catalyze multi-substrate reactions
[1] has been demonstrated in our laboratories by application of dirhodium com-
pounds of general formula cis-[('Bu;P}CO)Rh],(p-Cl)(p-SR) to various organic
hydrogen transfer processes [2-5]. Modification of these complexes, either by
substitution of the bulky phosphine ligands, or by changing the nature of the
sulfur-bound R group, proved to affect their catalytic properties greatly. For
example, a substantial rate increase was observed in hydrogenation of cyclohexene
either upon replacement of the tertiary phosphine by arsine [6], or upon attachment
of the dirhodium complexes to insoluble supports [3-5]. Introduction of a chiral
tertiary phosphine ligand into the various dirhodium compounds gave enantioselec-
tive hydrogenation catalysts [7].

We now report the preparation of (+ )-cis-[dicarbonyl-u-chloro-u-[58-methyl-2 a-
(1-methylethyl)cyclohexanethiolato]]bistris(1,1-dimethylethyl)arsine]dirhodium (5),
which is the first dirhodium complex to contain both arsenic and a chiral sub-
stituent.
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Results and discussion

The synthesis of 5§ was accomplished by reaction of [Rh(CO),],(p-Cl), (1) with
two equivalents of ‘Buj;As (2) (eq. 1), followed by one equivalent (+)-
(neomenthanethio)trimethylsilane ([1S-(1¢,2a,58)][5-methyl-2-(1-methylethyl)cyclo-

hexanethio]trimethylsilane) (4) (eq. 2).

[Rh(CO),],(p-Cl), +2'BusAs — [(‘BU3AS)(CO)Rh] 2(#-Cl), + 2CO (1)
M (2) 3)
3+(+)-MeSiSR — (+)-cis-[(‘Bu;As)(CO)RR] (s-Cl)(1-SR) + Me,SiCl  (2)
(4) (5)

(R = 58-methyl-2 a-(1-methylethyl)cyclohexyl)

The intermediate 3 exists in solution as a mixture of isomers. When the reaction
is conducted in the cold or left to stand for a prolonged period prior to the addition
of 4, the trans-isomer of 3, which reacts only very slowly with the thio-ether,
separates.

X-Ray diffraction analysis of a crystal of § (see Tables 1 and 2) revealed that
each unit cell consists of two cis-oriented epimers: one pair in which the chiral
moiety has the (1R,2R,55)-configuration, and one in which it has the (15,2R,55)-
configuration. (See Fig. 1 for a stereoscopic view of one half of the unit cell). The
ORTEP drawings of the two isomers of 5 are presented in Fig. 2a and 2b. By placing
these two figures in such a way that the atoms of both molecules—with the
exception of those of the chiral portion—are superimposed, one can see that
C(1)-C(3) of the cyclohexane moieties are also superimposable. In such an arrange-
ment C(5) of one epimer occupies position C(7) in the other and vice versa. The
cyclohexane ring which is attached to the sulfur bridge by the secondary C(1) atom
occupies a pseudo-axial position in the dimetallacyclobutane structure in a similar
fashion as in cis-[dicarbonylbis(tri-tert-butylphosphine)dirhodium [8]. This config-
uration of 5 is opposite to that found in compounds in which the R group is
attached to the sulfur through a primary carbon atom (e.g., in (—)-cis-{dicarbonyl-
p-chloro-(6,6-dimethylbicyclo[3.1.1]heptane-2-methanethiolato)bis[tris(1,1-dimethyl-
ethyl)phosphine]dirhodium [9)).

Table 1

Crystal data and refinement details for §

Formula C36H,3As,Cl0,SRh, v (A% 2159(1)
Molecular weight 961.1 zZ 2
Crystal system triclinic Pealed» B €M > 1.48
Space group Pl #(Mo-K ), ™! 22.97
a (A) 16.290(6) No. of unique reflections 5593

b (A) 14.224(4) No. of reflections with 7> 3a(1) 4292

c (A) 10.066(6) R 0.065
a(®) 109.77(3) R, 0.085
B(®) 93.18(2) w! o2 +0.000691 - F?

Y (°) 79.62(3)
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Table 2

Fractional atomic coordinates for § (esd’s in parentheses)

Atom x y z Atom X y z

Rh(1)  0.26904(6) 0.26431(7) 0.3270(1) C(12) 0.1759(8) 0.571(1) 0.613(1)
Rh(2)  0.2239%(5) 0.50910(7) 0.44518(9) C(13) 0.293(1) 0.150(1) -0.074(1)
As(1) 0.24645(7) 0.1312%(9) 0.1001(1) C(14) 0.294(1) 0.062(1) —0.2132)
As(2) 0.14868(8) 0.63894(9) 0.3470(1) C(15) 0.380(1) 0177(1) -0.037(2)
S 0.2930(2) 0.3870(2)  0.5433(3) C(16) 0.238(1) 0.244(1) —0.098(2)
Cl 0.2997(2) 0.3924(2) 0.2356(3) can 0.1206(8) 0.136(1) 0.079(2)
o(1) 0.2143(8)  0.162%8)  0.505(1) C(18) 0.093(1) 0.085(1) —0.080(2)
(2) 0.1468(6) 0.6035(8)  0.726(1) C(19) 0.091(1) 0.088(1) 0.178(2)
C(1,1)  0.4062(7)  0.39549)  0.537(1) C(20) 0.0824(9) 0.251(1) 0.124(2)
C(2) 0.438(2) 0.455(2) 0.691(3) C(21) 0.2973(8) —0.014(1) 0.092(1)
C(3,3") 0.440(1) 0.383(2) 0.778(2) C(22) 0.257(1) —0.096(1) —0.027(2)
C4) 0.489(2) 0.290(4) 0.735(4) C(23) 0.395(1) —-0.032(1) 0.061(2)
C(5.7) 046359  0.221(1) 0.559(2) C(24) 0.2881(9) -0.025Q1) 0.233(2)
C(6) 0.455(2) 0.291(2) 0.479(3) C(25) 0.154(1) 0.787(1) 0.474(2)
C(7,5") 0.3955(8)  0.558(1) 0.756(1) C(26) 0.141(1) 0.795(1) 0.623(2)
C(8) 0.384(2) 0.623(3) 0.656(4) @27 0.239(1) 0.806(1) 0.453(2)
C(9) 0.434(2) 0.629(4) 0.884(3) C(28) 0.082(1) 0.867(1) 0.440(2)
C(10) 0.520(2) 0.124(3) 0.525(6) C(29) 0.026%(7) 0.621(1) 0.328(2)
22" 0.464(2) 0.330(2) 0.612(3) C30)y -—-0.014(1) 0.658(1) 0.476(2)
C(4’) 0.450(2) 0.482(3) 0.834(3) C(31) -—0.028(1) 0.675(1) 0.237(2)
C6’) 0.416(2) 0.511(2) 0.602(3) C(32) 0.030(1) 0.501(1) 0.261(2)
C(8") 0.484(2) 0.175(2) 0.392(3) C(33) 0.1891(9) 0.626(1) 0.149(1)
c9’) 0.529(2) 0.1632) 0.633(4) C(39) 0.156(1) 0.716(1) 0.102(2)
C(10")  0.435(4) 0.650(4) 0.812(5) C(3%5) 0.169(1) 0.528(1) 0.043(2)
C(11) 0.23648) 0.195(1) 0.428(1) C(36) 0.288(1) 0.615(1) 0.159(2)

The formation of 5 as a 1:1 mixture of epimers by use of 4 of > 99.5% optical
purity (as indicated (i) by Horeau’s method [10], (ii) by the chiral lanthanide shift
reagent technique, and (iii) by hydrolysis to give > 99.5% optically pure (+)-

s

Fig. 1. Stereoscopic view of one half unit cell of §.
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Fig. 2. orRTEP drawings of (a) the 1R,2R,5S-isomer of 5b and (b) the 15,2 R,55-isomer of Sb.
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neomenthanethiol [11}), suggests that the replacement of one chlorine atom in
intermediate 3 involves the reversible formation of a complex of type 6. The
suggestion that 6 is generated is supported by the observation that some chlorine-
bridged dirhodium complexes are capable of inducing reversible B-hydrogen
elimination [2,5]. '

(#-Bu)y As ct s (7-Buly
\Rh///HARh/A
oc/ \//s \co

~
~

(8)

Complex 5 was shown to be a highly active hydrogenation catalyst for un-
hindered alkenes. Cyclohexene e.g., is transformed by 5 to cyclohexane at a
comparable rate to that of hydrogenation in the presence of the Wilkinson catalyst
{12]. Sterically hindered C=C bonds were found to be reduced much more slowly.
The complex was shown to promote asymmetric hydrogenation of some prochiral
substrates such as methyl N-acetamidocinnamate (7) (eq. 3). Its enantioselectivity,

5
Z-PhCH=C(NHCOMe)(COOMe) + H, —
5-(+)-PhCH,CH(NHCOMe)(COOMe)  (3)

however, proved inferior to that of our neomenthyldiphenylphosphine dirhodium
catalyst [7]. After 20 h, e.g., the hydrogenation of 7 in a 1: 2 mixture of MeOH-PhH
at 120°C and 100 psi H, furnished 16% of the (4 )-N-acetylphenylalanine methyl
ester (8), in only 22% ee. When the reaction was conducted in pure PhH, the
reduction rate increased (63, 77 and 98% yield were obtained after 30, 60 and 120
min, respectively), but the corresponding ee values were only 10, 8, and 0%. We
attribute the low optical purity in part to the existence of § as pairs of epimers, and
in part to the catalytic hydrogen scrambling in the initially formed optically active
product {13].

Experimental

{ + )-(Neomenthanethio)trimethylsilane (4)

To a stirred solution of 10.52 g (61 mmol) of > 99.5% optically pure (+)-
neomenthanethiol [11] in 40 cm® of EtOH under Ar was added a solution of 11.64 g
(30 mmol) of PB(OAc), - 3H,0 in 350 cm’ of H,O. The mixture was stirred for 24 h
at room temperature. The yellow precipitate was washed successively with EtOH
and dried at 0.05 mm to give 14.52 g (87%) of the lead salt of neomenthanethiol.
M.p. 182°C (dec.); [a]® = +22.5° (c=0.2, CHCl,). Found: C, 43.75; H, 6.92.
C,oH 33 PbS, (549.84) caled.: C, 43.68; H, 6.98%. .

A stirred mixture of 14.11 g (26 mmol) of the lead salt and 20 cm’® of ‘freshly
distilled Me,;SiCl was refluxed under Ar for 10 days. The PbCl, was filtered off and
washed twice with 10 cm® of Me;SiCL. The excess of Me,SiCl was removed under
reduced pressure and the residue was distilled at 0.1 mm to give 10.75 g (85%) of 4.
B.p. 91°C (0.1 mmHg); [a]¥ = +80.4°; '"H-NMR (300 MHz, CeDg): 6 0.238 (s,
9H, Si(CH;);); 0.768-0.831 (m, 3H); 0.859-1.018 (m, 9H, CH(CH,),, CH,);
1.157-1.251 (m, 1H); 1.478-1.865 (m, 4H); 2.206-2.228 (m, 1H); 3.334 (dt, 1H,
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Jy =24 Hz, J,= 25 Hz, CHS). "C{*H} NMR (75 MHz, C4Hy): 8 1.77 (Si(CH>)5);
20.96, 21.08, 22.40, 25.28, 26.08, 30.17, 35.90, 43.16, 45.24, 50.06 (CHS). Found: C,
63.94; H, 11.48. C,,H4SSi (244.52) calcd.: C, 63.86; H, 11.54%.

Preparation of 5

To a stirred solution of 300 mg (0.77 mmol) of 1 in 30 cm® of n-pentane at 20°C
under Ar was added a solution of 365 mg (1.48 mmol) of ‘Bu;As in 20 cm® of the
same solvent. The mixture was warmed during 30 min to 35°C and kept for 2 h at
this temperature, and a solution of 188 mg (0.77 mmol) of 4 in 20 cm’® of n-pentane
was added. Stirring was continued for 4 h and the pale orange micro-crystals of 5§
then filtered off under Ar and washed three times with 3 cm® of n-pentane.
Crystallization from a 1:1 mixture of degassed CH,Cl, and pentane afforded 460
mg (62%) of 5. M.p. 190-205°C (dec.). [a}® = +7.9° (¢ = 0.052, PhH); IR (KBr):
»(CO) 1950, 1960 cm~'; 'H-NMR (200 MHz, C,D;): 6 0.831-0.899 (n, 1H); 1.087
(d, 3H, J=6.6 Hz, CH,CHCH,); 1.153 (d, 3H, J = 6.6 Hz, CH,CHCH,); 1.231-
1.274 (m, 1H); 1.431 (s, 54H, As[C(CH;),]5); 1.599-1.617 (m, 2H); 1.705 (d, 3H,
J = 6.6 Hz, CHCH,); 1.741-1.903 (m, 1H); 2.010-2.258 (m, 1H); 2.655-2.964 (m,
2H); 3.667-3.875 (m, 1H); 4.310 (m, 1H, CHS); PC-NMR (75 MHz, CeDy): 6
21.56, 22.88, 23.66, 25.20, 26.64, 30.46, 32.52, (As{C(CH,;);];); 36.49, 43.16
(As[C(CH;),]5); 50.17, 51.50, 51.63, 188.35 (d, J(Rh, C)=40.1 Hz, Rh-CO).
Found: C, 44.89; H, 7.80. C,4H,;As,CIO,Rh,S (961.15) caled.: C, 44.99; H, 7.66%.

X-Ray crystal structure analysis of §

A suitable crystal was obtained by slow recrystallization from benzene. Data
were measured on a PW1100,/20 Philips Four-Circle Computer-Controlled Dif-
fractometer. Mo-K, (A = 0.71069 ;\) radiation with a graphite crystal monochroma-
tor in the incident beam was used. The unit cell dimensions were obtained by a
least-squares fit of 20 centered reflections in the range of 10 < & < 13°. Intensity
data were collected using the w—28 technique to a maximum 28 of 45°. The scan
width, Aw, for each reflection was 1.00+ 0.35-tan § with a scan speed of 3.0
deg/min. Background measurements were made for a total of 20 s at both limits of
each scan. Three standard reflections were monitored every 60 min. No systematic
variations in intensities were found.

Intensities were corrected for Lorentz and polarization effects. All non-hydrogen
atoms were found by a SHELXS-87 direct-method analysis [14]. Refinement proceeded
to convergence by minimization of the function Ew(|F,|— | F.|)% A final dif-
ference Fourier synthesis map showed several peaks less than 1.1 e/;%3 scattered
about the unit cell.

The discrepancy indices, R=X||F, |- |F||/Z|F,| and R, =Xw(|F,|—
| E. )2/Zw | E, |* are shown, with other pertinent crystallographic data, in Table 1.
Selected positional parameters, bond lengths and angles are given in Tables 2 and 3.
Lists of positional parameters for the various hydrogen atoms, anisotropic thermal
parameters, and observed and calculated structure factors for § are available from
the authors.

Hpydrogenation of Z-methyl a-acetamidocinnamate (7)
Typically a mixture of 184.5 mg (0.84 mmol) of 7, 49 mg (0.042 mmol) of §, 10
cn?’ of PhH and 5 cm® of MeOH was placed in a mini-autoclave, purged with Ar and
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Table 3
Selected bond lengths (A) and bond angles (°) for § (esd’s in parentheses)

Bond lengths

Rh(1)-As(1) 2.483(1) C(1,1)-C2") 1.55(3) C(13)-C(14) 1.53(2)
Rh(1)-S 2.350(3) C(1,1)-C(6") 1.58(3) C(13)-C(15) 1.54(2)
Rh(1)-Cl 2.435(4) C(2)-C(3,3") 1.55(4) C(13)-C(16) 1.55(2)
Rh(1)-C(11) 1.80(2) C(2)-C(1,5") 1.44(3) C(17)-C(18) 1.59Q2)
Rh(2)-As(2) 2.485(2) C(3,3")-C(%) 1.35(5) C(17)-C(19) 1.52(3)
Rh(2)-S 2.364(4) C(3,3)-C(2") 1.62(3) CA7)-C(20) 1.56(2)
Rh(2)-Cl 2.430(3) C(3,3')-C(4") 1.36(4) C(21)-C(22) 1.57Q2)
Rh(2)-C(12) 1.77(1) C(4)-C(5,7") 1.78(4) C(21)-C(23) 1.60(2)
As(1)-C(13) 2.07(2) C(5,7)-C(6) 1.474) . C(21)-C(24) 1.49(2)
As(1)-C(17) 2.04(1) C(5,7")-C(10) 1.46(3) C(25)-C(26) 1.4%3)
As(1)-C(21) 2.06(1) C(5,7)-C(2") 1.47(3) C(25)-C(27) 1.49(3)
As(2)-C(25) 2.07(1) C(5,7)-C(8") 1.61(3) C(25)-C(28) 1.5%2)
As(2)-C(29) 2.04(1) C(5,7)-C(")  1.55(4) C(29)-C(30) 1.54(2)
As(2)-C(33) 2.07(1) C(7.5")-C(8) 1.63(4) C(29)-C(31) 1.60(2)
S-C(1,1) 1.87Q1) C(1,5")-C(9) 1.53(4) C(29)-C(32) 1.60(2)
Oo(1)-C(11) 1.12(2) C(7,5")-C(4") 1.65(4) C(33)-C(349) 1.51(2)
0(2)-C(12) 1.17(2) C(7,5")-C(6") 1.49(3) C(33)-C(35) 1.51Q2)
C(1,1)-C(2) 1.60(3) C(1,5")-C(10")  1.49(6) C(33)-C(36) 1.60(2)

C(1,1)-C6)  1.49(3)

Bond angles

As(1)-Rh(1)-S 178.5(1) C(2)-C(1,1")-C(6) 112(2) C(14)-C(13)-C(16)  107(1)
As(1)-Rh(1)-Cl1 99.1(1) C(2)-CQ,1")-C(6") 111(2) C(15)-C(13)-C(16)  107(1)
As(1)-Rh(1)-C(11)  92.25(5) C(1,1)-C(2)-C(3,3")  106(2) As(1)-C(A7)-C(18)  113(1)
S-Rh(1)-Cl 81.81) CQ,1)-C(2)-C(7,5") 116(2) As(1)-CA7)-C(19)  109(1)
S—-Rh(1)-C(11) 87.0(5) C@3,3)-C)-C(7,5") 117Q2) As()-C(1T)-C(20)  105.1(9)
CI-Rh(1)-C(11) 116.7(6) C(2)-C(3,3")-C(4) 120(2) C(18)-C(17)-C(19) 112(1)
As(2)-Rh(2)-S 178.5(1) C2")-C(3,3")-C(4’)  114(2) C(18)-C(17-C(20)  107(1)
As(2)-Rh(2)-Cl 99.80(8) C(3,3")-C(4)-C(5,7") 110(3) C(19-C7)-C(20)  111(1)
As(2)-Rh(2)-C(12) 92.7(4) C(4)-C(5,7")-C(6) 107(2) As(1)-C(21)-C(22) 112(1)
S—-Rh(2)-Cl 81.6(1) C(4)-C(5,7)-C(10) 105(3) As(1)-C(21)-C(23)  108.2(9)
S-Rh(2)-C(12) 85.9(5) C(6)-C(5,7")-C(10) 126(3) As(1)-C(21)-C(24) 110(1)
CIl-Rh(2)-C(12) 167.2(5) C@2')-C(5,7)-C(8")  111(2) C(22)-C(21)-C(23)  109(1)
Rh(1)-As(1)-C(13) 114.04) C(2)-C(5,7")-C(9") 112Q2) C(220-C(21)-C(24) 111(1)
Rh(1)-As(1)-C(17) 106.6(5) C(8")-C(5,7)-C(9’)  107(2) C(23)-C(21)-C(29) 107(1)
Rh(1)-As(1)-C(21) 114.2(5) C(1,1)-C(6)-C(5,7") 120(2) As(2)-C(250-C(26)  108(1)
C(13)-As(1)-C(17) 109.1(6) C(2)-C(7,5")-C(8) 115(2) As(2)-C(25)-C(27)  107Q1)
C(13)-As(1)-C(21) 106.1(6) C(2)-C(7,5")-C(9) 120(3) As(2)-C(25)-C(28)  113(1)
C(17)-As(1)-C(21) 106.5(6) C(8)-C(7,5")-C(9) 98(2) C(26)-C(25)-C(27)  111(1)
Rh(2)-As(2)-C(25) 113.74) C(4')-C(7,5")-C(6')  107(2) C(26)-C(25)-C(28)  106(2)
Rh(2)-As(2)-C(29) 106.6(4) C(4")-C(7,5)-C(10") 103(3) C(27)-C(25)-C(28)  112(1)
Rh(2)-As(2)-C(33) 114.8(4) C(6')-C(7,5")-C(10") 108(3) As()-C(29)-C(30)  11((1)
C(25)-As(2)-C(29) 108.5(7) C(1,1')-C(2")-C(3,3) 105(2) As(2)-C(29)-C(31)  11&(1)
C(25)-As(2)-C(33) 105.8(6) C(1,1')-C(2")-C(5,7°)y 117(2) As(2)-C(29)-C(32)  105(1)
C(29)-As(2)-C(33) 107.1(6) C(3,3")-C(2")-C(5,7") 113(2) C(30-C(29)-C(31) 108(1)
Rh(1)-S-Rh(2) 86.6(1) C(3,3')-C(4')-C(7,5") 115(2) C(30)-C(29)-C(32)  10%(1)
Rh(1)-S-C(1,1) 104.6(5) C(1,1')-C(6")-C(7,5') 114(2) C(32)-C(29)-C(32) 110(1)
Rh(2)-S-C(1,1’)  104.0(4) Rh(1)-C(11)-0O(1) 1712)  As(2)-C(33)-C(34)  115Q1)
Rh(1)-Cl-Rh(2) 83.3(1) Rh(2)-C(12)-0(2) 173Q1) As(2)-C(33)-C(35)  109.1(9)
$-C(1,1)-C(2) 110(1) As(1)-C(13)-C(14) 116.2(9) As(2)-C(33)-C(36) 106(1)
S-C(1,1)-C(6) 109(1) As(1)-C(13)-C(15) 108(1) C(34)-C(33)-C(35) 111(1)
S-C(1,1)-C(22") 114(1) As(1)-C(13)-C(16) 108(1) C(34)-C(33)-C(36)  108(1)
S-C(1,1")-C(6") 108(1) C(14)-C(13)-C(15) 111(1) C(35)-C(33)-C(36)  108(1)




258

charged with 100 psi H,. The stirred mixture was kept at 120 + 0.5° C for 20 h. The
solvent was evaporated off and the residue chromatographed on alumina, with
mixtures of MeOH-CH,Cl, as eluent. It was subjected to GC and and optical-ac-
tivity analysis and its NMR spectrum was recorded.
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